92 datasets found
  1. Esri Maps for Public Policy

    • center-for-community-investment-lincolninstitute.hub.arcgis.com
    • ilcn-lincolninstitute.hub.arcgis.com
    • +5more
    Updated Oct 1, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). Esri Maps for Public Policy [Dataset]. https://center-for-community-investment-lincolninstitute.hub.arcgis.com/datasets/esri::esri-maps-for-public-policy
    Explore at:
    Dataset updated
    Oct 1, 2019
    Dataset authored and provided by
    Esrihttp://esri.com/
    Description

    OVERVIEWThis site is dedicated to raising the level of spatial and data literacy used in public policy. We invite you to explore curated content, training, best practices, and datasets that can provide a baseline for your research, analysis, and policy recommendations. Learn about emerging policy questions and how GIS can be used to help come up with solutions to those questions.EXPLOREGo to your area of interest and explore hundreds of maps about various topics such as social equity, economic opportunity, public safety, and more. Browse and view the maps, or collect them and share via a simple URL. Sharing a collection of maps is an easy way to use maps as a tool for understanding. Help policymakers and stakeholders use data as a driving factor for policy decisions in your area.ISSUESBrowse different categories to find data layers, maps, and tools. Use this set of content as a driving force for your GIS workflows related to policy. RESOURCESTo maximize your experience with the Policy Maps, we’ve assembled education, training, best practices, and industry perspectives that help raise your data literacy, provide you with models, and connect you with the work of your peers.

  2. d

    City of Austin Open Data Terms of Use Policy

    • catalog.data.gov
    • data.austintexas.gov
    • +2more
    Updated Apr 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.austintexas.gov (2025). City of Austin Open Data Terms of Use Policy [Dataset]. https://catalog.data.gov/dataset/city-of-austin-open-data-terms-of-use-policy
    Explore at:
    Dataset updated
    Apr 25, 2025
    Dataset provided by
    data.austintexas.gov
    Area covered
    Austin
    Description

    Data.AustinTexas.gov is the official portal for Open Data from the City of Austin (COA). The City of Austin’s GIS/Map Downloads page is the official portal for COA GIS data and map products that do not reside on Data.AustinTexas.gov. Both are public domain websites, which means you may link to Data.AustinTexas.gov and ftp://ftp.ci.austin.tx.us/GIS-Data/Regional/coa_gis.html at no cost. When you link to Data.AustinTexas.gov or ftp://ftp.ci.austin.tx.us/GIS-Data/Regional/coa_gis.html, please do it in an appropriate context as a service to people when they need to find official City of Austin data. We encourage you to use our logo, which we’ve provided below. Placement of the Data.AustinTexas.gov logo is to be used only as a marker and link to the home page. It is not meant as a form of endorsement or approval from the City of Austin. City of Austin Open Data Terms of Use - https://data.austintexas.gov/stories/s/ranj-cccq

  3. t

    Mapped Planned Land Use - Open Data

    • gisdata.tucsonaz.gov
    • hub.arcgis.com
    • +1more
    Updated Aug 2, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tucson (2018). Mapped Planned Land Use - Open Data [Dataset]. https://gisdata.tucsonaz.gov/maps/mapped-planned-land-use-open-data
    Explore at:
    Dataset updated
    Aug 2, 2018
    Dataset authored and provided by
    City of Tucson
    Area covered
    Description

