100+ datasets found
  1. Dataset, splits, models, and scripts for the QM descriptors prediction

    • zenodo.org
    • explore.openaire.eu
    application/gzip
    Updated Apr 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shih-Cheng Li; Shih-Cheng Li; Haoyang Wu; Haoyang Wu; Angiras Menon; Angiras Menon; Kevin A. Spiekermann; Kevin A. Spiekermann; Yi-Pei Li; Yi-Pei Li; William H. Green; William H. Green (2024). Dataset, splits, models, and scripts for the QM descriptors prediction [Dataset]. http://doi.org/10.5281/zenodo.10668491
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Apr 4, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Shih-Cheng Li; Shih-Cheng Li; Haoyang Wu; Haoyang Wu; Angiras Menon; Angiras Menon; Kevin A. Spiekermann; Kevin A. Spiekermann; Yi-Pei Li; Yi-Pei Li; William H. Green; William H. Green
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Dataset, splits, models, and scripts from the manuscript "When Do Quantum Mechanical Descriptors Help Graph Neural Networks Predict Chemical Properties?" are provided. The curated dataset includes 37 QM descriptors for 64,921 unique molecules across six levels of theory: wB97XD, B3LYP, M06-2X, PBE0, TPSS, and BP86. This dataset is stored in the data.tar.gz file, which also contains a file for multitask constraints applied to various atomic and bond properties. The data splits (training, validation, and test splits) for both random and scaffold-based divisions are saved as separate index files in splits.tar.gz. The trained D-MPNN models for predicting QM descriptors are saved in the models.tar.gz file. The scripts.tar.gz file contains ready-to-use scripts for training machine learning models to predict QM descriptors, as well as scripts for predicting QM descriptors using our trained models on unseen molecules and for applying radial basis function (RBF) expansion to QM atom and bond features.

    Below are descriptions of the available scripts:

    1. atom_bond_descriptors.sh: Trains atom/bond targets.
    2. atom_bond_descriptors_predict.sh: Predicts atom/bond targets from pre-trained model.
    3. dipole_quadrupole_moments.sh: Trains dipole and quadrupole moments.
    4. dipole_quadrupole_moments_predict.sh: Predicts dipole and quadrupole moments from pre-trained model.
    5. energy_gaps_IP_EA.sh: Trains energy gaps, ionization potential (IP), and electron affinity (EA).
    6. energy_gaps_IP_EA_predict.sh: Predicts energy gaps, IP, and EA from pre-trained model.
    7. get_constraints.py: Generates constraints file for testing dataset. This generated file needs to be provided before using our trained models to predict the atom/bond QM descriptors of your testing data.
    8. csv2pkl.py: Converts QM atom and bond features to .pkl files using RBF expansion for use with Chemprop software.

    Below is the procedure for running the ml-QM-GNN on your own dataset:

    1. Use get_constraints.py to generate a constraint file required for predicting atom/bond QM descriptors with the trained ML models.
    2. Execute atom_bond_descriptors_predict.sh to predict atom and bond properties. Run dipole_quadrupole_moments_predict.sh and energy_gaps_IP_EA_predict.sh to calculate molecular QM descriptors.
    3. Utilize csv2pkl.py to convert the data from predicted atom/bond descriptors .csv file into separate atom and bond feature files (which are saved as .pkl files here).
    4. Run Chemprop to train your models using the additional predicted features supported here.
  2. Data from: Time-Split Cross-Validation as a Method for Estimating the...

    • acs.figshare.com
    • figshare.com
    txt
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Robert P. Sheridan (2023). Time-Split Cross-Validation as a Method for Estimating the Goodness of Prospective Prediction. [Dataset]. http://doi.org/10.1021/ci400084k.s001
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    ACS Publications
    Authors
    Robert P. Sheridan
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    Cross-validation is a common method to validate a QSAR model. In cross-validation, some compounds are held out as a test set, while the remaining compounds form a training set. A model is built from the training set, and the test set compounds are predicted on that model. The agreement of the predicted and observed activity values of the test set (measured by, say, R2) is an estimate of the self-consistency of the model and is sometimes taken as an indication of the predictivity of the model. This estimate of predictivity can be optimistic or pessimistic compared to true prospective prediction, depending how compounds in the test set are selected. Here, we show that time-split selection gives an R2 that is more like that of true prospective prediction than the R2 from random selection (too optimistic) or from our analog of leave-class-out selection (too pessimistic). Time-split selection should be used in addition to random selection as a standard for cross-validation in QSAR model building.

  3. t

    NBA Player Dataset & Prediction Model Artifacts

    • test.researchdata.tuwien.ac.at
    bin, csv, json, png +2
    Updated Apr 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Burak Baltali; Burak Baltali (2025). NBA Player Dataset & Prediction Model Artifacts [Dataset]. http://doi.org/10.70124/ymgzs-z3s43
    Explore at:
    json, png, csv, bin, txt, text/markdownAvailable download formats
    Dataset updated
    Apr 28, 2025
    Dataset provided by
    TU Wien
    Authors
    Burak Baltali; Burak Baltali
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description

    This dataset contains end-of-season box-score aggregates for NBA players over the 2012–13 through 2023–24 seasons, split into training and test sets for both regular season and playoffs. Each CSV has one row per player per season with columns for points, rebounds, steals, turnovers, 3-pt attempts, FG attempts, plus identifiers.

    Brief overview of Files

    1. end-of-season box-score aggregates (2012–13 – 2023–24) split into train/test;

    2. the Jupyter notebook (Analysis.ipynb); All the code can be executed in there

    3. the trained model binary (nba_model.pkl); Serialized Random Forest model artifact

    4. Evaluation plots (LAL vs. whole‐league) for regular & playoff predictions are given as png outputs and uploaded in here

    5. FAIR4ML metadata (fair4ml_metadata.jsonld);
      see README.md and abbreviations.txt for file details.”

    6. For further information you can go to the github site (Link below)

    File Details

    Notebook

    Analysis.ipynb: Involves the graphica output of the trained and tested data.

