NOTICE TO PROVISIONAL 2023 LAND USE DATA USERS: Please note that on December 6, 2024 the Department of Water Resources (DWR) published the Provisional 2023 Statewide Crop Mapping dataset. The link for the shapefile format of the data mistakenly linked to the wrong dataset. The link was updated with the appropriate data on January 27, 2025. If you downloaded the Provisional 2023 Statewide Crop Mapping dataset in shapefile format between December 6, 2024 and January 27, we encourage you to redownload the data. The Map Service and Geodatabase formats were correct as posted on December 06, 2024.
Thank you for your interest in DWR land use datasets.
The California Department of Water Resources (DWR) has been collecting land use data throughout the state and using it to develop agricultural water use estimates for statewide and regional planning purposes, including water use projections, water use efficiency evaluations, groundwater model developments, climate change mitigation and adaptations, and water transfers. These data are essential for regional analysis and decision making, which has become increasingly important as DWR and other state agencies seek to address resource management issues, regulatory compliances, environmental impacts, ecosystem services, urban and economic development, and other issues. Increased availability of digital satellite imagery, aerial photography, and new analytical tools make remote sensing-based land use surveys possible at a field scale that is comparable to that of DWR’s historical on the ground field surveys. Current technologies allow accurate large-scale crop and land use identifications to be performed at desired time increments and make possible more frequent and comprehensive statewide land use information. Responding to this need, DWR sought expertise and support for identifying crop types and other land uses and quantifying crop acreages statewide using remotely sensed imagery and associated analytical techniques. Currently, Statewide Crop Maps are available for the Water Years 2014, 2016, 2018- 2022 and PROVISIONALLY for 2023.
Historic County Land Use Surveys spanning 1986 - 2015 may also be accessed using the CADWR Land Use Data Viewer: https://gis.water.ca.gov/app/CADWRLandUseViewer.
For Regional Land Use Surveys follow: https://data.cnra.ca.gov/dataset/region-land-use-surveys.
For County Land Use Surveys follow: https://data.cnra.ca.gov/dataset/county-land-use-surveys.
For a collection of ArcGIS Web Applications that provide information on the DWR Land Use Program and our data products in various formats, visit the DWR Land Use Gallery: https://storymaps.arcgis.com/collections/dd14ceff7d754e85ab9c7ec84fb8790a.
Recommended citation for DWR land use data: California Department of Water Resources. (Water Year for the data). Statewide Crop Mapping—California Natural Resources Agency Open Data. Retrieved “Month Day, YEAR,” from https://data.cnra.ca.gov/dataset/statewide-crop-mapping.
This dataset may be a mix of two years and is updated as the data is released for each county. For example, one county may have data from 2014 while a neighboring county may have had a more recent release of 2016 data. For specific years, please check the service that specifies the year, i.e. California Important Farmland: 2016.Established in 1982, Government Code Section 65570 mandates FMMP to biennially report on the conversion of farmland and grazing land, and to provide maps and data to local government and the public.The Farmland Mapping and Monitoring Program (FMMP) provides data to decision makers for use in planning for the present and future use of California's agricultural land resources. The data is a current inventory of agricultural resources. This data is for general planning purposes and has a minimum mapping unit of ten acres.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
For the purposes of training AI-based models to identify (map) road features in rural/remote tropical regions on the basis of true-colour satellite imagery, and subsequently testing the accuracy of these AI-derived road maps, we produced a dataset of 8904 satellite image ‘tiles’ and their corresponding known road features across Equatorial Asia (Indonesia, Malaysia, Papua New Guinea). Methods
The main dataset shared here was derived from a set of 200 input satellite images, also provided here. These 200 images are effectively ‘screenshots’ (i.e., reduced-resolution copies) of high-resolution true-colour satellite imagery (~0.5-1m pixel resolution) observed using the Elvis Elevation and Depth spatial data portal (https://elevation.fsdf.org.au/), which here is functionally equivalent to the more familiar Google Earth. Each of these original images was initially acquired at a resolution of 1920x886 pixels. Actual image resolution was coarser than the native high-resolution imagery. Visual inspection of these 200 images suggests a pixel resolution of ~5 meters, given the number of pixels required to span features of familiar scale, such as roads and roofs, as well as the ready discrimination of specific land uses, vegetation types, etc. These 200 images generally spanned either forest-agricultural mosaics or intact forest landscapes with limited human intervention. Sloan et al. (2023) present a map indicating the various areas of Equatorial Asia from which these images were sourced.