    Status: COMPLETED 2010. The data was converted from the most recent (2010) versions of the adopted plans, which can be found at https://cms3.tucsonaz.gov/planning/plans/ Supplemental Information: In March 2010, Pima Association of Governments (PAG), in cooperation with the City of Tucson (City), initiated the Planned Land Use Data Conversion Project. This 9-month effort involved evaluating mapped land use designations and selected spatially explicit policies for nearly 50 of the City's adopted neighborhood, area, and subregional plans and converting the information into a Geographic Information System (GIS) format. Further documentation for this file can be obtained from the City of Tucson Planning and Development Services Department or Pima Association of Governments Technical Services. A brief summary report was provided, as requested, to the City of Tucson which highlights some of the key issues found during the conversion process (e.g., lack of mapping and terminology consistency among plans). The feature class "Plan_boundaries" represents the boundaries of the adopted plans. The feature class "Plan_mapped_land_use" represents the land use designations as they are mapped in the adopted plans. Some information was gathered that is implicit based on the land use designation or zones (see field descriptions below). Since this information is not explicitly stated in the plans, it should only be viewed by City staff for general planning purposes. The feature class "Plan_selected_policies" represents the spatially explicit policies that were fairly straightforward to map. Since these policies are not represented in adopted maps, this feature class should only be viewed by City staff for general planning purposes only. 2010 - created by Jamison Brown, working as an independent contractor for Pima Association of Governments, created this file in 2010 by digitizing boundaries as depicted (i.e. for the mapped land use) or described in the plans (i.e. for the narrative policies). In most cases, this involved tracing based on parcel (paregion) or street center line (stnetall) feature classes. Snapping was used to provide line coincidence. For some map conversions, freehand sketches were drawn to mimick the freehand sketches in the adopted plan. Field descriptions for the "Plan_mapped_land_use" feature class: Plan_Name: Plan name Plan_Type: Plan type (e.g., Neighborhood Plan) Plan_Num: Plan number LU_DES: Land use designation (e.g., Low density residential) LISTED_ALLOWABLE_ZONES: Allowable zones as listed in the Plan LISTED_RAC_MIN: Minimum residences per acre (if applicable), as listed in the Plan LISTED_RAC_TARGET: Target residences per acre (if applicable), as listed in the Plan LISTED_RAC_MAX: Maximum residences per acre (if applicable), as listed in the Plan LISTED_FAR_MIN: Minimum Floor Area Ratio (if applicable), as listed in the Plan LISTED_FAR_TARGET: Target Floor Area Ratio (if applicable), as listed in the Plan LISTED_FAR_MAX: Maximum Floor Area Ratio (if applicable), as listed in the Plan BUILDING_HEIGHT_MAX Building height maximum (ft.) if determined by Plan policy IMPORTANT: A disclaimer about the data as it is unofficial. URL: Uniform Resource Locator IMPLIED_ALLOWABLE_ZONES: Implied (not listed in the Plan) allowable zones IMPLIED_RAC_MIN: Implied (not listed in the Plan) minimum residences per acre (if applicable) IMPLIED_RAC_TARGET: Implied (not listed in the Plan) target residences per acre (if applicable) IMPLIED_RAC_MAX: Implied (not listed in the Plan) maximum residences per acre (if applicable) IMPLIED_FAR_MIN: Implied (not listed in the Plan) minimum Floor Area Ratio (if applicable) IMPLIED_FAR_TARGET: Implied (not listed in the Plan) target Floor Area Ratio (if applicable) IMPLIED_FAR_MAX: Implied (not listed in the Plan) maximum Floor Area Ratio (if applicable) IMPLIED_LU_CATEGORY: Implied (not listed in the Plan) general land use category. General categories used include residential, office, commercial, industrial, and other.PurposeLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Dataset ClassificationLevel 0 - OpenKnown UsesLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Known ErrorsLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Data ContactJohn BeallCity of Tucson Development Services520-791-5550John.Beall@tucsonaz.govUpdate FrequencyLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

  4. D

    Map Comparison data

    • dataverse.nl
    application/dbf, bin +4
    Updated Jan 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CJE Schulp; Benjamin Burkhard; Joachim Maes; Jasper Van Vliet; Peter H Verburg; CJE Schulp; Benjamin Burkhard; Joachim Maes; Jasper Van Vliet; Peter H Verburg (2025). Map Comparison data [Dataset]. http://doi.org/10.34894/80AA6V
    Explore at:
    tiff(121631), xml(1903), tiff(614665), tiff(114407), xml(7178), tiff(129037), xml(1891), xml(6813), xml(7185), tiff(245103), xml(6778), dir(6840), application/dbf(288), tiff(2646606), application/dbf(250), tiff(612404), xml(2655), tiff(2646728), xml(6779), tiff(611006), tiff(252097), xml(1844), xml(1854), xml(7043), bin(98), tiff(1301407), tiff(245137), xml(6792), tiff(122961), xml(2652), tiff(2645817), tiff(614601), xml(2657), xml(2656), pdf(222790), xml(7182), tiff(178866), xml(2469), tiff(251511), xml(7184), tiff(251825), tiff(120245), tiff(599422), xml(1926), tiff(9128423), tiff(9127160), tiff(123631), xml(7193), tiff(630605), xml(1819), xml(7165), xml(7206)Available download formats
    Dataset updated
    Jan 20, 2025
    Dataset provided by
    DataverseNL
    Authors
    CJE Schulp; Benjamin Burkhard; Joachim Maes; Jasper Van Vliet; Peter H Verburg; CJE Schulp; Benjamin Burkhard; Joachim Maes; Jasper Van Vliet; Peter H Verburg
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Spatial data from Schulp et al., 2014. Uncertainties in ecosystem service maps: A comparison on the European scale. PloS ONE 9, e109643. Safeguarding the benefits that ecosystems provide to society is increasingly included as a target in international policies. To support such policies, ecosystem service maps are made. However, there is little attention for the accuracy of these maps. We made a systematic review and quantitative comparison of ecosystem service maps on the European scale to generate insights in the uncertainty of ecosystem service maps and discuss the possibilities for quantitative validation. This data package contains maps of the ecosystem services climate regulation, erosion protection, flood regulation, pollination, and recreation. For each service, a map of the average supply according to all analyzed maps is included, as well as a map of the uncertainty of the service. The data package contains a detailed read-me.

