Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Due to increasing use of technology-enhanced educational assessment, data mining methods have been explored to analyse process data in log files from such assessment. However, most studies were limited to one data mining technique under one specific scenario. The current study demonstrates the usage of four frequently used supervised techniques, including Classification and Regression Trees (CART), gradient boosting, random forest, support vector machine (SVM), and two unsupervised methods, Self-organizing Map (SOM) and k-means, fitted to one assessment data. The USA sample (N = 426) from the 2012 Program for International Student Assessment (PISA) responding to problem-solving items is extracted to demonstrate the methods. After concrete feature generation and feature selection, classifier development procedures are implemented using the illustrated techniques. Results show satisfactory classification accuracy for all the techniques. Suggestions for the selection of classifiers are presented based on the research questions, the interpretability and the simplicity of the classifiers. Interpretations for the results from both supervised and unsupervised learning methods are provided.
Facebook
Twitter
According to our latest research, the global Data Mining Tools market size reached USD 1.93 billion in 2024, reflecting robust industry momentum. The market is expected to grow at a CAGR of 12.7% from 2025 to 2033, reaching a projected value of USD 5.69 billion by 2033. This growth is primarily driven by the increasing adoption of advanced analytics across diverse industries, rapid digital transformation, and the necessity for actionable insights from massive data volumes.
One of the pivotal growth factors propelling the Data Mining Tools market is the exponential rise in data generation, particularly through digital channels, IoT devices, and enterprise applications. Organizations across sectors are leveraging data mining tools to extract meaningful patterns, trends, and correlations from structured and unstructured data. The need for improved decision-making, operational efficiency, and competitive advantage has made data mining an essential component of modern business strategies. Furthermore, advancements in artificial intelligence and machine learning are enhancing the capabilities of these tools, enabling predictive analytics, anomaly detection, and automation of complex analytical tasks, which further fuels market expansion.
Another significant driver is the growing demand for customer-centric solutions in industries such as retail, BFSI, and healthcare. Data mining tools are increasingly being used for customer relationship management, targeted marketing, fraud detection, and risk management. By analyzing customer behavior and preferences, organizations can personalize their offerings, optimize marketing campaigns, and mitigate risks. The integration of data mining tools with cloud platforms and big data technologies has also simplified deployment and scalability, making these solutions accessible to small and medium-sized enterprises (SMEs) as well as large organizations. This democratization of advanced analytics is creating new growth avenues for vendors and service providers.
The regulatory landscape and the increasing emphasis on data privacy and security are also shaping the development and adoption of Data Mining Tools. Compliance with frameworks such as GDPR, HIPAA, and CCPA necessitates robust data governance and transparent analytics processes. Vendors are responding by incorporating features like data masking, encryption, and audit trails into their solutions, thereby enhancing trust and adoption among regulated industries. Additionally, the emergence of industry-specific data mining applications, such as fraud detection in BFSI and predictive diagnostics in healthcare, is expanding the addressable market and fostering innovation.
From a regional perspective, North America currently dominates the Data Mining Tools market owing to the early adoption of advanced analytics, strong presence of leading technology vendors, and high investments in digital transformation. However, the Asia Pacific region is emerging as a lucrative market, driven by rapid industrialization, expansion of IT infrastructure, and growing awareness of data-driven decision-making in countries like China, India, and Japan. Europe, with its focus on data privacy and digital innovation, also represents a significant market share, while Latin America and the Middle East & Africa are witnessing steady growth as organizations in these regions modernize their operations and adopt cloud-based analytics solutions.
The Component segment of the Data Mining Tools market is bifurcated into Software and Services. Software remains the dominant segment, accounting for the majority of the market share in 2024. This dominance is attributed to the continuous evolution of data mining algorithms, the proliferation of user-friendly graphical interfaces, and the integration of advanced analytics capabilities such as machine learning, artificial intelligence, and natural language pro
Facebook
Twitterhttps://bisresearch.com/privacy-policy-cookie-restriction-modehttps://bisresearch.com/privacy-policy-cookie-restriction-mode
The Data Mining Tools Market is expected to be valued at $1.24 billion in 2024, with an anticipated expansion at a CAGR of 11.63% to reach $3.73 billion by 2034.