IMAGE NAMING CONVENTION
A common naming convention applies to satellite images’ file names:
XX##.png
where:
XX – denotes the geographical region / major island of Equatorial Asia of the image, as follows: ‘bo’ (Borneo), ‘su’ (Sumatra), ‘sl’ (Sulawesi), ‘pn’ (Papua New Guinea), ‘jv’ (java), ‘ng’ (New Guinea [i.e., Papua and West Papua provinces of Indonesia])
INTERPRETING ROAD FEATURES IN THE IMAGES For each of the 200 input satellite images, its road was visually interpreted and manually digitized to create a reference image dataset by which to train, validate, and test AI road-mapping models, as detailed in Sloan et al. (2023). The reference dataset of road features was digitized using the ‘pen tool’ in Adobe Photoshop. The pen’s ‘width’ was held constant over varying scales of observation (i.e., image ‘zoom’) during digitization. Consequently, at relatively small scales at least, digitized road features likely incorporate vegetation immediately bordering roads. The resultant binary (Road / Not Road) reference images were saved as PNG images with the same image dimensions as the original 200 images.
IMAGE TILES AND REFERENCE DATA FOR MODEL DEVELOPMENT
The 200 satellite images and the corresponding 200 road-reference images were both subdivided (aka ‘sliced’) into thousands of smaller image ‘tiles’ of 256x256 pixels each. Subsequent to image subdivision, subdivided images were also rotated by 90, 180, or 270 degrees to create additional, complementary image tiles for model development. In total, 8904 image tiles resulted from image subdivision and rotation. These 8904 image tiles are the main data of interest disseminated here. Each image tile entails the true-colour satellite image (256x256 pixels) and a corresponding binary road reference image (Road / Not Road).
Of these 8904 image tiles, Sloan et al. (2023) randomly selected 80% for model training (during which a model ‘learns’ to recognize road features in the input imagery), 10% for model validation (during which model parameters are iteratively refined), and 10% for final model testing (during which the final accuracy of the output road map is assessed). Here we present these data in two folders accordingly:
'Training’ – contains 7124 image tiles used for model training in Sloan et al. (2023), i.e., 80% of the original pool of 8904 image tiles. ‘Testing’– contains 1780 image tiles used for model validation and model testing in Sloan et al. (2023), i.e., 20% of the original pool of 8904 image tiles, being the combined set of image tiles for model validation and testing in Sloan et al. (2023).
IMAGE TILE NAMING CONVENTION A common naming convention applies to image tiles’ directories and file names, in both the ‘training’ and ‘testing’ folders: XX##_A_B_C_DrotDDD where
XX – denotes the geographical region / major island of Equatorial Asia of the original input 1920x886 pixel image, as follows: ‘bo’ (Borneo), ‘su’ (Sumatra), ‘sl’ (Sulawesi), ‘pn’ (Papua New Guinea), ‘jv’ (java), ‘ng’ (New Guinea [i.e., Papua and West Papua provinces of Indonesia])
A, B, C and D – can all be ignored. These values, which are one of 0, 256, 512, 768, 1024, 1280, 1536, and 1792, are effectively ‘pixel coordinates’ in the corresponding original 1920x886-pixel input image. They were recorded within the names of image tiles’ sub-directories and file names merely to ensure that names/directory were uniquely named)
rot – implies an image rotation. Not all image tiles are rotated, so ‘rot’ will appear only occasionally.
DDD – denotes the degree of image-tile rotation, e.g., 90, 180, 270. Not all image tiles are rotated, so ‘DD’ will appear only occasionally.
Note that the designator ‘XX##’ is directly equivalent to the filenames of the corresponding 1920x886-pixel input satellite images, detailed above. Therefore, each image tiles can be ‘matched’ with its parent full-scale satellite image. For example, in the ‘training’ folder, the subdirectory ‘Bo12_0_0_256_256’ indicates that its image tile therein (also named ‘Bo12_0_0_256_256’) would have been sourced from the full-scale image ‘Bo12.png’.
The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.\Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; monthly precipitation values (mm) were summed over the season of interest (annual, winter, or summer). Absolute and percent change were then calculated between the historical and future time periods.Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the state of Alaska were developed by the Scenarios Network for Alaska and Arctic Planning (SNAP) (https://snap.uaf.edu). These datasets have several important differences from the MACAv2-Metdata (https://climate.northwestknowledge.net/MACA/) products, used in the contiguous U.S. They were developed using different global circulation models and different downscaling methods, and were downscaled to a different scale (771 m instead of 4 km). While these cover the same time periods and use broadly similar approaches, caution should be used when directly comparing values between Alaska and the contiguous United States.Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).