    Trained/ Test csv Data

    NameDescriptionPID
    regular_train.csvFor training purposes, the seasons 2012-2013 through 2021-2022 were selected as training purpose4421e56c-4cd3-4ec1-a566-a89d7ec0bced
    regular_test.csv:For testing purpose of the regular season, the 2022-2023 season was selectedf9d84d5e-db01-4475-b7d1-80cfe9fe0e61
    playoff_train.csvFor training purposes of the playoff season, the seasons 2012-2013 through 2022-2023 were selected bcb3cf2b-27df-48cc-8b76-9e49254783d0
    playoff_test.csvFor testing purpose of the playoff season, 2023-2024 season was selectedde37d568-e97f-4cb9-bc05-2e600cc97102

    Others

    abbrevations.txt: Involves the fundemental abbrevations of the columns in csv data

    Additional Notes

    Raw csv files are taken from Kaggle (Source: https://www.kaggle.com/datasets/shivamkumar121215/nba-stats-dataset-for-last-10-years/data)

    Some preprocessing has to be done before uploading into dbrepo

    Plots have also been uploaded as an output for visual purposes.

    A more detailed version can be found on github (Link: https://github.com/bubaltali/nba-prediction-analysis/)

  4. e

    Web Data Commons Training and Test Sets for Large-Scale Product Matching -...

    • b2find.eudat.eu
    Updated Nov 27, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Web Data Commons Training and Test Sets for Large-Scale Product Matching - Version 2.0 Product Matching Task derived from the WDC Product Data Corpus - Version 2.0 - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/720b440c-eda0-5182-af9f-f868ed999bd7
    Explore at:
    Dataset updated
    Nov 27, 2020
    Description

    Many e-shops have started to mark-up product data within their HTML pages using the schema.org vocabulary. The Web Data Commons project regularly extracts such data from the Common Crawl, a large public web crawl. The Web Data Commons Training and Test Sets for Large-Scale Product Matching contain product offers from different e-shops in the form of binary product pairs (with corresponding label “match” or “no match”) for four product categories, computers, cameras, watches and shoes. In order to support the evaluation of machine learning-based matching methods, the data is split into training, validation and test sets. For each product category, we provide training sets in four different sizes (2.000-70.000 pairs). Furthermore there are sets of ids for each training set for a possible validation split (stratified random draw) available. The test set for each product category consists of 1.100 product pairs. The labels of the test sets were manually checked while those of the training sets were derived using shared product identifiers from the Web weak supervision. The data stems from the WDC Product Data Corpus for Large-Scale Product Matching - Version 2.0 which consists of 26 million product offers originating from 79 thousand websites. For more information and download links for the corpus itself, please follow the links below.

  5. d

    Training dataset for NABat Machine Learning V1.0

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Training dataset for NABat Machine Learning V1.0 [Dataset]. https://catalog.data.gov/dataset/training-dataset-for-nabat-machine-learning-v1-0
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Description

    Bats play crucial ecological roles and provide valuable ecosystem services, yet many populations face serious threats from various ecological disturbances. The North American Bat Monitoring Program (NABat) aims to assess status and trends of bat populations while developing innovative and community-driven conservation solutions using its unique data and technology infrastructure. To support scalability and transparency in the NABat acoustic data pipeline, we developed a fully-automated machine-learning algorithm. This dataset includes audio files of bat echolocation calls that were considered to develop V1.0 of the NABat machine-learning algorithm, however the test set (i.e., holdout dataset) has been excluded from this release. These recordings were collected by various bat monitoring partners across North America using ultrasonic acoustic recorders for stationary acoustic and mobile acoustic surveys. For more information on how these surveys may be conducted, see Chapters 4 and 5 of “A Plan for the North American Bat Monitoring Program” (https://doi.org/10.2737/SRS-GTR-208). These data were then post-processed by bat monitoring partners to remove noise files (or those that do not contain recognizable bat calls) and apply a species label to each file. There is undoubtedly variation in the steps that monitoring partners take to apply a species label, but the steps documented in “A Guide to Processing Bat Acoustic Data for the North American Bat Monitoring Program” (https://doi.org/10.3133/ofr20181068) include first processing with an automated classifier and then manually reviewing to confirm or downgrade the suggested species label. Once a manual ID label was applied, audio files of bat acoustic recordings were submitted to the NABat database in Waveform Audio File format. From these available files in the NABat database, we considered files from 35 classes (34 species and a noise class). Files for 4 species were excluded due to low sample size (Corynorhinus rafinesquii, N=3; Eumops floridanus, N =3; Lasiurus xanthinus, N = 4; Nyctinomops femorosaccus, N =11). From this pool, files were randomly selected until files for each species/grid cell combination were exhausted or the number of recordings reach 1250. The dataset was then randomly split into training, validation, and test sets (i.e., holdout dataset). This data release includes all files considered for training and validation, including files that had been excluded from model development and testing due to low sample size for a given species or because the threshold for species/grid cell combinations had been met. The test set (i.e., holdout dataset) is not included. Audio files are grouped by species, as indicated by the four-letter species code in the name of each folder. Definitions for each four-letter code, including Family, Genus, Species, and Common name, are also included as a dataset in this release.

  6. t

    FAIR Dataset for Disease Prediction in Healthcare Applications

    • test.researchdata.tuwien.ac.at
    bin, csv, json, png
    Updated Apr 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sufyan Yousaf; Sufyan Yousaf; Sufyan Yousaf; Sufyan Yousaf (2025). FAIR Dataset for Disease Prediction in Healthcare Applications [Dataset]. http://doi.org/10.70124/5n77a-dnf02
    Explore at:
    csv, json, bin, pngAvailable download formats
    Dataset updated
    Apr 14, 2025
    Dataset provided by
    TU Wien
    Authors
    Sufyan Yousaf; Sufyan Yousaf; Sufyan Yousaf; Sufyan Yousaf
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Dataset Description

    Context and Methodology

    • Research Domain/Project:
      This dataset was created for a machine learning experiment aimed at developing a classification model to predict outcomes based on a set of features. The primary research domain is disease prediction in patients. The dataset was used in the context of training, validating, and testing.