Facebook
TwitterTitle: Identifying Factors that Affect Entrepreneurs’ Use of Data Mining for Analytics Authors: Edward Matthew Dominica, Feylin Wijaya, Andrew Giovanni Winoto, Christian Conference: The 4th International Conference on Electrical, Computer, Communications, and Mechatronics Engineering https://www.iceccme.com/home
This dataset was created to support research focused on understanding the factors influencing entrepreneurs’ adoption of data mining techniques for business analytics. The dataset contains carefully curated data points that reflect entrepreneurial behaviors, decision-making criteria, and the role of data mining in enhancing business insights.
Researchers and practitioners can leverage this dataset to explore patterns, conduct statistical analyses, and build predictive models to gain a deeper understanding of entrepreneurial adoption of data mining.
Intended Use: This dataset is designed for research and academic purposes, especially in the fields of business analytics, entrepreneurship, and data mining. It is suitable for conducting exploratory data analysis, hypothesis testing, and model development.
Citation: If you use this dataset in your research or publication, please cite the paper presented at the ICECCME 2024 conference using the following format: Edward Matthew Dominica, Feylin Wijaya, Andrew Giovanni Winoto, Christian. Identifying Factors that Affect Entrepreneurs’ Use of Data Mining for Analytics. The 4th International Conference on Electrical, Computer, Communications, and Mechatronics Engineering (2024).
Facebook
TwitterThis chapter presents theoretical and practical aspects associated to the implementation of a combined model-based/data-driven approach for failure prognostics based on particle filtering algorithms, in which the current esti- mate of the state PDF is used to determine the operating condition of the system and predict the progression of a fault indicator, given a dynamic state model and a set of process measurements. In this approach, the task of es- timating the current value of the fault indicator, as well as other important changing parameters in the environment, involves two basic steps: the predic- tion step, based on the process model, and an update step, which incorporates the new measurement into the a priori state estimate. This framework allows to estimate of the probability of failure at future time instants (RUL PDF) in real-time, providing information about time-to- failure (TTF) expectations, statistical confidence intervals, long-term predic- tions; using for this purpose empirical knowledge about critical conditions for the system (also referred to as the hazard zones). This information is of paramount significance for the improvement of the system reliability and cost-effective operation of critical assets, as it has been shown in a case study where feedback correction strategies (based on uncertainty measures) have been implemented to lengthen the RUL of a rotorcraft transmission system with propagating fatigue cracks on a critical component. Although the feed- back loop is implemented using simple linear relationships, it is helpful to provide a quick insight into the manner that the system reacts to changes on its input signals, in terms of its predicted RUL. The method is able to manage non-Gaussian pdf’s since it includes concepts such as nonlinear state estimation and confidence intervals in its formulation. Real data from a fault seeded test showed that the proposed framework was able to anticipate modifications on the system input to lengthen its RUL. Results of this test indicate that the method was able to successfully suggest the correction that the system required. In this sense, future work will be focused on the development and testing of similar strategies using different input-output uncertainty metrics.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The purpose of data mining analysis is always to find patterns of the data using certain kind of techiques such as classification or regression. It is not always feasible to apply classification algorithms directly to dataset. Before doing any work on the data, the data has to be pre-processed and this process normally involves feature selection and dimensionality reduction. We tried to use clustering as a way to reduce the dimension of the data and create new features. Based on our project, after using clustering prior to classification, the performance has not improved much. The reason why it has not improved could be the features we selected to perform clustering are not well suited for it. Because of the nature of the data, classification tasks are going to provide more information to work with in terms of improving knowledge and overall performance metrics. From the dimensionality reduction perspective: It is different from Principle Component Analysis which guarantees finding the best linear transformation that reduces the number of dimensions with a minimum loss of information. Using clusters as a technique of reducing the data dimension will lose a lot of information since clustering techniques are based a metric of 'distance'. At high dimensions euclidean distance loses pretty much all meaning. Therefore using clustering as a "Reducing" dimensionality by mapping data points to cluster numbers is not always good since you may lose almost all the information. From the creating new features perspective: Clustering analysis creates labels based on the patterns of the data, it brings uncertainties into the data. By using clustering prior to classification, the decision on the number of clusters will highly affect the performance of the clustering, then affect the performance of classification. If the part of features we use clustering techniques on is very suited for it, it