Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The following estimates have been superseded by our revised mid-2002 to mid-2010 population estimates for the UK released on 17th December 2013
Excel Age-Range creator for Office for National Statistics (ONS) Mid year population estimates (MYE) covering each year between 1999 and 2013
https://londondatastore-upload.s3.amazonaws.com/mye-custom-tool.JPG" alt="">
These files take into account the revised estimates for 2002-2010 released in April 2013 down to Local Authority level and the post 2011 estimates based on the Census results. Scotland and Northern Ireland data has not been revised, so Great Britain and United Kingdom totals comprise the original data for these plus revised England and Wales figures.
This Excel based tool enables users to query the single year of age raw data so that any age range can easily be calculated without having to carry out often complex, and time consuming formulas that could also be open to human error. Simply select the lower and upper age range for both males and females and the spreadsheet will return the total population for the range. Please adhere to the terms and conditions of supply contained within the file.
Tip: You can copy and paste the rows you are interested in to another worksheet by using the filters at the top of the columns and then select all by pressing Ctrl+A. Then simply copy and paste the cells to a new location.
ONS Mid year population estimates
Open Excel tool (London Boroughs, Regions and National, 1999-2013)
Also available is a custom-age tool for all geographies in the UK. Open the tool for all UK geographies (local authority and above) for: 2010, 2011, 2012 and 2013.
This full MYE dataset by single year of age (SYA) age and gender is available as a Datastore package at the link below.
Ward Level Population estimates
Excel single year of age population tool for 2002 to 2013 for all wards in London.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
National and subnational mid-year population estimates for the UK and its constituent countries by administrative area, age and sex (including components of population change, median age and population density).
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The census is undertaken by the Office for National Statistics every 10 years and gives us a picture of all the people and households in England and Wales. The most recent census took place in March of 2021.The census asks every household questions about the people who live there and the type of home they live in. In doing so, it helps to build a detailed snapshot of society. Information from the census helps the government and local authorities to plan and fund local services, such as education, doctors' surgeries and roads.Key census statistics for Leicester are published on the open data platform to make information accessible to local services, voluntary and community groups, and residents. There is also a dashboard published showcasing various datasets from the census allowing users to view data for Leicester and compare this with national statistics.Further information about the census and full datasets can be found on the ONS website - https://www.ons.gov.uk/census/aboutcensus/censusproductsPopulation DensityDefinition: This dataset provides Census 2021 estimates that classify usual residents in England and Wales by population density (number of usual residents per square kilometre). The estimates are as at Census Day, 21 March 2021.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United Kingdom UK: Population Density: People per Square Km data was reported at 272.898 Person/sq km in 2017. This records an increase from the previous number of 271.134 Person/sq km for 2016. United Kingdom UK: Population Density: People per Square Km data is updated yearly, averaging 235.922 Person/sq km from Dec 1961 (Median) to 2017, with 57 observations. The data reached an all-time high of 272.898 Person/sq km in 2017 and a record low of 218.245 Person/sq km in 1961. United Kingdom UK: Population Density: People per Square Km data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United Kingdom – Table UK.World Bank.WDI: Population and Urbanization Statistics. Population density is midyear population divided by land area in square kilometers. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship--except for refugees not permanently settled in the country of asylum, who are generally considered part of the population of their country of origin. Land area is a country's total area, excluding area under inland water bodies, national claims to continental shelf, and exclusive economic zones. In most cases the definition of inland water bodies includes major rivers and lakes.; ; Food and Agriculture Organization and World Bank population estimates.; Weighted average;
For further detailed information about methodology, users should consult the Labour Force Survey User Guide, included with the APS documentation. For variable and value labelling and coding frames that are not included either in the data or in the current APS documentation, users are advised to consult the latest versions of the LFS User Guides, which are available from the ONS Labour Force Survey - User Guidance webpages.
Occupation data for 2021 and 2022
The ONS has identified an issue with the collection of some occupational data in 2021 and 2022 data files in a number of their surveys. While they estimate any impacts will be small overall, this will affect the accuracy of the breakdowns of some detailed (four-digit Standard Occupational Classification (SOC)) occupations, and data derived from them. None of ONS' headline statistics, other than those directly sourced from occupational data, are affected and you can continue to rely on their accuracy. The affected datasets have now been updated. Further information can be found in the ONS article published on 11 July 2023: Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022
APS Well-Being Datasets
From 2012-2015, the ONS published separate APS datasets aimed at providing initial estimates of subjective well-being, based on the Integrated Household Survey. In 2015 these were discontinued. A separate set of well-being variables and a corresponding weighting variable have been added to the April-March APS person datasets from A11M12 onwards. Further information on the transition can be found in the Personal well-being in the UK: 2015 to 2016 article on the ONS website.