Introduction and Rationale: Due to our increasing understanding of the role the surrounding landscape plays in ecological processes, a detailed characterization of land cover, including both agricultural and natural habitats, is ever more important for both researchers and conservation practitioners. Unfortunately, in the United States, different types of land cover data are split across thematic datasets that emphasize agricultural or natural vegetation, but not both. To address this data gap and reduce duplicative efforts in geospatial processing, we merged two major datasets, the LANDFIRE National Vegetation Classification (NVC) and USDA-NASS Cropland Data Layer (CDL), to produce an integrated land cover map. Our workflow leveraged strengths of the NVC and the CDL to produce detailed rasters comprising both agricultural and natural land-cover classes. We generated these maps for each year from 2012-2021 for the conterminous United States, quantified agreement between input layers and accuracy of our merged product, and published the complete workflow necessary to update these data. In our validation analyses, we found that approximately 5.5% of NVC agricultural pixels conflicted with the CDL, but we resolved a majority of these conflicts based on surrounding agricultural land, leaving only 0.6% of agricultural pixels unresolved in our merged product. Contents: Spatial data Attribute table for merged rasters Technical validation data Number and proportion of mismatched pixels Number and proportion of unresolved pixels Producer's and User's accuracy values and coverage of reference data Resources in this dataset:Resource Title: Attribute table for merged rasters. File Name: CombinedRasterAttributeTable_CDLNVC.csvResource Description: Raster attribute table for merged raster product. Class names and recommended color map were taken from USDA-NASS Cropland Data Layer and LANDFIRE National Vegetation Classification. Class values are also identical to source data, except classes from the CDL are now negative values to avoid overlapping NVC values. Resource Title: Number and proportion of mismatched pixels. File Name: pixel_mismatch_byyear_bycounty.csvResource Description: Number and proportion of pixels that were mismatched between the Cropland Data Layer and National Vegetation Classification, per year from 2012-2021, per county in the conterminous United States.Resource Title: Number and proportion of unresolved pixels. File Name: unresolved_conflict_byyear_bycounty.csvResource Description: Number and proportion of unresolved pixels in the final merged rasters, per year from 2012-2021, per county in the conterminous United States. Unresolved pixels are a result of mismatched pixels that we could not resolve based on surrounding agricultural land (no agriculture with 90m radius).Resource Title: Producer's and User's accuracy values and coverage of reference data. File Name: accuracy_datacoverage_byyear_bycounty.csvResource Description: Producer's and User's accuracy values and coverage of reference data, per year from 2012-2021, per county in the conterminous United States. We defined coverage of reference data as the proportional area of land cover classes that were included in the reference data published by USDA-NASS and LANDFIRE for the Cropland Data Layer and National Vegetation Classification, respectively. CDL and NVC classes with reference data also had published accuracy statistics. Resource Title: Data Dictionary. File Name: Data_Dictionary_RasterMerge.csv
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ABSTRACT The considerable volume of data generated by sensors in the field presents systematic errors; thus, it is extremely important to exclude these errors to ensure mapping quality. The objective of this research was to develop and test a methodology to identify and exclude outliers in high-density spatial data sets, determine whether the developed filter process could help decrease the nugget effect and improve the spatial variability characterization of high sampling data. We created a filter composed of a global, anisotropic, and an anisotropic local analysis of data, which considered the respective neighborhood values. For that purpose, we used the median to classify a given spatial point into the data set as the main statistical parameter and took into account its neighbors within a radius. The filter was tested using raw data sets of corn yield, soil electrical conductivity (ECa), and the sensor vegetation index (SVI) in sugarcane. The results showed an improvement in accuracy of spatial variability within the data sets. The methodology reduced RMSE by 85 %, 97 %, and 79 % in corn yield, soil ECa, and SVI respectively, compared to interpolation errors of raw data sets. The filter excluded the local outliers, which considerably reduced the nugget effects, reducing estimation error of the interpolated data. The methodology proposed in this work had a better performance in removing outlier data when compared to two other methodologies from the literature.