might increase the overall performance on classification. For example, if the features we use k-means on are numerical and the dimension is small, the overall classification performance may be better. We did not lock in the clustering outputs using a random_state in the effort to see if they were stable. Our assumption was that if the results vary highly from run to run which they definitely did, maybe the data just does not cluster well with the methods selected at all. Basically, the ramification we saw was that our results are not much better than random when applying clustering to the data preprocessing. Finally, it is important to ensure a feedback loop is in place to continuously collect the same data in the same format from which the models were created. This feedback loop can be used to measure the model real world effectiveness and also to continue to revise the models from time to time as things change.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data set belongs to the paper "Video-to-Model: Unsupervised Trace Extraction from Videos for Process Discovery and Conformance Checking in Manual Assembly", submitted on March 24, 2020, to the 18th International Conference on Business Process Management (BPM).Abstract: Manual activities are often hidden deep down in discrete manufacturing processes. For the elicitation and optimization of process behavior, complete information about the execution of Manual activities are required. Thus, an approach is presented on how execution level information can be extracted from videos in manual assembly. The goal is the generation of a log that can be used in state-of-the-art process mining tools. The test bed for the system was lightweight and scalable consisting of an assembly workstation equipped with a single RGB camera recording only the hand movements of the worker from top. A neural network based real-time object classifier was trained to detect the worker’s hands. The hand detector delivers the input for an algorithm, which generates trajectories reflecting the movement paths of the hands. Those trajectories are automatically assigned to work steps using the position of material boxes on the assembly shelf as reference points and hierarchical clustering of similar behaviors with dynamic time warping. The system has been evaluated in a task-based study with ten participants in a laboratory, but under realistic conditions. The generated logs have been loaded into the process mining toolkit ProM to discover the underlying process model and to detect deviations from both, instructions and ground truth, using conformance checking. The results show that process mining delivers insights about the assembly process and the system’s precision.The data set contains the generated and the annotated logs based on the video material gathered during the user study. In addition, the petri nets from the process discovery and conformance checking conducted with ProM (http://www.promtools.org) and the reference nets modeled with Yasper (http://www.yasper.org/) are provided.
Facebook
Twitterhttps://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy
According to Cognitive Market Research, the global Data Mining Software market size will be USD XX million in 2025. It will expand at a compound annual growth rate (CAGR) of XX% from 2025 to 2031.
North America held the major market share for more than XX% of the global revenue with a market size of USD XX million in 2025 and will grow at a CAGR of XX% from 2025 to 2031. Europe accounted for a market share of over XX% of the global revenue with a market size of USD XX million in 2025 and will grow at a CAGR of XX% from 2025 to 2031. Asia Pacific held a market share of around XX% of the global revenue with a market size of USD XX million in 2025 and will grow at a CAGR of XX% from 2025 to 2031. Latin America had a market share of more than XX% of the global revenue with a market size of USD XX million in 2025 and will grow at a CAGR of XX% from 2025 to 2031. Middle East and Africa had a market share of around XX% of the global revenue and was estimated at a market size of USD XX million in 2025 and will grow at a CAGR of XX% from 2025 to 2031. KEY DRIVERS
Increasing Focus on Customer Satisfaction to Drive Data Mining Software Market Growth
In today’s hyper-competitive and digitally connected marketplace, customer satisfaction has emerged as a critical factor for business sustainability and growth. The growing focus on enhancing customer satisfaction is proving to be a significant driver in the expansion of the data mining software market. Organizations are increasingly leveraging data mining tools to sift through vast volumes of customer data—ranging from transactional records and website activity to social media engagement and call center logs—to uncover insights that directly influence customer experience strategies. Data mining software empowers companies to analyze customer behavior patterns, identify dissatisfaction triggers, and predict future preferences. Through techniques such as classification, clustering, and association rule mining, businesses can break down large datasets to understand what customers want, what they are likely to purchase next, and how they feel about the brand. These insights not only help in refining customer service but also in shaping product development, pricing strategies, and promotional campaigns. For instance, Netflix uses data mining to recommend personalized content by analyzing a user's viewing history, ratings, and preferences. This has led to increased user engagement and retention, highlighting how a deep understanding of customer preferences—made possible through data mining—can translate into competitive advantage. Moreover, companies are increasingly using these tools to create highly