    • Purpose of the Dataset:
      The purpose of this dataset is to provide training, validation, and testing data for the development of machine learning models. It includes labeled examples that help train classifiers to recognize patterns in the data and make predictions.

    • Dataset Creation:
      Data preprocessing steps involved cleaning, normalization, and splitting the data into training, validation, and test sets. The data was carefully curated to ensure its quality and relevance to the problem at hand. For any missing values or outliers, appropriate handling techniques were applied (e.g., imputation, removal, etc.).

    Technical Details

    • Structure of the Dataset:
      The dataset consists of several files organized into folders by data type:

      • Training Data: Contains the training dataset used to train the machine learning model.

      • Validation Data: Used for hyperparameter tuning and model selection.

      • Test Data: Reserved for final model evaluation.

      Each folder contains files with consistent naming conventions for easy navigation, such as train_data.csv, validation_data.csv, and test_data.csv. Each file follows a tabular format with columns representing features and rows representing individual data points.

    • Software Requirements:
      To open and work with this dataset, you need VS Code or Jupyter, which could include tools like:

      • Python (with libraries such as pandas, numpy, scikit-learn, matplotlib, etc.)

    Further Details

    • Reusability:
      Users of this dataset should be aware that it is designed for machine learning experiments involving classification tasks. The dataset is already split into training, validation, and test subsets. Any model trained with this dataset should be evaluated using the test set to ensure proper validation.

    • Limitations:
      The dataset may not cover all edge cases, and it might have biases depending on the selection of data sources. It's important to consider these limitations when generalizing model results to real-world applications.

  7. f

    Long Covid Risk

    • figshare.com
    txt
    Updated Apr 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ahmed Shaheen (2024). Long Covid Risk [Dataset]. http://doi.org/10.6084/m9.figshare.25599591.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Apr 13, 2024
    Dataset provided by
    figshare
    Authors
    Ahmed Shaheen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Feature preparation Preprocessing was applied to the data, such as creating dummy variables and performing transformations (centering, scaling, YeoJohnson) using the preProcess() function from the “caret” package in R. The correlation among the variables was examined and no serious multicollinearity problems were found. A stepwise variable selection was performed using a logistic regression model. The final set of variables included: Demographic: age, body mass index, sex, ethnicity, smoking History of disease: heart disease, migraine, insomnia, gastrointestinal disease, COVID-19 history: covid vaccination, rashes, conjunctivitis, shortness of breath, chest pain, cough, runny nose, dysgeusia, muscle and joint pain, fatigue, fever ,COVID-19 reinfection, and ICU admission. These variables were used to train and test various machine-learning models Model selection and training The data was randomly split into 80% training and 20% testing subsets. The “h2o” package in R version 4.3.1 was employed to implement different algorithms. AutoML was first used, which automatically explored a range of models with different configurations. Gradient Boosting Machines (GBM), Random Forest (RF), and Regularized Generalized Linear Model (GLM) were identified as the best-performing models on our data and their parameters were fine-tuned. An ensemble method that stacked different models together was also used, as it could sometimes improve the accuracy. The models were evaluated using the area under the curve (AUC) and C-statistics as diagnostic measures. The model with the highest AUC was selected for further analysis using the confusion matrix, accuracy, sensitivity, specificity, and F1 and F2 scores. The optimal prediction threshold was determined by plotting the sensitivity, specificity, and accuracy and choosing the point of intersection as it balanced the trade-off between the three metrics. The model’s predictions were also plotted, and the quantile ranges were used to classify the model’s prediction as follows: > 1st quantile, > 2nd quantile, > 3rd quartile and < 3rd quartile (very low, low, moderate, high) respectively. Metric Formula C-statistics (TPR + TNR - 1) / 2 Sensitivity/Recall TP / (TP + FN) Specificity TN / (TN + FP) Accuracy (TP + TN) / (TP + TN + FP + FN) F1 score 2 * (precision * recall) / (precision + recall) Model interpretation We used the variable importance plot, which is a measure of how much each variable contributes to the prediction power of a machine learning model. In H2O package, variable importance for GBM and RF is calculated by measuring the decrease in the model's error when a variable is split on. The more a variable's split decreases the error, the more important that variable is considered to be. The error is calculated using the following formula: 𝑆𝐸=𝑀𝑆𝐸∗𝑁=𝑉𝐴𝑅∗𝑁 and then it is scaled between 0 and 1 and plotted. Also, we used The SHAP summary plot which is a graphical tool to visualize the impact of input features on the prediction of a machine learning model. SHAP stands for SHapley Additive exPlanations, a method to calculate the contribution of each feature to the prediction by averaging over all possible subsets of features [28]. SHAP summary plot shows the distribution of the SHAP values for each feature across the data instances. We use the h2o.shap_summary_plot() function in R to generate the SHAP summary plot for our GBM model. We pass the model object and the test data as arguments, and optionally specify the columns (features) we want to include in the plot. The plot shows the SHAP values for each feature on the x-axis, and the features on the y-axis. The color indicates whether the feature value is low (blue) or high (red). The plot also shows the distribution of the feature values as a density plot on the right.

  8. r

    Data from: Detection of hunting pits using airborne laser scanning and deep...

    • researchdata.se
    Updated Feb 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    William Lidberg (2025). Detection of hunting pits using airborne laser scanning and deep learning [Dataset]. http://doi.org/10.5878/en98-1b29
    Explore at:
    (151360), (194664001), (683639968), (3367206556), (2898526204), (37811516), (2959134741), (1763173736), (3380382025)Available download formats
    Dataset updated
    Feb 26, 2025
    Dataset provided by
    Swedish University for Agricultural Sciences
    Authors
    William Lidberg
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    Jun 9, 2022
    Area covered
    Sweden
    Description

    This is training and testing data for the detection of hunting pits in airborne laser data. The data is split into three parts. 1: Data for transfer learning with radar imagery and impact craters on the moon. 2. Data for training and testing of the machine learning model. 3: Data from a separate demonstration area used to evaluate the model.