Soil is a key natural resource that provides the foundation of basic ecosystem services. Soil determines the types of farms and forests that can grow on a landscape. Soil filters water. Soil helps regulate the Earth's climate by storing large amounts of carbon. Activities that degrade soils reduce the value of the ecosystem services that soil provides. For example, since 1850 35% of human caused green house gas emissions are linked to land use change. The Soil Science Society of America is a good source of of additional information.Dataset SummaryThis layer provides access to a 30 arc-second (roughly 1 km) cell-sized raster with attributes describing the basic properties of soil derived from the Harmonized World Soil Database v 1.2. The values in this layer are for the dominant soil in each mapping unit (sequence field = 1).Attributes in this layer include:Soil Phase 1 and Soil Phase 2 - Phases identify characteristics of soils important for land use or management. Soils may have up to 2 phases with phase 1 being more important than phase 2.Other Properties - provides additional information important for agriculture.Additionally, 3 class description fields were added by Esri based on the document Harmonized World Soil Database Version 1.2 for use in web map pop-ups:Soil Phase 1 DescriptionSoil Phase 2 DescriptionOther Properties DescriptionThe layer is symbolized with the Soil Unit Name field.The document Harmonized World Soil Database Version 1.2 provides more detail on the soil properties attributes contained in this layer.Other attributes contained in this layer include:Soil Mapping Unit Name - the name of the spatially dominant major soil groupSoil Mapping Unit Symbol - a two letter code for labeling the spatially dominant major soil group in thematic mapsData Source - the HWSD is an aggregation of datasets. The data sources are the European Soil Database (ESDB), the 1:1 million soil map of China (CHINA), the Soil and Terrain Database Program (SOTWIS), and the Digital Soil Map of the World (DSMW).Percentage of Mapping Unit covered by dominant componentMore information on the Harmonized World Soil Database is available here.Other layers created from the Harmonized World Soil Database are available on ArcGIS Online:World Soils Harmonized World Soil Database - Bulk DensityWorld Soils Harmonized World Soil Database – ChemistryWorld Soils Harmonized World Soil Database - Exchange CapacityWorld Soils Harmonized World Soil Database – HydricWorld Soils Harmonized World Soil Database – TextureThe authors of this data set request that projects using these data include the following citation:FAO/IIASA/ISRIC/ISSCAS/JRC, 2012. Harmonized World Soil Database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, Austria.What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop.This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 16,000 x 16,000 pixels - an area 4,000 kilometers on a side or an area approximately the size of Europe. The source data for this layer are available here.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started follow these links:Living Atlas Discussion GroupSoil Data Discussion GroupThe Esri Insider Blog provides an introduction to the Ecophysiographic Mapping project.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
MCGD_Data_V2.2 contains all the data that we have collected on locations in modern China, plus a number of locations outside of China that we encounter frequently in historical sources on China. All further updates will appear under the name "MCGD_Data" with a time stamp (e.g., MCGD_Data2023-06-21)
You can also have access to this dataset and all the datasets that the ENP-China makes available on GitLab: https://gitlab.com/enpchina/IndexesEnp
Altogether there are 464,970 entries. The data include the name of locations and their variants in Chinese, pinyin, and any recorded transliteration; the name of the province in Chinese and in pinyin; Province ID; the latitude and longitude; the Name ID and Location ID, and NameID_Legacy. The Name IDs all start with H followed by seven digits. This is the internal ID system of MCGD (the NameID_Legacy column records the Name IDs in their original format depending on the source). Locations IDs that start with "DH" are data points extracted from China Historical GIS (Harvard University); those that start with "D" are locations extracted from the data points in Geonames; those that have only digits (8 digits) are data points we have added from various map sources.
One of the main features of the MCGD Main Dataset is the systematic collection and compilation of place names from non-Chinese language historical sources. Locations were designated in transliteration systems that are hardly comprehensible today, which makes it very difficult to find the actual locations they correspond to. This dataset allows for the conversion from these obsolete transliterations to the current names and geocoordinates.
From June 2021 onward, we have adopted a different file naming system to keep track of versions. From MCGD_Data_V1 we have moved to MCGD_Data_V2. In June 2022, we introduced time stamps, which result in the following naming convention: MCGD_Data_YYYY.MM.DD.
UPDATES
MCGD_Data2025_02_28 includes a major change with the duplication of all the locations listed under Beijing, Shanghai, Tianjin, and Chongqing (北京, 上海, 天津, 重慶) and their listing under the name of the provinces to which they belonge origially before the creation of the four special municipalities after 1949. This is meant to facilitate the matching of data from historical sources. Each location has a unique NameID. Altogether there are 472,818 entries
MCGD_Data2025_02_27 inclues an update on locations extracted from Minguo zhengfu ge yuanhui keyuan yishang zhiyuanlu 國民政府各院部會科員以上職員錄 (Directory of staff members and above in the ministries and committees of the National Government). Nanjing: Guomin zhengfu wenguanchu yinzhuju 國民政府文官處印鑄局國民政府文官處印鑄局, 1944). We also made corrections in the Prov_Py and Prov_Zh columns as there were some misalignments between the pinyin name and the name in Chines characters. The file now includes 465,128 entries.