APS disability variables
Over time, there have been some updates to disability variables in the APS. An article explaining the quality assurance investigations on these variables that have been conducted so far is available on the ONS Methodology webpage.
The Secure Access data have more restrictive access conditions than those made available under the standard EUL. Prospective users will need to gain ONS Accredited Researcher status, complete an extra application form and demonstrate to the data owners exactly why they need access to the additional variables. Users are strongly advised to first obtain the standard EUL version of the data to see if they are sufficient for their research requirements.
This report was released in September 2010. However, recent demographic data is available on the datastore - you may find other datasets on the Datastore useful such as: GLA Population Projections, National Insurance Number Registrations of Overseas Nationals, Births by Birthplace of Mother, Births and Fertility Rates, Office for National Statistics (ONS) Population Estimates
FOCUSONLONDON2010:POPULATIONANDMIGRATION
London is the United Kingdom’s only city region. Its population of 7.75 million is 12.5 per cent of the UK population living on just 0.6 per cent of the land area. London’s average population density is over 4,900 persons per square kilometre, this is ten times that of the second most densely populated region.
Between 2001 and 2009 London’s population grew by over 430 thousand, more than any other region, accounting for over 16 per cent of the UK increase.
This report discusses in detail the population of London including Population Age Structure, Fertility and Mortality, Internal Migration, International Migration, Population Turnover and Churn, and Demographic Projections.
Population and Migration report is the first release of the Focus on London 2010-12 series. Reports on themes such as Income, Poverty, Labour Market, Skills, Health, and Housing are also available.
REPORT:
Read the full report in PDF format.
https://londondatastore-upload.s3.amazonaws.com/fol/FocusOnLondonCoverweb.jpg" alt=""/>
PRESENTATION:
To access an interactive presentation about population changes in London click the link to see it on Prezi.com
DATA:
To access a spreadsheet with all the data from the Population and Migration report click on the image below.
MAP:
To enter an interactive map showing a number of indicators discussed in the Population and Migration report click on the image below.
FACTS:
● Top five boroughs for babies born per 10,000 population in 2008-09:
-32. Havering – 116.8
-33. City of London – 47.0
● In 2009, Barnet overtook Croydon as the most populous London borough. Prior to this Croydon had been the largest since 1966
● Population per hectare of land used for Domestic building and gardens is highest in Tower Hamlets
● In 2008-09, natural change (births minus deaths) led to 78,000 more Londoners compared with only 8,000 due to migration. read more about this or click play on the chart below to reveal how regional components of populations change have altered over time.
Trend-based projections
Four variants of trend-based population projections and corresponding household projections are currently available to download. These are labelled as High, Central and Low and differ in their domestic migration assumptions beyond 2017. The economic crisis has been linked to a fall in migration from London to the rest of the UK and a rise in flows from the UK to London. The variants reflect a range of scenarios relating to possible return to pre-crisis trends in migration.
High: In this scenario, the changes to domestic migration flows are considered to be structural and recent patterns persist regardless of an improving economic outlook.
Low: Changes to domestic migration patterns are assumed to be transient and return to pre-crisis trends beyond 2018. Domestic outflow propensities increase by 10% and inflows decrease by 6% as compared to the High variant.
Central: Assumes recent migration patterns are partially transient and partially structural. Beyond 2018, domestic outlow propensities increase by 5% and inflows by 3% as compared to the High variant.
Central - incorporating 2012-based fertility assumptions: Uses the same migration assumptions as the Central projeciton above, but includes updated age-specific-fertility-rates based on 2011 birth data and future fertility trends taken from ONS's 2012-based National Population Projections. The impact of these changes is to increase fertility by ~10% in the long term.
GLA 2013 round trend-based population projections:
Borough: High
Borough: Low
Borough: Central
Borough: Central - incorporating 2012-based NPP fertility assumptions
Ward: Central
GLA 2013 round trend-based household projections:
Borough: High
Borough: Low
Borough: Central
GLA 2013 round ethnic group population projections:
Borough: Central
Updates:
Update 03-2014: GLA 2013 round of trend-based population projections - Methodology
Update 04-2014: GLA 2013 round of trend-based population projections - Results
Data to accompany Update 04-2014
Update 12-2014: GLA 2013 round ethnic group population projections
Data to accompany Update 12-2014
Housing linked projections
Two variants of housing-linked projections are available based on housing trajectories derived from the 2013 Strategic Housing Land Availability Assessment (SHLAA). The two variants are produced using different models to constrain the population to available dwellings. These are referred to as the DCLG-based model and the Capped Household Size model. These models will be explained in greater detail in an upcoming Intelligence Unit Update.