    The lunar data (1) were used to pre-train a machine learning model before training on the real data of hunting pits from earth (2). The demonstration data was used to visually evaluate the result of the final model. All code used to create this dataset and train the machine learning models can be found here: https://github.com/williamlidberg/Detection-of-hunting-pits-using-airborne-laser-scanning-and-deep-learning The code is also included in the file "code.zip"

  9. h

    tradingIdeas

    • huggingface.co
    Updated Jan 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Singh (2025). tradingIdeas [Dataset]. https://huggingface.co/datasets/DiljitSingh14/tradingIdeas
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 2, 2025
    Authors
    Singh
    Description

    TradingView Ideas Dataset

    This dataset contains trading ideas and analysis sourced from TradingView, split into training and testing datasets for machine learning purposes. It includes both image data (chart screenshots) and associated textual descriptions.

      Dataset Structure
    
    
    
    
    
      Root Folder Contents
    

    train.zip: Compressed folder containing training data (images and JSON split). test.zip: Compressed folder containing testing data (images and JSON split).… See the full description on the dataset page: https://huggingface.co/datasets/DiljitSingh14/tradingIdeas.

  10. Training and testing data for deep learning assisted jet tomography

    • figshare.com
    hdf
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    LongGang Pang; zhong yang; Yayun He; wei chen; WeiYao Ke; Xin-Nian Wang (2023). Training and testing data for deep learning assisted jet tomography [Dataset]. http://doi.org/10.6084/m9.figshare.20422500.v1
    Explore at:
    hdfAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    LongGang Pang; zhong yang; Yayun He; wei chen; WeiYao Ke; Xin-Nian Wang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    When energetic partons traverse the quark gluon plasma (QGP), they will deposite energy and momentum into the medium. Mach cones are expected to form whose opening angles are tightly related to the speed of sound of QGP. This provides a way to detect the QGP equation of state. However, the mach cones are distorted by the collective expansion of QGP. The distortions depend on the initial jet production positions and its travelling direction.

    We trained a deep point cloud neural network to locate the iniital jet production positions using the momenta of final state hadrons with transverse momentum pt>2 GeV. This folder contains training and testing data for this AI4Science interdisplinary study.

    There are 3 files in hdf5 format. 1. CoLBT_Hadrons_Frag.h5 (734.17 MB) , stores training and testing data from CoLBT model using fragmentation for particlization.

    The data tables contained are listed below. gamma_pt_phi_eta_test Dataset {97908, 3} gamma_pt_phi_eta_train Dataset {78334, 3} hadrons_test Dataset {97908, 90, 6} hadrons_train Dataset {78334, 90, 6} ids_test Dataset {97908} ids_train Dataset {78334} jet_pt_phi_eta_test Dataset {97908, 3} jet_pt_phi_eta_train Dataset {78334, 3} jetxy_test Dataset {97908, 2} jetxy_train Dataset {78334, 2} where the data are split into training and testing sets. In the training set, gamma_pt_phi_eta_train is a 2D numpy array which stores the global information (pt, phi, pseudo-rapidity) of 78334 gamma triggers. hadrons_train is a numpy array of shape {78334, 90, 6} where 78334 is the number of events, 90 is the maximum number of hadrons in the jet cone and 6 is the number of features of each hadron. jet_pt_phi_eta_train is a numpy array of shape {78334, 3} where 3 stands for (pt, phi, eta) of the jet using jet finding algorithm. jetxy_train is a numpy array of shape {78334, 2} where 2 stands for (x, y). They are the jet production positions that the neural network is going to predict.

    1. CoLBT_Hadrons_Comb.h5 (408.4 MB), , stores training and testing data from CoLBT model using combination for particlization.

    The data tables contained are listed below. gamma_pt_phi_eta_test Dataset {19615, 3} gamma_pt_phi_eta_train Dataset {78334, 3} hadrons_test Dataset {19615, 90, 6} hadrons_train Dataset {78334, 90, 6} ids_test Dataset {19615} ids_train Dataset {78334} jet_pt_phi_eta_test Dataset {19615, 3} jet_pt_phi_eta_train Dataset {78334, 3} jetxy_test Dataset {19615, 2} jetxy_train Dataset {78334, 2} where the data are split into training and testing sets. In the training set, gamma_pt_phi_eta_train is a 2D numpy array which stores the global information (pt, phi, pseudo-rapidity) of 78334 gamma triggers. hadrons_train is a numpy array of shape {78334, 90, 6} where 78334 is the number of events, 90 is the maximum number of hadrons in the jet cone and 6 is the number of features of each hadron. jet_pt_phi_eta_train is a numpy array of shape {78334, 3} where 3 stands for (pt, phi, eta) of the jet using jet finding algorithm. jetxy_train is a numpy array of shape {78334, 2} where 2 stands for (x, y). They are the jet production positions that the neural network is going to predict.

    1. Lido_Hadrons_Frag.h5 (186.22 MB), stores the testing data used for deep learning assisted jet tomography from LIDO Monte Carlo model which is different from CoLBT that is used for training. gamma_pt_phi_eta_test Dataset {44867, 3}, global information of gamma, (pt, phi, pseudo-rapidity) for 44867 events hadrons_test Dataset {44867, 90, 6}, final state hadrons for 44867 events, maximum number of hadrons is 90 for each event, number of features is 6 for each hadron. jet_pt_phi_eta_test Dataset {44867, 3}: the global information of the jet hadrons inside the cone. jetxy_test Dataset {44867, 2}: the production positions of the initial jet in the transverse plane.
  11. h

    OlympiadBench-split

    • huggingface.co
    Updated Jun 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    weijie (2025). OlympiadBench-split [Dataset]. https://huggingface.co/datasets/weijiezz/OlympiadBench-split
    Explore at:
    Dataset updated
    Jun 17, 2025
    Authors
    weijie
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    OlympiadBench (Split Version)

    This dataset is a split version of the original knoveleng/OlympiadBench dataset.

      Dataset Description
    

    This dataset contains mathematical olympiad problems with their solutions, split into training and test sets.