targeted and customer-specific marketing campaigns. By mining data from e-commerce transactions, browsing behavior, and demographic profiles, brands can tailor their offerings and communications to suit individual customer segments. For Instance Amazon continuously mines customer purchasing and browsing data to deliver personalized product recommendations, tailored promotions, and timely follow-ups. This not only enhances customer satisfaction but also significantly boosts conversion rates and average order value. According to a report by McKinsey, personalization can deliver five to eight times the ROI on marketing spend and lift sales by 10% or more—a powerful incentive for companies to adopt data mining software as part of their customer experience toolkit. (Source: https://www.mckinsey.com/capabilities/growth-marketing-and-sales/our-insights/personalizing-at-scale#/) The utility of data mining tools extends beyond e-commerce and streaming platforms. In the banking and financial services industry, for example, institutions use data mining to analyze customer feedback, call center transcripts, and usage data to detect pain points and improve service delivery. Bank of America, for instance, utilizes data mining and predictive analytics to monitor customer interactions and provide proactive service suggestions or fraud alerts, significantly improving user satisfaction and trust. (Source: https://futuredigitalfinance.wbresearch.com/blog/bank-of-americas-erica-client-interactions-future-ai-in-banking) Similarly, telecom companies like Vodafone use data mining to understand customer churn behavior and implement retention strategies based on insights drawn from service usage patterns and complaint histories. In addition to p...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data Analysis is the process that supports decision-making and informs arguments in empirical studies. Descriptive statistics, Exploratory Data Analysis (EDA), and Confirmatory Data Analysis (CDA) are the approaches that compose Data Analysis (Xia & Gong; 2014). An Exploratory Data Analysis (EDA) comprises a set of statistical and data mining procedures to describe data. We ran EDA to provide statistical facts and inform conclusions. The mined facts allow attaining arguments that would influence the Systematic Literature Review of DL4SE.
The Systematic Literature Review of DL4SE requires formal statistical modeling to refine the answers for the proposed research questions and formulate new hypotheses to be addressed in the future. Hence, we introduce DL4SE-DA, a set of statistical processes and data mining pipelines that uncover hidden relationships among Deep Learning reported literature in Software Engineering. Such hidden relationships are collected and analyzed to illustrate the state-of-the-art of DL techniques employed in the software engineering context.
Our DL4SE-DA is a simplified version of the classical Knowledge Discovery in Databases, or KDD (Fayyad, et al; 1996). The KDD process extracts knowledge from a DL4SE structured database. This structured database was the product of multiple iterations of data gathering and collection from the inspected literature. The KDD involves five stages:
Selection. This stage was led by the taxonomy process explained in section xx of the paper. After collecting all the papers and creating the taxonomies, we organize the data into 35 features or attributes that you find in the repository. In fact, we manually engineered features from the DL4SE papers. Some of the features are venue, year published, type of paper, metrics, data-scale, type of tuning, learning algorithm, SE data, and so on.
Preprocessing. The preprocessing applied was transforming the features into the correct type (nominal), removing outliers (papers that do not belong to the DL4SE), and re-inspecting the papers to extract missing information produced by the normalization process. For instance, we normalize the feature “metrics” into “MRR”, “ROC or AUC”, “BLEU Score”, “Accuracy”, “Precision”, “Recall”, “F1 Measure”, and “Other Metrics”. “Other Metrics” refers to unconventional metrics found during the extraction. Similarly, the same normalization was applied to other features like “SE Data” and “Reproducibility Types”. This separation into more detailed classes contributes to a better understanding and classification of the paper by the data mining tasks or methods.
Transformation. In this stage, we omitted to use any data transformation method except for the clustering analysis. We performed a Principal Component Analysis to reduce 35 features into 2 components for visualization purposes. Furthermore, PCA also allowed us to identify the number of clusters that exhibit the maximum reduction in variance. In other words, it helped us to identify the number of clusters to be used when tuning the explainable models.
Data Mining. In this stage, we used three distinct data mining tasks: Correlation Analysis, Association Rule Learning, and Clustering. We decided that the goal of the KDD process should be oriented to uncover hidden relationships on the extracted features (Correlations and Association Rules) and to categorize the DL4SE papers for a better segmentation of the state-of-the-art (Clustering). A clear explanation is provided in the subsection “Data Mining Tasks for the SLR od DL4SE”. 5.Interpretation/Evaluation. We used the Knowledge Discover to automatically find patterns in our papers that resemble “actionable knowledge”. This actionable knowledge was generated by conducting a reasoning process on the data mining outcomes. This reasoning process produces an argument support analysis (see this link).
We used RapidMiner as our software tool to conduct the data analysis. The procedures and pipelines were published in our repository.