MCGD_Data2024_03_23 includes an update on locations in Taiwan from the Asia Directories. Altogether there are 465,603 entries (of which 187 place names without geocoordinates, labelled in the Lat Long columns as "Unknown").
MCGD_Data2023.12.22 contains all the data that we have collected on locations in China, whatever the period. Altogether there are 465,603 entries (of which 187 place names without geocoordinates, labelled in the Lat Long columns as "Unknown"). The dataset also includes locations outside of China for the purpose of matching such locations to the place names extracted from historical sources. For example, one may need to locate individuals born outside of China. Rather than maintaining two separate files, we made the decision to incorporate all the place names found in historical sources in the gazetteer. Such place names can easily be removed by selecting all the entries where the 'Province' data is missing.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Scale reduction from source to target maps inevitably leads to conflicts of map symbols in cartography and geographic information systems (GIS). Displacement is one of the most important map generalization operators and it can be used to resolve the problems that arise from conflict among two or more map objects. In this paper, we propose a combined approach based on constraint Delaunay triangulation (CDT) skeleton and improved elastic beam algorithm for automated building displacement. In this approach, map data sets are first partitioned. Then the displacement operation is conducted in each partition as a cyclic and iterative process of conflict detection and resolution. In the iteration, the skeleton of the gap spaces is extracted using CDT. It then serves as an enhanced data model to detect conflicts and construct the proximity graph. Then, the proximity graph is adjusted using local grouping information. Under the action of forces derived from the detected conflicts, the proximity graph is deformed using the improved elastic beam algorithm. In this way, buildings are displaced to find an optimal compromise between related cartographic constraints. To validate this approach, two topographic map data sets (i.e., urban and suburban areas) were tested. The results were reasonable with respect to each constraint when the density of the map was not extremely high. In summary, the improvements include (1) an automated parameter-setting method for elastic beams, (2) explicit enforcement regarding the positional accuracy constraint, added by introducing drag forces, (3) preservation of local building groups through displacement over an adjusted proximity graph, and (4) an iterative strategy that is more likely to resolve the proximity conflicts than the one used in the existing elastic beam algorithm.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The dataset contains the data produced and used for the mapping of flood risk on the Flooding Lands of Lorraine on which the order fixing the flood area maps and flood risk maps has been taken. Sorting of the Rhine-Meuse Basin with Arrests: — SEDAN_GIVET: 23/07/2014 A series of geographical data produced by the GIS Flood Directive of territories at significant risk of flooding (TRI) of Lorraine and mapped for reporting purposes for the European Flood Directive. European Directive 2007/60/EC of 23 October 2007 on the assessment and management of flood risks (OJ L 288, 06-11-2007, p. 27) influences the flood prevention strategy in Europe. It requires the production of a flood risk management plan aimed at reducing the negative consequences of flooding on human health, the environment, cultural heritage and economic activity. The objectives and requirements for achievement are given by the Law of 12 July 2010 on the National Commitment for the Environment (LENE) and the Decree of 2 March 2011. Within this framework, the primary objective of the mapping of flood areas and flood risks for IRRs is to contribute, by homogenising and objecting knowledge of the exposure of issues to floods, to the development of Flood Risk Management Plans (IFMPs). This dataset is used to produce flood surface maps and flood risk maps that represent flood hazards and issues on an appropriate scale, respectively. Their objective is to provide quantitative elements to better assess the vulnerability of a territory for the three levels of flood probability (high, medium, low) (Source: standard COVADIS, Flood Directive of 26/09/2012). Tables contained in the lot: N_TRI_SEDA_COMMUNE_S_008.TAB N_TRI_SEDA_ENJEU_CRISE_P_008.TAB N_TRI_SEDA_ENJEU_CRISE_L_008.TAB N_TRI_SEDA_ENJEU_RAPPORT_008.TAB N_TRI_SEDA_TRI_S_008.TAB N_TRI_SEDA_ENJEU_IPPC_P_008.TAB N_TRI_SEDA_ENJEU_STEU_P_008.TAB N_TRI_SEDA_ENJEU_ECO_S_008.TAB N_TRI_SEDA_CARTE_RISQ_S_008.TAB N_TRI_SEDA_CARTE_INOND_S_008.TAB N_TRI_SEDA_ISO_HT_S_008.TAB N_TRI_SEDA_INONDABLE_S_008.TAB N_TRI_SEDA_OUV_PROTEC_L_008.TAB N_TRI_SEDA_BATI_S_008.TAB N_TRI_SEDA_SURFACE_EN_EAU_S_008.TAB
Maps of major soil types from a study by A. Cavaillé (1950).