  5. r

    Land Use (2025)

    • rigis.org
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Apr 13, 2006
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environmental Data Center (2006). Land Use (2025) [Dataset]. https://www.rigis.org/datasets/land-use-2025
    Explore at:
    Dataset updated
    Apr 13, 2006
    Dataset authored and provided by
    Environmental Data Center
    Area covered
    Description

    This hosted feature layer has been published in RI State Plane Feet NAD 83.The Land Use 2025 dataset was developed for the Division of Planning, RI Statewide Planning Program as part of an update to a state land use plan. It evolved from a GIS overlay analysis of land suitability and availability and scenario planning for future growth. The analysis focused on the 37% of the State identified as undeveloped and unprotected in a land cover analysis from RIGIS 1995 land use land cover data. The project studied areas for suitability for conservation and development, based on the location of key natural resources and public infrastructure. The results identified areas with future use potential, under three categories of development intensity and two categories of conservation.These data are presented in the Plan as Figure 121-02-(01), Future Land Use Map. Land Use 2025: State Land Use Policies and Plan was published by the RI Statewide Planning Program on April 13, 2006. The intent of the Plan is to bring together the elements of the State Guide Plan such as natural resources, economic development, housing and transportation to guide conservation and land development in the State. The Plan directs the state and communities to concentrate growth inside the Urban Services Boundary (USB) and within potential growth centers in rural areas. It establishes different development approaches for urban and rural areas.These data have several purposes and applications: They are intended to be used as a policy guide for directing growth to areas most capable of supporting current and future developed uses and to direct growth away from areas less suited for development. Secondly, these data are a guide to assist the state and communities in making land use policies. It is important to note these data are a generalized portrayal of state land use policy. These are not a statewide zoning data. Zoning matters and individual land use decisions are the prerogative of local governments. The land use element is the over arching element in Rhode Island's State Guide Plan. The Plan articulates goals, objectives and strategies to guide the current and future land use planning of municipalities and state agencies. The purpose of the plan is to guide future land use and to present policies under which state and municipal plans and land use activities will be reviewed for consistency with the State Guide Plan. The Map is a graphical representation of recommendations for future growth patterns in the State. It depicts where different intensities of development (e.g. parks, urban development, non-urban development) should occur by color. The Map contains a USB that shows where areas with public services supporting urban development presently exist, or are likely to be provided, through 2025. Within the USB, most land is served by public water service; many areas also have public sewer service, as well as, public transit. Also included on the map are growth centers which are potential areas for development and redevelopment outside of the USB. Growth Centers are envisioned to be areas that will encourage development that is both contiguous to existing development with low fiscal and environmental impacts.NOTE: These data will be updated when the associated plan is updated or upon an amendment approved by the State Planning Council. NOTE: Wetlands were not categorized within the Land Use 2025 dataset.When using this dataset, the RIGIS wetlands dataset should be overlaid as a mask. Full descriptions of the categories and intended uses can be found within Section 2-4, Future Land Use Patterns, Categories, and Intended Uses, of the Plan. https://www.planning.ri.gov/documents/guide_plan/landuse2025.pdf

  6. Geolocet | Administrative boundaries map data | Europe | Countries, Regions,...

    • datarade.ai
    Updated Nov 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Geolocet (2023). Geolocet | Administrative boundaries map data | Europe | Countries, Regions, Provinces, Municipalities, and more | Fully customizable format [Dataset]. https://datarade.ai/data-products/geolocet-administrative-boundaries-map-data-europe-coun-geolocet
    Explore at:
    .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Nov 3, 2023
    Dataset authored and provided by
    Geolocet
    Area covered
    Estonia, France, Hungary, United Kingdom, Lithuania, Germany, Belgium, Luxembourg, Finland, Italy
    Description

    Geolocet's Administrative Boundaries Spatial Data serves as the gateway to visualizing geographic distributions and patterns with precision. The comprehensive dataset covers all European countries, encompassing the boundaries of each country, as well as its political and statistical divisions. Tailoring data purchases to exact needs is possible, allowing for the selection of individual levels of geography or bundling all levels for a country with a discount. The seamless integration of administrative boundaries onto digital maps transforms raw data into actionable insights.