Overview of the most meaningful Association Rules. Rectangles are both Premises and Conclusions. An arrow connecting a Premise with a Conclusion implies that given some premise, the conclusion is associated. E.g., Given that an author used Supervised Learning, we can conclude that their approach is irreproducible with a certain Support and Confidence.
Support = Number of occurrences this statement is true divided by the amount of statements Confidence = The support of the statement divided by the number of occurrences of the premise
Facebook
Twitterhttps://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy
| BASE YEAR | 2024 |
| HISTORICAL DATA | 2019 - 2023 |
| REGIONS COVERED | North America, Europe, APAC, South America, MEA |
| REPORT COVERAGE | Revenue Forecast, Competitive Landscape, Growth Factors, and Trends |
| MARKET SIZE 2024 | 7.87(USD Billion) |
| MARKET SIZE 2025 | 8.37(USD Billion) |
| MARKET SIZE 2035 | 15.4(USD Billion) |
| SEGMENTS COVERED | Application, Deployment Model, Technique, End Use, Regional |
| COUNTRIES COVERED | US, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA |
| KEY MARKET DYNAMICS | Growing demand for actionable insights, Increasing adoption of AI technologies, Rising need for predictive analytics, Expanding data sources and volume, Regulatory compliance and data privacy concerns |
| MARKET FORECAST UNITS | USD Billion |
| KEY COMPANIES PROFILED | Informatica, Tableau, Cloudera, Microsoft, Google, Alteryx, Oracle, SAP, SAS, DataRobot, Dell Technologies, Qlik, Teradata, TIBCO Software, Snowflake, IBM |
| MARKET FORECAST PERIOD | 2025 - 2035 |
| KEY MARKET OPPORTUNITIES | Increased demand for predictive analytics, Growth in big data technologies, Rising need for data-driven decision-making, Adoption of AI and machine learning, Expansion in healthcare data analysis |
| COMPOUND ANNUAL GROWTH RATE (CAGR) | 6.3% (2025 - 2035) |
Facebook
TwitterIn a large network of computers or wireless sensors, each of the components (henceforth, peers) has some data about the global state of the system. Much of the system's functionality such as message routing, information retrieval and load sharing relies on modeling the global state. We refer to the outcome of the function (e.g., the load experienced by each peer) as the emph{model} of the system. Since the state of the system is constantly changing, it is necessary to keep the models up-to-date. Computing global data mining models e.g. decision trees, k-means clustering in large distributed systems may be very costly due to the scale of the system and due to communication cost, which may be high. The cost further increases in a dynamic scenario when the data changes rapidly. In this paper we describe a two step approach for dealing with these costs. First, we describe a highly efficient emph{local} algorithm which can be used to monitor a wide class of data mining models. Then, we use this algorithm as a feedback loop for the monitoring of complex functions of the data such as its k-means clustering. The theoretical claims are corroborated with a thorough experimental analysis.
Facebook
TwitterTo make this a seamless process, I cleaned the data and delete many variables that I thought were not important to our dataset. I then uploaded all of those files to Kaggle for each of you to download. The rideshare_data has both lyft and uber but it is still a cleaned version from the dataset we downloaded from Kaggle.
You can easily subset the data into the car types that you will be modeling by first loading the csv into R, here is the code for how you do this:
df<-read.csv('uber.csv')
df_black<-subset(uber_df, uber_df$name == 'Black')
write.csv(df_black, "nameofthefileyouwanttosaveas.csv")
getwd()
Your data will be in front of the world's largest data science community. What questions do you want to see answered?