Projection Models:
DCLG-Based Model
This model makes use of Household Representative Rates (HRR) from DCLG’s 2011-based household projections to convert populations by age and gender into households. The models uses iteration to find a population that yields a total number of households that matches the number of available household spaces implied by the development data. This iterative process involves modulating gross migration flows between each London local authority and UK regions outside of London. HRRs beyond 2021 have been extrapolated forward by the GLA. The model also produces a set of household projections consistent with the population outputs.
Capped Household Size Model
This model was introduced to provide an alternative projection based on the SHLAA housing trajectories. While the projections given by the DCLG-Based Model appear realistic for the majority of London, there are concerns that it could lead to under projection for certain local authorities, namely those in Outer London where recent population growth has primarily been driven by rising household sizes. For these boroughs, the Capped Household Size model provides greater freedom for the population to follow the growth patterns shown in the Trend-based projections, but caps average household size at 2012 levels. For boroughs where the DCLG-based SHLAA model gave higher results than the Trend-based model, the projections follow the results of the former.
Household projections are not available from this model.
Development assumptions:
SHLAA housing data
These projections incorporate development data from the 2013 Strategic Housing Land Availability Assessment (SHLAA) database to determine populations for 2012 onwards. Development trajectories are derived from this data for four phases: 2015-20, 2021-25, 2026-30, and 2031-36. For 2012-14, data is taken from the 2009 SHLAA trajectories. No data is included in the database for beyond 2036 and the 2031-36 trajectories are extended forward to 2041. This data was correct as at February 2014 and may be updated in future. Assumed development figures will not necessarily match information in the SHLAA report as some data on estate renewals is not included in the database at this time.
GLA 2013 round SHLAA-based population projections:
Borough: SHLAA-based
Borough: capped SHLAA-based
Ward: SHLAA-based
Ward: capped SHLAA-based
GLA 2013 round SHLAA-based household projections:
Borough: SHLAA-based
GLA 2013 round SHLAA-based ethnic group population projections:
Borough: SHLAA-based
Zero-development projections
The GLA produces so-called zero-development projections for London that assume that future dwelling stocks remain unchanged. These projections can be used in conjunction with the SHLAA-based projections to give an indication of the modelled impact of the assumed development. Variants are produced consistent with the DCLG-based and Capped Household Size projections. Due to the way the models operate, the former assumes no development beyond 2011 and the latter no development after 2012.
GLA 2013 round zero development population projections:
Borough: DCLG zero development
Borough: capped zero development
Ward: DCLG zero development
Ward: capped zero development
Frequently asked question: which projection should I use?
The GLA Demography Team recommends using the Capped Household Size SHLAA projection for most purposes. The main exception to this is for work estimating future housing need, where it is more appropriate to use the trend-based projections.
The custom-age population tool is here.
To access the GLA's full range of demographic projections please click here.
This is NOT a raw population dataset. We use our proprietary stack to combine detailed 'WorldPop' UN-adjusted, sex and age structured population data with a spatiotemporal OD matrix.
The result is a dataset where each record indicates how many people can be reached in a fixed timeframe (3 hours in this case) from that record's location.
The dataset is broken down into sex and age bands at 5 year intervals, e.g - male 25-29 (m_25) and also contains a set of features detailing the representative percentage of the total that the count represents.
The dataset provides 48420 records, one for each sampled location. These are labelled with a h3 index at resolution 7 - this allows easy plotting and filtering in Kepler.gl / Deck.gl / Mapbox, or easy conversion to a centroid (lat/lng) or the representative geometry of the hexagonal cell for integration with your geospatial applications and analyses.
A h3 resolution of 7, is a hexagonal cell area equivalent to: - ~1.9928 sq miles - ~5.1613 sq km
Higher resolutions or alternate geographies are available on request.
More information on the h3 system is available here: https://eng.uber.com/h3/
WorldPop data provides for a population count using a grid of 1 arc second intervals and is available for every geography.