This dataset is the 2018 Corine Land Cover map, consisting of 44 classes in the hierarchical three level Corine nomenclature. Corine Land Cover (CLC) 2018, CLC change 2012-2018 and CLC 2012 revised are three of the datasets produced within the frame of the Copernicus programme on land monitoring. Corine Land Cover (CLC) provides consistent information on land cover and land cover changes across Europe; these two maps are the UK component of Europe. This inventory was initiated in 1985 (reference year 1990) and established a time series of land cover information with updates in 2000, 2006 and 2012 being the last iteration. CLC products are based on photointerpretation of satellite images by national teams of participating countries – the EEA member and cooperating countries – following a standard methodology and nomenclature with the following base parameters: 44 classes in the hierarchical three level Corine nomenclature; minimum mapping unit (MMU) of status layers is 25 hectares; minimum width of linear elements is 100 metres; minimum mapping unit (MMU) for Land Cover Changes (LCC) for the change layers is 5 hectares. The resulting national land cover inventories are further integrated into a seamless land cover map of Europe. Land cover and land use (LCLU) information is important not only for land change research, but also more broadly for the monitoring of environmental change, policy support, the creation of environmental indicators and reporting. CLC datasets provide important datasets supporting the implementation of key priority areas of the Environment Action Programmes of the European Union as protecting ecosystems, halting the loss of biological diversity, tracking the impacts of climate change, assessing developments in agriculture and implementing the EU Water Framework Directive, among others. More information about the Corine Land Cover (CLC) and Copernicus land monitoring data in general can be found at http://land.copernicus.eu/.
This Story Map locates some of the important geographical sites that were part of the many years Ernest Hemingway spent in Idaho's Wood River Valley and the surrounding regions. This project is an ongoing collaboration between the North Idaho College English Department, University of Idaho Library Data & Digital Services Department, and the Ketchum Community Library. Our map is intended to visualize the cartography of Hemingway's Idaho travels and provide the locations of several Hemingway legacy sites, such as his grave and the Hemingway Memorial. We hope to provide students, Hemingway aficionados, and scholars new perspectives on the diversity and range of his time spent in Idaho.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Established in 1982, Government Code Section 65570 mandates FMMP to biennially report on the conversion of farmland and grazing land, and to provide maps and data to local government and the public.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
If you want to use this data, please cite our article:Xiong, S., Zhang, X., Lei, Y., Tan, G., Wang, H., & Du, S. (2024). Time-series China urban land use mapping (2016–2022): An approach for achieving spatial-consistency and semantic-transition rationality in temporal domain. Remote Sensing of Environment, 312, 114344.The global urbanization trend is geographically manifested through city expansion and the renewal of internal urban structures and functions. Time-series urban land use (ULU) maps are vital for capturing dynamic land changes in the urbanization process, giving valuable insights into urban development and its environmental consequences. Recent studies have mapped ULU in some cities with a unified model, but ignored the regional differences among cities; and they generated ULU maps year by year, but ignored temporal correlations between years; thus, they could be weak in large-scale and long time-series ULU monitoring. Accordingly, we introduce an temporal-spatial-semantic collaborative (TSS) mapping framework to generating accurate ULU maps with considering regional differences and temporal correlations. Firstly, to support model training, a large-scale ULU sample dataset based on OpenStreetMap (OSM) and Sentinel-2 imagery is automatically constructed, providing a total number of 56,412 samples with a size of 512 × 512 which are divided into six sub-regions in China and used for training different classification models. Then, an urban land use mapping network (ULUNet) is proposed to recognize ULU. This model utilizes a primary and an auxiliary encoder to process noisy OSM samples and can enhance the model's robustness under noisy labels. Finally, taking the temporal correlations of ULU into consideration, the recognized ULU are optimized, whose boundaries are unified by a time-series co-segmentation, and whose categories are modified by a knowledge-data driven method. To verify the effectiveness of the proposed method, we consider all urban areas in China (254,566 km2), and produce a time-series China urban land use dataset (CULU) at a 10-m resolution, spanning from 2016 to 2022, with an overall accuracy of CULU is 82.42%. Through comparison, it can be found that CULU outperforms existing datasets such as EULUC-China and UFZ-31cities in data accuracies, spatial boundaries consistencies and land use transitions logicality. The results indicate that the proposed method and generated dataset can play important roles in land use change monitoring, ecological-environmental evolution analysis, and also sustainable city development.