Facebook
TwitterThis chapter presents theoretical and practical aspects associated to the implementation of a combined model-based/data-driven approach for failure prognostics based on particle filtering algorithms, in which the current esti- mate of the state PDF is used to determine the operating condition of the system and predict the progression of a fault indicator, given a dynamic state model and a set of process measurements. In this approach, the task of es- timating the current value of the fault indicator, as well as other important changing parameters in the environment, involves two basic steps: the predic- tion step, based on the process model, and an update step, which incorporates the new measurement into the a priori state estimate. This framework allows to estimate of the probability of failure at future time instants (RUL PDF) in real-time, providing information about time-to- failure (TTF) expectations, statistical confidence intervals, long-term predic- tions; using for this purpose empirical knowledge about critical conditions for the system (also referred to as the hazard zones). This information is of paramount significance for the improvement of the system reliability and cost-effective operation of critical assets, as it has been shown in a case study where feedback correction strategies (based on uncertainty measures) have been implemented to lengthen the RUL of a rotorcraft transmission system with propagating fatigue cracks on a critical component. Although the feed- back loop is implemented using simple linear relationships, it is helpful to provide a quick insight into the manner that the system reacts to changes on its input signals, in terms of its predicted RUL. The method is able to manage non-Gaussian pdf’s since it includes concepts such as nonlinear state estimation and confidence intervals in its formulation. Real data from a fault seeded test showed that the proposed framework was able to anticipate modifications on the system input to lengthen its RUL. Results of this test indicate that the method was able to successfully suggest the correction that the system required. In this sense, future work will be focused on the development and testing of similar strategies using different input-output uncertainty metrics.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Hotel customer dataset with 31 variables describing a total of 83,590 instances (customers). It comprehends three full years of customer behavioral data. In addition to personal and behavioral information, the dataset also contains demographic and geographical information. This dataset contributes to reducing the lack of real-world business data that can be used for educational and research purposes. The dataset can be used in data mining, machine learning, and other analytical field problems in the scope of data science. Due to its unit of analysis, it is a dataset especially suitable for building customer segmentation models, including clustering and RFM (Recency, Frequency, and Monetary value) models, but also be used in classification and regression problems.
Facebook
TwitterThis research used data mining approaches to better understand factors affecting the formation of secondary organic aerosol (SOA). Although numerous laboratory and computational studies have been completed on SOA formation, it is still challenging to determine factors that most influence SOA formation. Experimental data were based on previous work described by Offenberg et al. (2017), where volume concentrations of SOA were measured in 139 laboratory experiments involving the oxidation of single hydrocarbons under different operating conditions. Three different data mining methods were used, including nearest neighbor, decision tree, and pattern mining. Both decision tree and pattern mining approaches identified similar chemical and experimental conditions that were important to SOA formation. Among these important factors included the number of methyl groups, the number of rings and the presence of dinitrogen pentoxide (N2O5). This dataset is associated with the following publication: Olson, D., J. Offenberg, M. Lewandowski, T. Kleindienst, K. Docherty, M. Jaoui, J.D. Krug, and T. Riedel. Data mining approaches to understanding the formation of secondary organic aerosol. ATMOSPHERIC ENVIRONMENT. Elsevier Science Ltd, New York, NY, USA, 252: 118345, (2021).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
With the accumulation of large amounts of health related data, predictive analytics could stimulate the transformation of reactive medicine towards Predictive, Preventive and Personalized (PPPM) Medicine, ultimately affecting both cost and quality of care. However, high-dimensionality and high-complexity of the data involved, prevents data-driven methods from easy translation into clinically relevant models. Additionally, the application of cutting edge predictive methods and data manipulation require substantial programming skills, limiting its direct exploitation by medical domain experts. This leaves a gap between potential and actual data usage. In this study, the authors address this problem by focusing on open, visual environments, suited to be applied by the medical community. Moreover, we review code free applications of big data technologies. As a showcase, a framework was developed for the meaningful use of data from critical care patients by integrating the MIMIC-II database in a data mining environment (RapidMiner) supporting scalable predictive analytics using visual tools (RapidMiner’s Radoop extension). Guided by the CRoss-Industry Standard Process for Data Mining (CRISP-DM), the ETL process (Extract, Transform, Load) was initiated by retrieving data from the MIMIC-II tables of interest. As use case, correlation of platelet count and ICU survival was quantitatively assessed. Using visual tools for ETL on Hadoop and predictive modeling in RapidMiner, we developed robust processes for automatic building, parameter optimization and evaluation of various predictive models, under different feature selection schemes. Because these processes can be easily adopted in other projects, this environment is attractive for scalable predictive analytics in health research.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset with 72000 pins from 117 users in Pinterest. Each pin contains a short raw text and an image. The images are processed using a pretrained Convolutional Neural Network and transformed into a vector of 4096 features.
This dataset was used in the paper "User Identification in Pinterest Through the Refinement of a Cascade Fusion of Text and Images" to idenfity specific users given their comments. The paper is publishe in the Research in Computing Science Journal, as part of the LKE 2017 conference. The dataset includes the splits used in the paper.