More information on the WorldPop data is available here: https://www.worldpop.org/
One of the main use cases historically has been in prospecting for site selection, comparative analysis and network validation by asset investors and logistics companies. The data structure makes it very simple to filter out areas which do not meet requirements such as: - being able to access 70% of the UK population within 4 hours by Truck and show only the areas which do exhibit this characteristic.
Clients often combine different datasets either for different timeframes of interest, or to understand different populations, such as that of the unemployed, or those with particular qualifications within areas reachable as a commute.
ONS Mid-year estimates (MYE) of resident populations for London boroughs are available in the following files:
Read the GLA Intelligence Updates about the MYE data for 2011 and 2012.
Mid-year population by single year of age (SYA) and sex, for each year 1999 to 2013.
ONS mid-year estimates data back to 1961 total population for each year since 1961.
These files take into account the revised estimates released in 2010.
Ward level Population Estimates
London wards single year of age data covering each year since 2002.
Custom Age Range Tool
An Excel tool is available that uses Single year of age data that enables users to select any age range required.
ONS policy is to publish population estimates rounded to at least the nearest hundred persons. Estimates by single year of age, and the detailed components of change are provided in units to facilitate further calculations. They cannot be guaranteed to be as exact as the level of detail implied by unit figures.
Estimates are calculated by single year of age but these figures are less reliable and ONS advise that they should be aggregated to at least five-year age groupings for use in further calculations, onwards circulation, or for presentation purposes. (Splitting into 0 year olds and 1-4 year olds is an acceptable exception).
ONS mid-year population estimates data by 5 year age groups going all the way back to 1981, are available on the NOMIS website.
Data are Crown Copyright and users should include a source accreditation to ONS - Source: Office for National Statistics. Under the terms of the Open Government License (OGL) and UK Government Licensing Framework, anyone wishing to use or re-use ONS material, whether commercially or privately, may do so freely without a specific application. For further information, go to http://www.nationalarchives.gov.uk/doc/open-government-licence/ or phone 020 8876 3444.
For a detailed explanation of the methodology used in population estimates, see papers available on the Population Estimates section of the ONS website www.statistics.gsi.gov.uk/popest. Additional information can also be obtained from Population Estimates Customer Services at pop.info@ons.gsi.gov.uk (Tel: 01329 444661).
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Annual mid-year population estimates for those aged 90 years and over by sex and single year of age (90 to 104 years), and the 105 years and over age group, UK.
Abstract copyright UK Data Service and data collection copyright owner.The Annual Population Survey (APS) is a major survey series, which aims to provide data that can produce reliable estimates at the local authority level. Key topics covered in the survey include education, employment, health and ethnicity. The APS comprises key variables from the Labour Force Survey (LFS), all its associated LFS boosts and the APS boost. The APS aims to provide enhanced annual data for England, covering a target sample of at least 510 economically active persons for each Unitary Authority (UA)/Local Authority District (LAD) and at least 450 in each Greater London Borough. In combination with local LFS boost samples, the survey provides estimates for a range of indicators down to Local Education Authority (LEA) level across the United Kingdom.For further detailed information about methodology, users should consult the Labour Force Survey User Guide, included with the APS documentation. For variable and value labelling and coding frames that are not included either in the data or in the current APS documentation, users are advised to consult the latest versions of the LFS User Guides, which are available from the ONS Labour Force Survey - User Guidance webpages.Occupation data for 2021 and 2022The ONS has identified an issue with the collection of some occupational data in 2021 and 2022 data files in a number of their surveys. While they estimate any impacts will be small overall, this will affect the accuracy of the breakdowns of some detailed (four-digit Standard Occupational Classification (SOC)) occupations, and data derived from them. None of ONS' headline statistics, other than those directly sourced from occupational data, are affected and you can continue to rely on their accuracy. The affected datasets have now been updated. Further information can be found in the ONS article published on 11 July 2023: Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022APS Well-Being DatasetsFrom 2012-2015, the ONS published separate APS datasets aimed at providing initial estimates of subjective well-being, based on the Integrated Household Survey. In 2015 these