    🌐 Coverage Across European Countries

    Geolocet's Administrative Boundaries Data offers coverage across all European countries, ensuring access to the most up-to-date and accurate geographic information. From national borders to the finest-grained administrative units, this data enables informed choices based on verified and official sources.

    🔍 Geographic Context for Strategic Decisions

    Understanding the geographical context is crucial for strategic decision-making. Geolocet's Administrative Boundaries Spatial Data empowers exploration of geo patterns, planning expansions, analysis of regional demographics, and optimization of operations with precision. Whether it is for establishing new business locations, efficient resource allocation, or policy impact analysis, this data provides the essential geographic context for success.

    🌍 Integration with Geolocet’s Demographic Data

    The integration of Geolocet's Administrative Boundaries Spatial Data with Geolocet's Demographic Data creates a synergy that enriches insights. The combination of administrative boundaries and demographic information offers a comprehensive understanding of regions and their unique characteristics. This integration enables tailoring of strategies, marketing campaigns, and resource allocation to specific areas with confidence.

    🌍 Integration with Geolocet’s POI Data

    Combining Geolocet's Administrative Boundaries Spatial Data with our POI (Points of Interest) Data unveils not only the administrative divisions but also insights into the local characteristics of these areas. Overlaying POI data on administrative boundaries reveals details about the number and types of businesses, services, and amenities within specific regions. Whether conducting market research, identifying prime locations for retail outlets, or analyzing the accessibility of essential services, this combined data empowers a holistic view of target areas.

    🔍 Customized Data Solutions with DaaS

    Geolocet's Data as a Service (DaaS) model offers flexibility tailored to specific needs. The transparent pricing model ensures cost-efficiency, allowing payment solely for the required data. Whether nationwide administrative boundary data or specific regional details are needed, Geolocet provides a solution to match individual objectives. Contact us today to explore how Geolocet's Administrative Boundaries Spatial Data can elevate decision-making processes and provide the essential geographic data for success.

  7. d

    Replication Data for: Maps in People’s Heads: Assessing A New Measure of...

    • dataone.org
    • dataverse.harvard.edu
    Updated Nov 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bowers, Jake; Wong, Cara; Rubenson, Daniel; Fredrickson, Mark; Rundlett, Ashlea (2023). Replication Data for: Maps in People’s Heads: Assessing A New Measure of Context [Dataset]. http://doi.org/10.7910/DVN/9XWGHN
    Explore at:
    Dataset updated
    Nov 22, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Bowers, Jake; Wong, Cara; Rubenson, Daniel; Fredrickson, Mark; Rundlett, Ashlea
    Description

    To understand the relationship between place and politics, we must measure both political attitudes and the ways in which place is represented in the minds of individuals. In this paper, we assess a new measure of mental-representation of geography, in which survey respondents draw their own local communities on maps and describe them. This mapping measure has been used in Canada, the UK, Denmark, and the U.S. so far. We use a panel study in Canada to present evidence that these maps are both valid and reliable measures of a personally relevant geographic area, laying the measurement groundwork for the growing number of studies using this technology. We hope to set efforts to measure ‘place’ for the study of context and politics on firmer footing. Our validity assessments show that individuals are thinking about people and places with which they have regular contact when asked to draw their communities. Our reliability assessments show that people can draw more or less the same map twice, even when the exercise is repeated months later. Finally, we provide evidence that the concept of community is a tangible consideration in the minds of ordinary citizens and is not simply a normative aspiration or motivation.

  8. c

    Pre Policy Map Adopted Future Land Use

    • data.charlottenc.gov
    Updated Mar 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Charlotte (2025). Pre Policy Map Adopted Future Land Use [Dataset]. https://data.charlottenc.gov/datasets/charlotte::pre-policy-map-adopted-future-land-use-1/explore
    Explore at:
    Dataset updated
    Mar 21, 2025
    Dataset authored and provided by
    City of Charlotte
    Area covered
    Description

    Important – This dataset should be used for historical purposes only. Adopted Land Use Recommendations derived from the District Plans and updated with Area Plans, Streetscape Plans, Pedscape Plans, Rezoning cases, and Plan Amendments. The database covers Charlotte's Sphere of Influence. For up-to-date future land use guidance, the Charlotte Future 2040 Policy Map dataset should be used.