There are nine files. text_test, text_train and text_val, contain the raw text of each pin in the corresponding split of the data. imag_test, imag_train and imag_val contain the image features of each pin in the corresponding split of the data. train_user and val_test_users contain the index of the user of each pin (between 0 and 116). There is a correspondance one-to-one among the test, train and validation files for images, text and users. There are 400 pins per user in the train set, and 100 pins per user in the validation and test sets each one.
If you have questions regarding the data, write to: jc dot gomez at ugto dot mx
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The LSC (Leicester Scientific Corpus)
April 2020 by Neslihan Suzen, PhD student at the University of Leicester (ns433@leicester.ac.uk) Supervised by Prof Alexander Gorban and Dr Evgeny MirkesThe data are extracted from the Web of Science [1]. You may not copy or distribute these data in whole or in part without the written consent of Clarivate Analytics.[Version 2] A further cleaning is applied in Data Processing for LSC Abstracts in Version 1*. Details of cleaning procedure are explained in Step 6.* Suzen, Neslihan (2019): LSC (Leicester Scientific Corpus). figshare. Dataset. https://doi.org/10.25392/leicester.data.9449639.v1.Getting StartedThis text provides the information on the LSC (Leicester Scientific Corpus) and pre-processing steps on abstracts, and describes the structure of files to organise the corpus. This corpus is created to be used in future work on the quantification of the meaning of research texts and make it available for use in Natural Language Processing projects.LSC is a collection of abstracts of articles and proceeding papers published in 2014, and indexed by the Web of Science (WoS) database [1]. The corpus contains only documents in English. Each document in the corpus contains the following parts:1. Authors: The list of authors of the paper2. Title: The title of the paper 3. Abstract: The abstract of the paper 4. Categories: One or more category from the list of categories [2]. Full list of categories is presented in file ‘List_of _Categories.txt’. 5. Research Areas: One or more research area from the list of research areas [3]. Full list of research areas is presented in file ‘List_of_Research_Areas.txt’. 6. Total Times cited: The number of times the paper was cited by other items from all databases within Web of Science platform [4] 7. Times cited in Core Collection: The total number of times the paper was cited by other papers within the WoS Core Collection [4]The corpus was collected in July 2018 online and contains the number of citations from publication date to July 2018. We describe a document as the collection of information (about a paper) listed above. The total number of documents in LSC is 1,673,350.Data ProcessingStep 1: Downloading of the Data Online
The dataset is collected manually by exporting documents as Tab-delimitated files online. All documents are available online.Step 2: Importing the Dataset to R
The LSC was collected as TXT files. All documents are extracted to R.Step 3: Cleaning the Data from Documents with Empty Abstract or without CategoryAs our research is based on the analysis of abstracts and categories, all documents with empty abstracts and documents without categories are removed.Step 4: Identification and Correction of Concatenate Words in AbstractsEspecially medicine-related publications use ‘structured abstracts’. Such type of abstracts are divided into sections with distinct headings such as introduction, aim, objective, method, result, conclusion etc. Used tool for extracting abstracts leads concatenate words of section headings with the first word of the section. For instance, we observe words such as ConclusionHigher and ConclusionsRT etc. The detection and identification of such words is done by sampling of medicine-related publications with human intervention. Detected concatenate words are split into two words. For instance, the word ‘ConclusionHigher’ is split into ‘Conclusion’ and ‘Higher’.The section headings in such abstracts are listed below:
Background Method(s) Design Theoretical Measurement(s) Location Aim(s) Methodology Process Abstract Population Approach Objective(s) Purpose(s) Subject(s) Introduction Implication(s) Patient(s) Procedure(s) Hypothesis Measure(s) Setting(s) Limitation(s) Discussion Conclusion(s) Result(s) Finding(s) Material (s) Rationale(s) Implications for health and nursing policyStep 5: Extracting (Sub-setting) the Data Based on Lengths of AbstractsAfter correction, the lengths of abstracts are calculated. ‘Length’ indicates the total number of words in the text, calculated by the same rule as for Microsoft Word ‘word count’ [5].According to APA style manual [6], an abstract should contain between 150 to 250 words. In LSC, we decided to limit length of abstracts from 30 to 500 words in order to study documents with abstracts of typical length ranges and to avoid the effect of the length to the analysis.