were discontinued. A separate set of well-being variables and a corresponding weighting variable have been added to the April-March APS person datasets from A11M12 onwards. Further information on the transition can be found in the Personal well-being in the UK: 2015 to 2016 article on the ONS website.APS disability variablesOver time, there have been some updates to disability variables in the APS. An article explaining the quality assurance investigations on these variables that have been conducted so far is available on the ONS Methodology webpage. End User Licence and Secure Access APS dataUsers should note that there are two versions of each APS dataset. One is available under the standard End User Licence (EUL) agreement, and the other is a Secure Access version. The EUL version includes Government Office Region geography, banded age, 3-digit SOC and industry sector for main, second and last job. The Secure Access version contains more detailed variables relating to: age: single year of age, year and month of birth, age completed full-time education and age obtained highest qualification, age of oldest dependent child and age of youngest dependent child family unit and household: including a number of variables concerning the number of dependent children in the family according to their ages, relationship to head of household and relationship to head of family nationality and country of origin geography: including county, unitary/local authority, place of work, Nomenclature of Territorial Units for Statistics 2 (NUTS2) and NUTS3 regions, and whether lives and works in same local authority district health: including main health problem, and current and past health problems education and apprenticeship: including numbers and subjects of various qualifications and variables concerning apprenticeships industry: including industry, industry class and industry group for main, second and last job, and industry made redundant from occupation: including 4-digit Standard Occupational Classification (SOC) for main, second and last job and job made redundant from system variables: including week number when interview took place and number of households at address The Secure Access data have more restrictive access conditions than those made available under the standard EUL. Prospective users will need to gain ONS Accredited Researcher status, complete an extra application form and demonstrate to the data owners exactly why they need access to the additional variables. Users are strongly advised to first obtain the standard EUL version of the data to see if they are sufficient for their research requirements. Latest edition informationFor the second edition (August 2023) the previous IDREF variable was replaced with an updated version. Main Topics:Topics covered include: household composition and relationships, housing tenure, nationality, ethnicity and residential history, employment and training (including government schemes), workplace and location, job hunting, educational background and qualifications. Many of the variables included in the survey are the same as those in the LFS. Multi-stage stratified random sample Face-to-face interview Telephone interview 2022 2023 ADULT EDUCATION AGE ANXIETY APPLICATION FOR EMP... APPOINTMENT TO JOB ATTITUDES BONUS PAYMENTS BUSINESSES CARE OF DEPENDANTS CHRONIC ILLNESS COHABITATION CONDITIONS OF EMPLO... COVID 19 DEBILITATIVE ILLNESS DEGREES DISABILITIES Demography population ECONOMIC ACTIVITY EDUCATIONAL BACKGROUND EDUCATIONAL COURSES EMPLOYEES EMPLOYER SPONSORED ... EMPLOYMENT EMPLOYMENT HISTORY EMPLOYMENT PROGRAMMES ETHNIC GROUPS FAMILIES FAMILY BENEFITS FIELDS OF STUDY FULL TIME EMPLOYMENT FURNISHED ACCOMMODA... FURTHER EDUCATION GENDER HAPPINESS HEADS OF HOUSEHOLD HEALTH HIGHER EDUCATION HOME OWNERSHIP HOURS OF WORK HOUSEHOLDS HOUSING HOUSING BENEFITS HOUSING TENURE INCOME INDUSTRIES JOB CHANGING JOB HUNTING JOB SEEKER S ALLOWANCE LANDLORDS Labour and employment MANAGERS MARITAL STATUS NATIONAL IDENTITY NATIONALITY OCCUPATIONS OVERTIME PART TIME COURSES PART TIME EMPLOYMENT PLACE OF BIRTH PLACE OF RESIDENCE PRIVATE SECTOR PUBLIC SECTOR RECRUITMENT REDUNDANCY REDUNDANCY PAY RELIGIOUS AFFILIATION RENTED ACCOMMODATION RESIDENTIAL MOBILITY SELF EMPLOYED SICK LEAVE SICKNESS AND DISABI... SOCIAL HOUSING SOCIAL SECURITY BEN... SOCIO ECONOMIC STATUS STATE RETIREMENT PE... STUDENTS SUBSIDIARY EMPLOYMENT SUPERVISORS SUPERVISORY STATUS TAX RELIEF TEMPORARY EMPLOYMENT TERMINATION OF SERVICE TIED HOUSING TRAINING TRAINING COURSES TRAVELLING TIME UNEMPLOYED UNEMPLOYMENT UNEMPLOYMENT BENEFITS UNFURNISHED ACCOMMO... UNWAGED WORKERS WAGES WELL BEING HEALTH WELSH LANGUAGE WORKING CONDITIONS WORKPLACE vital statistics an...
The resource comprises population surfaces generated from publicly available GB Census data for 1971, 1981, 1991, 2001 and 2011 to enable direct comparisons between Censuses. Population surfaces are estimates of counts of people for regular grids (with population estimates over, for example, 1km by 1km grid cells) and these can be directly compared between Censuses. Variables include age, country of birth, ethnicity, housing tenure, employment, self-reported health, overcrowding and a composite measure of deprivation over 1km by 1km cells for all Censuses where variables are available.