      Dataset Structure
    

    Train split: 575 examples Test split: 100 examples (last 100 examples from original dataset)

      Data Fields
    

    question: The olympiad problem statement answer: The solution to the problem… See the full description on the dataset page: https://huggingface.co/datasets/weijiezz/OlympiadBench-split.

  12. P

    WDC LSPM Dataset

    • library.toponeai.link
    Updated Feb 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). WDC LSPM Dataset [Dataset]. https://library.toponeai.link/dataset/wdc-products
    Explore at:
    Dataset updated
    Feb 8, 2025
    Description

    Many e-shops have started to mark-up product data within their HTML pages using the schema.org vocabulary. The Web Data Commons project regularly extracts such data from the Common Crawl, a large public web crawl. The Web Data Commons Training and Test Sets for Large-Scale Product Matching contain product offers from different e-shops in the form of binary product pairs (with corresponding label "match" or "no match") for four product categories, computers, cameras, watches and shoes.

    In order to support the evaluation of machine learning-based matching methods, the data is split into training, validation and test sets. For each product category, we provide training sets in four different sizes (2.000-70.000 pairs). Furthermore there are sets of ids for each training set for a possible validation split (stratified random draw) available. The test set for each product category consists of 1.100 product pairs. The labels of the test sets were manually checked while those of the training sets were derived using shared product identifiers from the Web via weak supervision.

    The data stems from the WDC Product Data Corpus for Large-Scale Product Matching - Version 2.0 which consists of 26 million product offers originating from 79 thousand websites.

  13. m

    Machine learning for corrosion database

    • data.mendeley.com
    Updated Oct 26, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Leonardo Bertolucci Coelho (2021). Machine learning for corrosion database [Dataset]. http://doi.org/10.17632/jfn8yhrphd.1
    Explore at:
    Dataset updated
    Oct 26, 2021
    Authors
    Leonardo Bertolucci Coelho
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This database was firstly created for the scientific article entitled: "Reviewing Machine Learning of corrosion prediction: a data-oriented perspective"

    L.B. Coelho 1 , D. Zhang 2 , Y.V. Ingelgem 1 , D. Steckelmacher 3 , A. Nowé 3 , H.A. Terryn 1

    1 Department of Materials and Chemistry, Research Group Electrochemical and Surface Engineering, Vrije Universiteit Brussel, Brussels, Belgium 2 A Beijing Advanced Innovation Center for Materials Genome Engineering, National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, China 3 VUB Artificial Intelligence Lab, Vrije Universiteit Brussel, Brussels, Belgium

    Different metrics are possible to evaluate the prediction accuracy of regression models. However, only papers providing relative metrics (MAPE, R²) were included in this database. We tried as much as possible to include descriptors of all major ML procedure steps, including data collection (“Data acquisition”), data cleaning feature engineering (“Feature reduction”), model validation (“Train-Test split”*), etc.

    *the total dataset is typically split into training sets and testing (unknown data) sets for performance evaluation of the model. Nonetheless, sometimes only the training or the testing performances were reported (“?” marks were added in the respective evaluation metric field(s)). The “Average R²” was sometimes considered for studies employing “CV” (cross-validation) on the dataset. For a detailed description of the ML basic procedures, the reader could refer to the References topic in the Review article.

  14. f

    Datasets used in the study.

    • figshare.com
    xls
    Updated Dec 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Erik Bergman; Luise Dürlich; Veronica Arthurson; Anders Sundström; Maria Larsson; Shamima Bhuiyan; Andreas Jakobsson; Gabriel Westman (2023). Datasets used in the study. [Dataset]. http://doi.org/10.1371/journal.pdig.0000409.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Dec 6, 2023
    Dataset provided by
    PLOS Digital Health
    Authors
    Erik Bergman; Luise Dürlich; Veronica Arthurson; Anders Sundström; Maria Larsson; Shamima Bhuiyan; Andreas Jakobsson; Gabriel Westman
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Post-marketing reports of suspected adverse drug reactions are important for establishing the safety profile of a medicinal product. However, a high influx of reports poses a challenge for regulatory authorities as a delay in identification of previously unknown adverse drug reactions can potentially be harmful to patients. In this study, we use natural language processing (NLP) to predict whether a report is of serious nature based solely on the free-text fields and adverse event terms in the report, potentially allowing reports mislabelled at time of reporting to be detected and prioritized for assessment. We consider four different NLP models at various levels of complexity, bootstrap their train-validation data split to eliminate random effects in the performance estimates and conduct prospective testing to avoid the risk of data leakage. Using a Swedish BERT based language model, continued language pre-training and final classification training, we achieve close to human-level performance in this task. Model architectures based on less complex technical foundation such as bag-of-words approaches and LSTM neural networks trained with random initiation of weights appear to perform less well, likely due to the lack of robustness that a base of general language training provides.

  15. Z

    Training and test datasets for the PredictONCO tool

    • data.niaid.nih.gov
    • zenodo.org
    Updated Dec 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sterba, Jaroslav (2023). Training and test datasets for the PredictONCO tool [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10013763
    Explore at:
    Dataset updated
    Dec 14, 2023
    Dataset provided by
    Borko, Simeon
    Sterba, Jaroslav
    Bednar, David
    Mazurenko, Stanislav
    Pinto, Gaspar
    Szotkowska, Veronika
    Damborsky, Jiri
    Khan, Rayyan
    Stourac, Jan
    Dobias, Adam
    Pokorna, Petra
    Slaby, Ondrej
    Planas-Iglesias, Joan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset was used for training and validating the PredictONCO web tool, supporting decision-making in precision oncology by extending the bioinformatics predictions with advanced computing and machine learning. The dataset consists of 1073 single-point mutants of 42 proteins, whose effect was classified as Oncogenic (509 data points) and Benign (564 data points). All mutations were annotated with a clinically verified effect and were compiled from the ClinVar and OncoKB databases. The dataset was manually curated based on the available information in other precision oncology databases (The Clinical Knowledgebase by The Jackson Laboratory, Personalized Cancer Therapy Knowledge Base by MD Anderson Cancer Center, cBioPortal, DoCM database) or in the primary literature. To create the dataset, we also removed any possible overlaps with the data points used in the PredictSNP consensus predictor and its constituents. This was implemented to avoid any test set data leakage due to using the PredictSNP score as one of the features (see below).