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Here we developed annual irrigated cropland maps across China (IrriMap_CN) at 500-m resolution from 2000 to 2019, using MODIS data, machine-learning method, and Google Earth Engine platform. The spatial reference system of this dataset is EPSG: 4326 (WGS-1984). Readers can refer to the following publications for more details on the methods. Zhang, C., Dong, J., Ge, Q., 2022. IrriMap_CN: Annual irrigation maps across China in 2000–2019 based on satellite observations, environmental variables, and machine learning. Remote Sens. Environ. https://dx.doi.org/10.1016/j.rse.2022.113184 Zhang, C., Dong, J., Xie, Y., Zhang, X., Ge, Q., 2022. Mapping irrigated croplands in China using a synergetic training sample generating method, machine learning classifier, and Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 112, 102888. https://dx.doi.org/10.1016/j.jag.2022.102888
In addition, we also posted the link of IrriMap_Syn dataset (The 500-m irrigated cropland maps in China based on a synergy mapping method) and relevant publications as follows. The IrriMap_Syn dataset, as statistics-constraint irrigation maps, provide important ground truth data (training samples) for the generation of IrriMap_CN. Zhang, C., Dong, J., Ge, Q., 2022. Mapping 20 years of irrigated croplands in China using MODIS and statistics and existing irrigation products. Sci. Data 9, 407. https://dx.doi.org/10.1038/s41597-022-01522-z Zhang, C., Dong, J., Ge, Q., 2022. The 500-m irrigated cropland maps in China during 2000-2019 based on a synergy mapping method. figshare http://doi.org/10.6084/m9.figshare.19352501 Zhang, C., Dong, J., Zuo, L., Ge, Q., 2022. Tracking spatiotemporal dynamics of irrigated croplands in China from 2000 to 2019 through the synergy of remote sensing, statistics, and historical irrigation datasets. Agric. Water Manage. 263, 107458-107470. https://dx.doi.org/10.1016/j.agwat.2022.107458
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
This dataset contains data derived from the GEOSAT satellite radar altimeter wave measuring program. Maps have been produced from processed data, showing attributes including mean significant wave height and the 100 year mean significant wave.
Format: shapefile.
Quality - Scope: Dataset. Absolute External Positional Accuracy: +/- one degree. Non Quantitative accuracy: Attributes are assumed to be correct.
Cover_Name, Item_Name, Description: mswaveheight, GRID-CODE, Numercial code to index the polygons mswaveheight, MSWAVE_HGT_(M), Mean significant wave height ranging 0-4.5m.
Conceptual consistency: Coverages are topologically consistent. No particular tests conducted by ERIN. Completeness omission: Complete for the Australian continent. Lineage: ERIN: Data was projected to Geographics using the WGS84 spheroid and datum to be compatible for viewing through the Australian Coastal Atlas. The data was attributed with the range of wave height in metres, at an interval of 0.25metres.
CSIRO: All CAMRIS data were stored in VAX files, MS-DOS R-base files and as a microcomputer dataset accessible under the LUPIS (Land Use Planning Information System) land allocation package. CAMRIS was established using SPANS Geographic Information System (GIS) software running under a UNIX operating system on an IBM RS 6000 platform. A summary follows of processing completed by the CSIRO: 1. r-BASE: Information imported into r-BASE from a number of different sources (ie Digitised, scanned, CD-ROM, NOAA World Ocean Atlas, Atlas of Australian Soils, NOAA GEODAS archive and The Complete Book of Australian Weather). 2. From the information held in r-BASE a BASE Table was generated incorporating specific fields. 3. SPANS environment: Works on creating a UNIVERSE with a geographic projection - Equidistant Conic (Simple Conic) and Lambert Conformal Conic, Spheroid: International Astronomical Union 1965 (Australia/Sth America); the Lower left corner and the longitude and latitude of the centre point. 4. BASE Table imported into SPANS and a BASE Map generated. 5. Categorise Maps - created from the BASE map and table by selecting out specified fields, a desired window size (ie continental or continent and oceans) and resolution level (ie the quad tree level). 6. Rasterise maps specifying key parameters such as: number of bits, resolution (quad tree level 8 lowest - 16 highest) and the window size (usually 00 or cn). 7. Gifs produced using categorised maps with a title, legend, scale and long/lat grid. 8. Supplied to ERIN with .bil; .hdr; .gif; Arc export files .e00; and text files .asc and .txt formats. 9. The reference coastline for CAMRIS was the mean high water mark (AUSLIG 1:100 000 topographic map series).