The research will explore how the population of the UK is, or has been, geographically distributed. The project will bring a new and important perspective to debates about divisions, inequalities and the ways in which people in the UK live together or apart. It will address questions such as: are health inequalities between places greater now than in the past? What makes localities different - are they geographically distinguished more by housing tenure or health than they are by employment status or ethnicity? What areas have the greatest diversity of people and how has this changed between 1971 and 2011? To answer these questions, we will generate population surfaces from publicly available Census data for 1971, 1981, 1991, 2001 and 2011 to enable direct comparisons between Censuses. Counts of people in a variety of population sub-groups (e.g., by qualifications, age, etc) have been released from each Census for sets of small geographical areas (such as enumeration districts or output areas). This allows the mapping and analysis of geographical patterning in population groups across the UK for each Census. However, these small areas differ in size and shape between Censuses, so the 1971 small area boundaries, for example, are very different to those for 2011. This project will produce population surfaces for each Census year as a means of overcoming this problem. Population surfaces are estimates of counts of people for regular grids (with population estimates over, for example, 100m by 100m grid cells); these can be directly compared between Censuses. So, once these population surfaces are available we will be able to consider how localities have changed and in what ways. This new population surface resource will be made freely available so that users can explore these changes for themselves and also consider in more depth the results we produce. We will use this resource to provide the first systematic review of how the population of the UK has changed over the last 40 years. It will show how population groups in the UK are geographically distributed and it will assess, in detail, how far different localities (for example, within central Scotland) or regions (for example, south east England or north west England) are becoming more similar or more different to one another in terms of their population characteristics. The project will also consider how the relationships between population groups have changed across time. For example, with a consistent geography, it will be possible to assess which small area localities have very high rates of unemployment together with large proportions of social rented households, and how the characteristics of these localities changed between 1971 and 2011. We will also be able to identify which population characteristics most strongly distinguish particular areas. As an example, the population in some localities in north west England may be very similar in terms of levels of poor health, unemployment and housing tenure, but differ in terms of the number of single person households or the average number of dependent children. The project will explore these differences in detail and, for the first time, construct a detailed profile of the geographical distribution of individual population groups and the multiple characteristics of areas in combination. The population surface resource will be invaluable to any users interested in the population geography of the UK, while the results of our analysis of population distributions will enrich our understanding of the ways in which the population of the UK has changed over the last 40 years.
Occupation data for 2021 and 2022 data files
The ONS has identified an issue with the collection of some occupational data in 2021 and 2022 data files in a number of their surveys. While they estimate any impacts will be small overall, this will affect the accuracy of the breakdowns of some detailed (four-digit Standard Occupational Classification (SOC)) occupations, and data derived from them. Further information can be found in the ONS article published on 11 July 2023: https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/articles/revisionofmiscodedoccupationaldataintheonslabourforcesurveyuk/january2021toseptember2022" style="background-color: rgb(255, 255, 255);">Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022.
Latest edition information
For the third edition (September 2023), the variables NSECM20, NSECMJ20, SC2010M, SC20SMJ, SC20SMN and SOC20M have been replaced with new versions. Further information on the SOC revisions can be found in the ONS article published on 11 July 2023: https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/articles/revisionofmiscodedoccupationaldataintheonslabourforcesurveyuk/january2021toseptember2022" style="background-color: rgb(255, 255, 255);">Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022.
Abstract copyright UK Data Service and data collection copyright owner.
The Annual Population Survey (APS) is a major survey series, which aims to provide data that can produce reliable estimates at the local authority level. Key topics covered in the survey include education, employment, health and ethnicity. The APS comprises key variables from the Labour Force Survey (LFS), all its associated LFS boosts and the APS boost. The APS aims to provide enhanced annual data for England, covering a target sample of at least 510 economically active persons for each Unitary Authority (UA)/Local Authority District (LAD) and at least 450 in each Greater London Borough. In combination with local LFS boost samples, the survey provides estimates for a range of indicators down to Local Education Authority (LEA) level across the United Kingdom.
For further detailed information about methodology, users should consult the Labour Force Survey User Guide, included with the APS documentation. For variable and value labelling and coding frames that are not included either in the data or in the current APS documentation, users are advised to consult the latest versions of the LFS User Guides, which are available from the ONS Labour Force Survey - User Guidance webpages.