    The entire dataset (SEQ) was further annotated by the pipeline of PredictONCO. Briefly, the following six features were calculated regardless of the structural information available: essentiality of the mutated residue (yes/no), the conservation of the position (the conservation grade and score), the domain where the mutation is located (cytoplasmic, extracellular, transmembrane, other), the PredictSNP score, and the number of essential residues in the protein. For approximately half of the data (STR: 377 and 76 oncogenic and benign data points, respectively), the structural information was available, and six more features were calculated: FoldX and Rosetta ddg_monomer scores, whether the residue is in the catalytic pocket (identification of residues forming the ligand-binding pocket was obtained from P2Rank), and the pKa changes (the minimum and maximum changes as well as the number of essential residues whose pKa was changed – all values obtained from PROPKA3). For both STR and SEQ datasets, 20% of the data was held out for testing. The data split was implemented at the position level to ensure that no position from the test data subset appears in the training data subset.

    For more details about the tool, please visit the help page or get in touch with us.

    14-Dec-2023 update: the file with features PredictONCO-features.txt now includes UniProt IDs, transcripts, PDB codes, and mutations.

  16. Dollar street 10 - 64x64x3

    • zenodo.org
    • data.niaid.nih.gov
    bin
    Updated May 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sven van der burg; Sven van der burg (2025). Dollar street 10 - 64x64x3 [Dataset]. http://doi.org/10.5281/zenodo.10970014
    Explore at:
    binAvailable download formats
    Dataset updated
    May 6, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Sven van der burg; Sven van der burg
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The MLCommons Dollar Street Dataset is a collection of images of everyday household items from homes around the world that visually captures socioeconomic diversity of traditionally underrepresented populations. It consists of public domain data, licensed for academic, commercial and non-commercial usage, under CC-BY and CC-BY-SA 4.0. The dataset was developed because similar datasets lack socioeconomic metadata and are not representative of global diversity.

    This is a subset of the original dataset that can be used for multiclass classification with 10 categories. It is designed to be used in teaching, similar to the widely used, but unlicensed CIFAR-10 dataset.

    These are the preprocessing steps that were performed:

    1. Only take examples with one imagenet_synonym label
    2. Use only examples with the 10 most frequently occuring labels
    3. Downscale images to 64 x 64 pixels
    4. Split data in train and test
    5. Store as numpy array

    This is the label mapping:

    Categorylabel
    day bed0
    dishrag1
    plate2
    running shoe3
    soap dispenser4
    street sign5
    table lamp6
    tile roof7
    toilet seat8
    washing machine9

    Checkout https://github.com/carpentries-lab/deep-learning-intro/blob/main/instructors/prepare-dollar-street-data.ipynb" target="_blank" rel="noopener">this notebook to see how the subset was created.

    The original dataset was downloaded from https://www.kaggle.com/datasets/mlcommons/the-dollar-street-dataset. See https://mlcommons.org/datasets/dollar-street/ for more information.

  17. Learning Privacy from Visual Entities - Curated data sets and pre-computed...

    • zenodo.org
    zip
    Updated May 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alessio Xompero; Alessio Xompero; Andrea Cavallaro; Andrea Cavallaro (2025). Learning Privacy from Visual Entities - Curated data sets and pre-computed visual entities [Dataset]. http://doi.org/10.5281/zenodo.15348506
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 7, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Alessio Xompero; Alessio Xompero; Andrea Cavallaro; Andrea Cavallaro
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description
    This repository contains the curated image privacy datasets and pre-computed visual entities used in the publication Learning Privacy from Visual Entities by A. Xompero and A. Cavallaro.
    [
    arxiv][code]

    Curated image privacy data sets

    In the article, we trained and evaluated models on the Image Privacy Dataset (IPD) and the PrivacyAlert dataset. The datasets are originally provided by other sources and have been re-organised and curated for this work.

    Our curation organises the datasets in a common structure. We updated the annotations and labelled the splits of the data in the annotation file. This avoids having separated folders of images for each data split (training, validation, testing) and allows a flexible handling of new splits, e.g. created with a stratified K-Fold cross-validation procedure. As for the original datasets (PicAlert and PrivacyAlert), we provide the link to the images in bash scripts to download the images. Another bash script re-organises the images in sub-folders with maximum 1000 images in each folder.

    Both datasets refer to images publicly available on Flickr. These images have a large variety of content, including sensitive content, seminude people, vehicle plates, documents, private events. Images were annotated with a binary label denoting if the content was deemed to be public or private. As the images are publicly available, their label is mostly public. These datasets have therefore a high imbalance towards the public class. Note that IPD combines two other existing datasets, PicAlert and part of VISPR, to increase the number of private images already limited in PicAlert. Further details in our corresponding https://doi.org/10.48550/arXiv.2503.12464" target="_blank" rel="noopener">publication.

    List of datasets and their original source:

    Notes:

    • For PicAlert and PrivacyAlert, only urls to the original locations in Flickr are available in the Zenodo record
    • Collector and authors of the PrivacyAlert dataset selected the images from Flickr under Public Domain license
    • Owners of the photos on Flick could have removed the photos from the social media platform
    • Running the bash scripts to download the images can incur in the "429 Too Many Requests" status code

    Pre-computed visual entitities

    Some of the models run their pipeline end-to-end with the images as input, whereas other models require different or additional inputs. These inputs include the pre-computed visual entities (scene types and object types) represented in a graph format, e.g. for a Graph Neural Network. Re-using these pre-computed visual entities allows other researcher to build new models based on these features while avoiding re-computing the same on their own or for each epoch during the training of a model (faster training).