This EnviroAtlas dataset is a point feature class showing the locations of stream confluences, with attributes showing indices of ecological integrity in the upstream catchments and watersheds of stream confluences and the results of a cluster analysis of these indices. Stream confluences are important components of fluvial networks. Hydraulic forces meeting at stream confluences often produce changes in streambed morphology and sediment distribution, and these changes often increase habitat heterogeneity relative to upstream and downstream locations. Increases in habitat heterogeneity at stream confluences have led some to identify them as biological hotspots. Despite their potential ecological importance, there are relatively few empirical studies documenting ecological patterns across the upstream-confluence-downstream gradient. To facilitate more studies of the ecological value and role of stream confluences in fluvial networks, we have produced a database of stream confluences and their associated watershed attributes for the conterminous United States. The database includes 1,085,629 stream confluences and 383 attributes for each confluence that are organized into 15 database tables for both tributary and mainstem upstream catchments ("local" watersheds) and watersheds. Themes represented by the database tables include hydrology (e.g., stream order), land cover and land cover change, geology (e.g., calcium content of underlying lithosphere), physical condition (e.g., precipitation), measures of ecological integrity, and stressors (e.g., impaired streams). We use measures of ecological integrity (Thornbrugh et al. 2018) from the StreamCat database (Hill et al. 2016) to classify stream confluences using disjoint clustering and validate the cluster results using decision tree analysis. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Established in 1982, Government Code Section 65570 mandates FMMP to biennially report on the conversion of farmland and grazing land, and to provide maps and data to local government and the public.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
🇫🇷 프랑스
NOTICE TO PROVISIONAL 2023 LAND USE DATA USERS: Please note that on December 6, 2024 the Department of Water Resources (DWR) published the Provisional 2023 Statewide Crop Mapping dataset. The link for the shapefile format of the data mistakenly linked to the wrong dataset. The link was updated with the appropriate data on January 27, 2025. If you downloaded the Provisional 2023 Statewide Crop Mapping dataset in shapefile format between December 6, 2024 and January 27, we encourage you to redownload the data. The Map Service and Geodatabase formats were correct as posted on December 06, 2024.
Thank you for your interest in DWR land use datasets.
The California Department of Water Resources (DWR) has been collecting land use data throughout the state and using it to develop agricultural water use estimates for statewide and regional planning purposes, including water use projections, water use efficiency evaluations, groundwater model developments, climate change mitigation and adaptations, and water transfers. These data are essential for regional analysis and decision making, which has become increasingly important as DWR and other state agencies seek to address resource management issues, regulatory compliances, environmental impacts, ecosystem services, urban and economic development, and other issues. Increased availability of digital satellite imagery, aerial photography, and new analytical tools make remote sensing-based land use surveys possible at a field scale that is comparable to that of DWR’s historical on the ground field surveys. Current technologies allow accurate large-scale crop and land use identifications to be performed at desired time increments and make possible more frequent and comprehensive statewide land use information. Responding to this need, DWR sought expertise and support for identifying crop types and other land uses and quantifying crop acreages statewide using remotely sensed imagery and associated analytical techniques. Currently, Statewide Crop Maps are available for the Water Years 2014, 2016, 2018- 2022 and PROVISIONALLY for 2023.
Historic County Land Use Surveys spanning 1986 - 2015 may also be accessed using the CADWR Land Use Data Viewer: https://gis.water.ca.gov/app/CADWRLandUseViewer.
For Regional Land Use Surveys follow: https://data.cnra.ca.gov/dataset/region-land-use-surveys.
For County Land Use Surveys follow: https://data.cnra.ca.gov/dataset/county-land-use-surveys.
For a collection of ArcGIS Web Applications that provide information on the DWR Land Use Program and our data products in various formats, visit the DWR Land Use Gallery: https://storymaps.arcgis.com/collections/dd14ceff7d754e85ab9c7ec84fb8790a.
Recommended citation for DWR land use data: California Department of Water Resources. (Water Year for the data). Statewide Crop Mapping—California Natural Resources Agency Open Data. Retrieved “Month Day, YEAR,” from https://data.cnra.ca.gov/dataset/statewide-crop-mapping.