Occupation data for 2021 and 2022
The ONS has identified an issue with the collection of some occupational data in 2021 and 2022 data files in a number of their surveys. While they estimate any impacts will be small overall, this will affect the accuracy of the breakdowns of some detailed (four-digit Standard Occupational Classification (SOC)) occupations, and data derived from them. None of ONS' headline statistics, other than those directly sourced from occupational data, are affected and you can continue to rely on their accuracy. The affected datasets have now been updated. Further information can be found in the ONS article published on 11 July 2023: Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022
APS Well-Being Datasets
From 2012-2015, the ONS published separate APS datasets aimed at providing initial estimates of subjective well-being, based on the Integrated Household Survey. In 2015 these were discontinued. A separate set of well-being variables and a corresponding weighting variable have been added to the April-March APS person datasets from A11M12 onwards. Further information on the transition can be found in the Personal well-being in the UK: 2015 to 2016 article on the ONS website.
APS disability variables
Over time, there have been some updates to disability variables in the APS. An article explaining the quality assurance investigations on these variables that have been conducted so far is available on the ONS Methodology webpage.
The Secure Access data have more restrictive access conditions than those made available under the standard EUL. Prospective users will need to gain ONS Accredited Researcher status, complete an extra application form and...
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The census is undertaken by the Office for National Statistics every 10 years and gives us a picture of all the people and households in England and Wales. The most recent census took place in March of 2021.The census asks every household questions about the people who live there and the type of home they live in. In doing so, it helps to build a detailed snapshot of society. Information from the census helps the government and local authorities to plan and fund local services, such as education, doctors' surgeries and roads.Key census statistics for Leicester are published on the open data platform to make information accessible to local services, voluntary and community groups, and residents.Further information about the census and full datasets can be found on the ONS website - https://www.ons.gov.uk/census/aboutcensus/censusproducts
A series of flow based classifications of commuting for England and Wales based on MSOA origin-destination data from the 2011 Census. It consists of 9 super-groups and 40 sub-groups. The evidence can be used to target funding for an 'into-work-scheme' to help the most disconnected community. The toolkit allows the policymaker to explore levels of commuting and compare the level of connectivity of each neighbourhood to major employment centres. The underlying rationale for the research is that the toolkit will help deliver efficiencies in public and private sector investment. This is crucial at a time when the government is promoting the need for smarter economic growth but doing so in a challenging context in which public sector resources are scarce and the private sector is risk averse.
Numerous research studies use commuting data, collected through the Census of Population, to understand social, economic and environmental challenges in the UK. This commuting data has been used to understand patterns; answer questions regarding the relationship between housing and labour markets; and to see if travel behaviour is becoming more or less sustainable over time. However, there is lots of untapped potential for such data to be used to evaluate transport policy and investment decisions so resources are more effectively and efficiently targeted to places of need. In applied public policy a major shortcoming has been a lack of use of this data to support investment in transport which has major implications for economic growth. If transport investments are inefficiently targeted, this restricts the capacity of places to grow economies to their full potential. This wastes their resources by over investing in transport capacity in areas where it is not needed. Equally, it has long been argued that efficient investment in transport is crucial if labour market exclusion, particularly the case of deprived communities, is to be tackled. The aim of the research is to inform community transportation policy and investment and the socio-spatial dimensions of travel to work flows over time (2001-2011). Our research develops a toolkit to help decision-makers better target investment in transport capacity and infrastructure. The toolkit includes a series of new classifications of commuting flows from the 2001 and 2011 Censuses. It will include a classification of newly developed official Workplace Zones for England to complement official residential population-based classifications alongside various population, deprivation, investment and infrastructure data. The toolkit will bring these classifications and datasets together online through various mapping and analysis tools to understand the dynamics of commuting between different types of residential and workplace locations over time and combine these datasets and analyses with locally-specific transport investment data. The methodology developed will be applied to England as a whole but we will use the Manchester as a test-case for our analysis and for development of the toolkit. The use of open source approaches to build the toolkit means that other locations will have the framework to develop their own toolkit. The flow and area-based (Workplace Zones) classifications for England will complement official ONS residential-based output area classification and existing indices of deprivation. This will be mapped in relation to key transport investments made in Manchester, using local administrative data and overlay these with the results of commuting analysis to support decision-making regarding future targeted public transport infrastructure investment. The toolkit will be interactive so users can pose policy questions to explore commuting relationships between different places. The strength of this approach is that it will enable policy and decision-makers to test various scenarios for future transport investment depending on problems they have posed. In a hypothetical situation, a policymaker in might ask the question of whether a specific deprived community in their city is more or less connected into a major employment centre than another equally deprived community.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This dataset as reported to the Rural Payments Agency contains cattle born before 1 August 1996 which were not registered until 2000, cattle whose birth date is unknown so registered as 11 November 1111 as a default birth date. Attribution statement:
SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of physical illnesses that are linked with obesity and inactivity. Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to:- Asthma (in persons of all ages)- Cancer (in persons of all ages)- Chronic kidney disease (in adults aged 18+)- Coronary heart disease (in persons of all ages)- Diabetes mellitus (in persons aged 17+)- Hypertension (in persons of all ages)- Stroke and transient ischaemic attack (in persons of all ages)This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.For each of the above illnesses, the percentage of each MSOA’s population with that illness was estimated. This was achieved by calculating a weighted average based on:- The percentage of the MSOA area that was covered by each GP practice’s catchment area- Of the GPs that covered part of that MSOA: the percentage of patients registered with each GP that have that illnessThe estimated percentage of each MSOA’s population with each illness was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with each illness, within the relevant age range.For each illness, each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have that illnessB) the NUMBER of people within that MSOA who are estimated to have that illnessAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA predicted to have that illness, compared to other MSOAs. In other words, those are areas where a large number of people are predicted to suffer from an illness, and where those people make up a large percentage of the population, indicating there is a real issue with that illness within the population and the investment of resources to address that issue could have the greatest benefits.The scores for each of the 7 illnesses were added together then converted to a relative score between 1 – 0 (1 = worst, 0 = best), to give an overall score for each MSOA: a score close to 1 would indicate that an area has high predicted levels of all obesity/inactivity-related illnesses, and these are areas where the local population could benefit the most from interventions to address those illnesses. A score close to 0 would indicate very low predicted levels of obesity/inactivity-related illnesses and therefore interventions might not be required.LIMITATIONS1. GPs do not have catchments that are mutually exclusive from each other: they overlap, with some geographic areas being covered by 30+ practices. This dataset should be viewed in combination with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset to identify where there are areas that are covered by multiple GP practices but at least one of those GP practices did not provide data. Results of the analysis in these areas should be interpreted with caution, particularly if the levels of obesity/inactivity-related illnesses appear to be significantly lower than the immediate surrounding areas.2. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).3. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.4. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of obesity/inactivity-related illnesses, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of these illnesses. TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:- Health and wellbeing statistics (GP-level, England): Missing data and potential outliersDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.
Excel Age-Range creator for Office for National Statistics (ONS) Mid year population estimates (MYE) covering each year between 1999 and 2016 These files take into account the revised estimates for 2002-2010 released in April 2013 down to Local Authority level and the post 2011 estimates based on the Census results. Scotland and Northern Ireland data has not been revised, so Great Britain and United Kingdom totals comprise the original data for these plus revised England and Wales figures. This Excel based tool enables users to query the single year of age raw data so that any age range can easily be calculated without having to carry out often complex, and time consuming formulas that could also be open to human error. Simply select the lower and upper age range for both males and females and the spreadsheet will return the total population for the range. Please adhere to the terms and conditions of supply contained within the file. Tip: You can copy and paste the rows you are interested in to another worksheet by using the filters at the top of the columns and then select all by pressing Ctrl+A. Then simply copy and paste the cells to a new location. ONS Mid year population estimates Open Excel tool (London Boroughs, Regions and National, 1999-2016) Also available is a custom-age tool for all geographies in the UK. Open the tool for all UK geographies (local authority and above) for: 2010, 2011, 2012, 2013, 2014 and 2015. This full MYE dataset by single year of age (SYA) age and gender is available as a Datastore package here. Ward Level Population estimates Single year of age population tool for 2002 to 2015 for all wards in London. New 2014 Ward boundary estimates Ward boundary changes in May 2014 only affected three London boroughs - Hackney, Kensington and Chelsea, and Tower Hamlets. The estimates between 2001-2013 have been calculated by the GLA by taking the proportion of a the old ward that falls within the new ward based on the proportion of population living in each area at the 2011 Census. Therefore, these estimates are purely indicative and are not official statistics and not endorsed by ONS. From 2014 onwards, ONS began publishing official estimates for the new ward boundaries. Download here.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The following estimates have been superseded by our revised mid-2002 to mid-2010 population estimates for the UK released on 17th December 2013