Step 6: [Version 2] Cleaning Copyright Notices, Permission polices, Journal Names and Conference Names from LSC Abstracts in Version 1Publications can include a footer of copyright notice, permission policy, journal name, licence, author’s right or conference name below the text of abstract by conferences and journals. Used tool for extracting and processing abstracts in WoS database leads to attached such footers to the text. For example, our casual observation yields that copyright notices such as ‘Published by Elsevier ltd.’ is placed in many texts. To avoid abnormal appearances of words in further analysis of words such as bias in frequency calculation, we performed a cleaning procedure on such sentences and phrases in abstracts of LSC version 1. We removed copyright notices, names of conferences, names of journals, authors’ rights, licenses and permission policies identified by sampling of abstracts.Step 7: [Version 2] Re-extracting (Sub-setting) the Data Based on Lengths of AbstractsThe cleaning procedure described in previous step leaded to some abstracts having less than our minimum length criteria (30 words). 474 texts were removed.Step 8: Saving the Dataset into CSV FormatDocuments are saved into 34 CSV files. In CSV files, the information is organised with one record on each line and parts of abstract, title, list of authors, list of categories, list of research areas, and times cited is recorded in fields.To access the LSC for research purposes, please email to ns433@le.ac.uk.References[1]Web of Science. (15 July). Available: https://apps.webofknowledge.com/ [2]WoS Subject Categories. Available: https://images.webofknowledge.com/WOKRS56B5/help/WOS/hp_subject_category_terms_tasca.html [3]Research Areas in WoS. Available: https://images.webofknowledge.com/images/help/WOS/hp_research_areas_easca.html [4]Times Cited in WoS Core Collection. (15 July). Available: https://support.clarivate.com/ScientificandAcademicResearch/s/article/Web-of-Science-Times-Cited-accessibility-and-variation?language=en_US [5]Word Count. Available: https://support.office.com/en-us/article/show-word-count-3c9e6a11-a04d-43b4-977c-563a0e0d5da3 [6]A. P. Association, Publication manual. American Psychological Association Washington, DC, 1983.
Facebook
TwitterThis dataset was created by Vishalsinh-Vaghela
Facebook
Twitterhttps://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy
| BASE YEAR | 2024 |
| HISTORICAL DATA | 2019 - 2023 |
| REGIONS COVERED | North America, Europe, APAC, South America, MEA |
| REPORT COVERAGE | Revenue Forecast, Competitive Landscape, Growth Factors, and Trends |
| MARKET SIZE 2024 | 8.95(USD Billion) |
| MARKET SIZE 2025 | 9.54(USD Billion) |
| MARKET SIZE 2035 | 18.2(USD Billion) |
| SEGMENTS COVERED | Application, Deployment Mode, Technology, End Use, Regional |
| COUNTRIES COVERED | US, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA |
| KEY MARKET DYNAMICS | Data-driven decision making, AI and analytics integration, Increasing demand for automation, Rising adoption of cloud solutions, Growing focus on real-time insights |
| MARKET FORECAST UNITS | USD Billion |
| KEY COMPANIES PROFILED | Qlik, Domo, SAP, MicroStrategy, Google, Palantir Technologies, Microsoft, Salesforce, TIBCO Software, Cisco, Infor, SAS, Amazon Web Services, IBM, Oracle |
| MARKET FORECAST PERIOD | 2025 - 2035 |
| KEY MARKET OPPORTUNITIES | AI-driven analytics adoption, Cloud-based decision-making solutions, Real-time data processing advancements, Integration with IoT systems, Growth in e-commerce personalization |
| COMPOUND ANNUAL GROWTH RATE (CAGR) | 6.6% (2025 - 2035) |
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Due to increasing use of technology-enhanced educational assessment, data mining methods have been explored to analyse process data in log files from such assessment. However, most studies were limited to one data mining technique under one specific scenario. The current study demonstrates the usage of four frequently used supervised techniques, including Classification and Regression Trees (CART), gradient boosting, random forest, support vector machine (SVM), and two unsupervised methods, Self-organizing Map (SOM) and k-means, fitted to one assessment data. The USA sample (N = 426) from the 2012 Program for International Student Assessment (PISA) responding to problem-solving items is extracted to demonstrate the methods. After concrete feature generation and feature selection, classifier development procedures are implemented using the illustrated techniques. Results show satisfactory classification accuracy for all the techniques. Suggestions for the selection of classifiers are presented based on the research questions, the interpretability and the simplicity of the classifiers. Interpretations for the results from both supervised and unsupervised learning methods are provided.