    For each image of each dataset, namely PrivacyAlert, PicAlert, and VISPR, we provide the predicted scene probabilities as a .csv file , the detected objects as a .json file in COCO data format, and the node features (visual entities already organised in graph format with their features) as a .json file. For consistency, all the files are already organised in batches following the structure of the images in the datasets folder. For each dataset, we also provide the pre-computed adjacency matrix for the graph data.

    Note: IPD is based on PicAlert and VISPR and therefore IPD refers to the scene probabilities and object detections of the other two datasets. Both PicAlert and VISPR must be downloaded and prepared to use IPD for training and testing.

    Further details on downloading and organising data can be found in our GitHub repository: https://github.com/graphnex/privacy-from-visual-entities (see ARTIFACT-EVALUATION.md#pre-computed-visual-entitities-)

    Enquiries, questions and comments

    If you have any enquiries, question, or comments, or you would like to file a bug report or a feature request, use the issue tracker of our GitHub repository.

  18. R

    Cdd Dataset

    • universe.roboflow.com
    zip
    Updated Sep 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    hakuna matata (2023). Cdd Dataset [Dataset]. https://universe.roboflow.com/hakuna-matata/cdd-g8a6g/3
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 5, 2023
    Dataset authored and provided by
    hakuna matata
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Cumcumber Diease Detection Bounding Boxes
    Description

    Project Documentation: Cucumber Disease Detection

    1. Title and Introduction Title: Cucumber Disease Detection

    Introduction: A machine learning model for the automatic detection of diseases in cucumber plants is to be developed as part of the "Cucumber Disease Detection" project. This research is crucial because it tackles the issue of early disease identification in agriculture, which can increase crop yield and cut down on financial losses. To train and test the model, we use a dataset of pictures of cucumber plants.

    1. Problem Statement Problem Definition: The research uses image analysis methods to address the issue of automating the identification of diseases, including Downy Mildew, in cucumber plants. Effective disease management in agriculture depends on early illness identification.

    Importance: Early disease diagnosis helps minimize crop losses, stop the spread of diseases, and better allocate resources in farming. Agriculture is a real-world application of this concept.

    Goals and Objectives: Develop a machine learning model to classify cucumber plant images into healthy and diseased categories. Achieve a high level of accuracy in disease detection. Provide a tool for farmers to detect diseases early and take appropriate action.

    1. Data Collection and Preprocessing Data Sources: The dataset comprises of pictures of cucumber plants from various sources, including both healthy and damaged specimens.

    Data Collection: Using cameras and smartphones, images from agricultural areas were gathered.

    Data Preprocessing: Data cleaning to remove irrelevant or corrupted images. Handling missing values, if any, in the dataset. Removing outliers that may negatively impact model training. Data augmentation techniques applied to increase dataset diversity.

    1. Exploratory Data Analysis (EDA) The dataset was examined using visuals like scatter plots and histograms. The data was examined for patterns, trends, and correlations. Understanding the distribution of photos of healthy and ill plants was made easier by EDA.

    2. Methodology Machine Learning Algorithms:

    Convolutional Neural Networks (CNNs) were chosen for image classification due to their effectiveness in handling image data. Transfer learning using pre-trained models such as ResNet or MobileNet may be considered. Train-Test Split:

    The dataset was split into training and testing sets with a suitable ratio. Cross-validation may be used to assess model performance robustly.

    1. Model Development The CNN model's architecture consists of layers, units, and activation operations. On the basis of experimentation, hyperparameters including learning rate, batch size, and optimizer were chosen. To avoid overfitting, regularization methods like dropout and L2 regularization were used.

    2. Model Training During training, the model was fed the prepared dataset across a number of epochs. The loss function was minimized using an optimization method. To ensure convergence, early halting and model checkpoints were used.

    3. Model Evaluation Evaluation Metrics:

    Accuracy, precision, recall, F1-score, and confusion matrix were used to assess model performance. Results were computed for both training and test datasets. Performance Discussion:

    The model's performance was analyzed in the context of disease detection in cucumber plants. Strengths and weaknesses of the model were identified.

    1. Results and Discussion Key project findings include model performance and disease detection precision. a comparison of the many models employed, showing the benefits and drawbacks of each. challenges that were faced throughout the project and the methods used to solve them.

    2. Conclusion recap of the project's key learnings. the project's importance to early disease detection in agriculture should be highlighted. Future enhancements and potential research directions are suggested.

    3. References Library: Pillow,Roboflow,YELO,Sklearn,matplotlib Datasets:https://data.mendeley.com/datasets/y6d3z6f8z9/1

    4. Code Repository https://universe.roboflow.com/hakuna-matata/cdd-g8a6g

    Rafiur Rahman Rafit EWU 2018-3-60-111

  19. Liver Disorders

    • kaggle.com
    Updated Jul 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abdelaziz Sami (2024). Liver Disorders [Dataset]. https://www.kaggle.com/datasets/abdelazizsami/liver-disorders
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 21, 2024
    Dataset provided by
    Kaggle
    Authors
    Abdelaziz Sami
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Liver Disorders Dataset Overview

    Donated on: 5/14/1990
    Source: BUPA Medical Research Ltd., donated by Richard S. Forsyth

    Dataset Characteristics: - Type: Multivariate - Subject Area: Health and Medicine - Associated Tasks: Regression - Feature Types: Categorical, Integer, Real - Number of Instances: 345 - Number of Features: 5

    Dataset Information: This dataset contains records from male individuals, focusing on blood tests thought to be sensitive to liver disorders potentially caused by excessive alcohol consumption. The dataset includes the following variables:

    1. mcv: Mean corpuscular volume (Continuous)
    2. alkphos: Alkaline phosphatase (Continuous)
    3. sgpt: Alanine aminotransferase (Continuous)
    4. sgot: Aspartate aminotransferase (Continuous)
    5. gammagt: Gamma-glutamyl transpeptidase (Continuous)
    6. drinks: Number of half-pint equivalents of alcoholic beverages consumed per day (Continuous)
    7. selector: Categorical field created to split the data into training and testing sets (Not suitable for classification tasks)

    Important Note: The 7th field (selector) has been incorrectly used in the past as an indicator of liver disorder presence. Instead, it was intended to be a train/test selector. The dataset lacks a specific variable for the presence or absence of liver disorders. For classification tasks, researchers should use the 6th field (drinks), after dichotomizing, as the dependent variable, following the methods outlined in Forsyth & Rada (1986) and Turney (1995).

    Has Missing Values?: No

    Variable Descriptions: 1. mcv: Mean corpuscular volume
    2. alkphos: Alkaline phosphatase
    3. sgpt: Alanine aminotransferase
    4. sgot: Aspartate aminotransferase
    5. gammagt: Gamma-glutamyl transpeptidase
    6. drinks: Number of alcoholic beverages drunk per day
    7. selector: Field used to split data for training/testing

  20. R

    Data from: Fashion Mnist Dataset

    • universe.roboflow.com
    • opendatalab.com
    • +3more
    zip
    Updated Aug 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Popular Benchmarks (2022). Fashion Mnist Dataset [Dataset]. https://universe.roboflow.com/popular-benchmarks/fashion-mnist-ztryt/model/3
    Explore at:
    zipAvailable download formats
    Dataset updated
    Aug 10, 2022
    Dataset authored and provided by
    Popular Benchmarks
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Clothing
    Description

    Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms

    Authors:

    Dataset Obtained From: https://github.com/zalandoresearch/fashion-mnist

    All images were sized 28x28 in the original dataset

    Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes. We intend Fashion-MNIST to serve as a direct drop-in replacement for the original MNIST dataset for benchmarking machine learning algorithms. It shares the same image size and structure of training and testing splits. * Source

    Here's an example of how the data looks (each class takes three-rows): https://github.com/zalandoresearch/fashion-mnist/raw/master/doc/img/fashion-mnist-sprite.png" alt="Visualized Fashion MNIST dataset">

    Version 1 (original-images_Original-FashionMNIST-Splits):

    • Original images, with the original splits for MNIST: train (86% of images - 60,000 images) set and test (14% of images - 10,000 images) set only.
    • This version was not trained

    Version 3 (original-images_trainSetSplitBy80_20):

    • Original, raw images, with the train set split to provide 80% of its images to the training set and 20% of its images to the validation set
    • https://blog.roboflow.com/train-test-split/ https://i.imgur.com/angfheJ.png" alt="Train/Valid/Test Split Rebalancing">

    Citation:

    @online{xiao2017/online,
     author    = {Han Xiao and Kashif Rasul and Roland Vollgraf},
     title    = {Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms},
     date     = {2017-08-28},
     year     = {2017},
     eprintclass = {cs.LG},
     eprinttype  = {arXiv},
     eprint    = {cs.LG/1708.07747},
    }
    
Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Shih-Cheng Li; Shih-Cheng Li; Haoyang Wu; Haoyang Wu; Angiras Menon; Angiras Menon; Kevin A. Spiekermann; Kevin A. Spiekermann; Yi-Pei Li; Yi-Pei Li; William H. Green; William H. Green (2024). Dataset, splits, models, and scripts for the QM descriptors prediction [Dataset]. http://doi.org/10.5281/zenodo.10668491
Organization logo

Dataset, splits, models, and scripts for the QM descriptors prediction

Explore at:
application/gzipAvailable download formats
Dataset updated
Apr 4, 2024
Dataset provided by
Zenodohttp://zenodo.org/
Authors
Shih-Cheng Li; Shih-Cheng Li; Haoyang Wu; Haoyang Wu; Angiras Menon; Angiras Menon; Kevin A. Spiekermann; Kevin A. Spiekermann; Yi-Pei Li; Yi-Pei Li; William H. Green; William H. Green
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Dataset, splits, models, and scripts from the manuscript "When Do Quantum Mechanical Descriptors Help Graph Neural Networks Predict Chemical Properties?" are provided. The curated dataset includes 37 QM descriptors for 64,921 unique molecules across six levels of theory: wB97XD, B3LYP, M06-2X, PBE0, TPSS, and BP86. This dataset is stored in the data.tar.gz file, which also contains a file for multitask constraints applied to various atomic and bond properties. The data splits (training, validation, and test splits) for both random and scaffold-based divisions are saved as separate index files in splits.tar.gz. The trained D-MPNN models for predicting QM descriptors are saved in the models.tar.gz file. The scripts.tar.gz file contains ready-to-use scripts for training machine learning models to predict QM descriptors, as well as scripts for predicting QM descriptors using our trained models on unseen molecules and for applying radial basis function (RBF) expansion to QM atom and bond features.

Below are descriptions of the available scripts:

  1. atom_bond_descriptors.sh: Trains atom/bond targets.
  2. atom_bond_descriptors_predict.sh: Predicts atom/bond targets from pre-trained model.
  3. dipole_quadrupole_moments.sh: Trains dipole and quadrupole moments.
  4. dipole_quadrupole_moments_predict.sh: Predicts dipole and quadrupole moments from pre-trained model.
  5. energy_gaps_IP_EA.sh: Trains energy gaps, ionization potential (IP), and electron affinity (EA).
  6. energy_gaps_IP_EA_predict.sh: Predicts energy gaps, IP, and EA from pre-trained model.
  7. get_constraints.py: Generates constraints file for testing dataset. This generated file needs to be provided before using our trained models to predict the atom/bond QM descriptors of your testing data.
  8. csv2pkl.py: Converts QM atom and bond features to .pkl files using RBF expansion for use with Chemprop software.

Below is the procedure for running the ml-QM-GNN on your own dataset:

  1. Use get_constraints.py to generate a constraint file required for predicting atom/bond QM descriptors with the trained ML models.
  2. Execute atom_bond_descriptors_predict.sh to predict atom and bond properties. Run dipole_quadrupole_moments_predict.sh and energy_gaps_IP_EA_predict.sh to calculate molecular QM descriptors.
  3. Utilize csv2pkl.py to convert the data from predicted atom/bond descriptors .csv file into separate atom and bond feature files (which are saved as .pkl files here).
  4. Run Chemprop to train your models using the additional predicted features supported here.
Search
Clear search
Close search
Google apps
Main menu