  9. Data Bundle for PyPSA-Eur: An Open Optimisation Model of the European...

    • zenodo.org
    • data.niaid.nih.gov
    xz, zip
    Updated Jul 17, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jonas Hörsch; Fabian Hofmann; David Schlachtberger; Philipp Glaum; Fabian Neumann; Fabian Neumann; Tom Brown; Iegor Riepin; Bobby Xiong; Jonas Hörsch; Fabian Hofmann; David Schlachtberger; Philipp Glaum; Tom Brown; Iegor Riepin; Bobby Xiong (2024). Data Bundle for PyPSA-Eur: An Open Optimisation Model of the European Transmission System [Dataset]. http://doi.org/10.5281/zenodo.12760663
    Explore at:
    zip, xzAvailable download formats
    Dataset updated
    Jul 17, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Jonas Hörsch; Fabian Hofmann; David Schlachtberger; Philipp Glaum; Fabian Neumann; Fabian Neumann; Tom Brown; Iegor Riepin; Bobby Xiong; Jonas Hörsch; Fabian Hofmann; David Schlachtberger; Philipp Glaum; Tom Brown; Iegor Riepin; Bobby Xiong
    Description

    PyPSA-Eur is an open model dataset of the European power system at the transmission network level that covers the full ENTSO-E area. It can be built using the code provided at https://github.com/PyPSA/PyPSA-eur.

    It contains alternating current lines at and above 220 kV voltage level and all high voltage direct current lines, substations, an open database of conventional power plants, time series for electrical demand and variable renewable generator availability, and geographic potentials for the expansion of wind and solar power.

    Not all data dependencies are shipped with the code repository, since git is not suited for handling large changing files. Instead we provide separate data bundles to be downloaded and extracted as noted in the documentation.

    This is the full data bundle to be used for rigorous research. It includes large bathymetry and natural protection area datasets.

    While the code in PyPSA-Eur is released as free software under the MIT, different licenses and terms of use apply to the various input data, which are summarised below:

    corine/*

    Access to data is based on a principle of full, open and free access as established by the Copernicus data and information policy Regulation (EU) No 1159/2013 of 12 July 2013. This regulation establishes registration and licensing conditions for GMES/Copernicus users and can be found here. Free, full and open access to this data set is made on the conditions that:

    • When distributing or communicating Copernicus dedicated data and Copernicus service information to the public, users shall inform the public of the source of that data and information.

    • Users shall make sure not to convey the impression to the public that the user's activities are officially endorsed by the Union.

    • Where that data or information has been adapted or modified, the user shall clearly state this.

    • The data remain the sole property of the European Union. Any information and data produced in the framework of the action shall be the sole property of the European Union. Any communication and publication by the beneficiary shall acknowledge that the data were produced “with funding by the European Union”.

    eez/*

    Marine Regions’ products are licensed under CC-BY-NC-SA. Please contact us for other uses of the Licensed Material beyond license terms. We kindly request our users not to make our products available for download elsewhere and to always refer to marineregions.org for the most up-to-date products and services.

    natura/*

    EEA standard re-use policy: unless otherwise indicated, re-use of content on the EEA website for commercial or non-commercial purposes is permitted free of charge, provided that the source is acknowledged (https://www.eea.europa.eu/legal/copyright). Copyright holder: Directorate-General for Environment (DG ENV).

    naturalearth/*

    All versions of Natural Earth raster + vector map data found on this website are in the public domain. You may use the maps in any manner, including modifying the content and design, electronic dissemination, and offset printing. The primary authors, Tom Patterson and Nathaniel Vaughn Kelso, and all other contributors renounce all financial claim to the maps and invites you to use them for personal, educational, and commercial purposes.

    No permission is needed to use Natural Earth. Crediting the authors is unnecessary.

    NUTS_2013_60M_SH/*

    In addition to the general copyright and licence policy applicable to the whole Eurostat website, the following specific provisions apply to the datasets you are downloading. The download and usage of these data is subject to the acceptance of the following clauses:

    1. The Commission agrees to grant the non-exclusive and not transferable right to use and process the Eurostat/GISCO geographical data downloaded from this page (the "data").

    2. The permission to use the data is granted on condition that: the data will not be used for commercial purposes; the source will be acknowledged. A copyright notice, as specified below, will have to be visible on any printed or electronic publication using the data downloaded from this page.

    gebco/GEBCO_2014_2D.nc

    The GEBCO Grid is placed in the public domain and may be used free of charge. Use of the GEBCO Grid indicates that the user accepts the conditions of use and disclaimer information given below.

    Users are free to:

    • Copy, publish, distribute and transmit The GEBCO Grid

    • Adapt The GEBCO Grid

    • Commercially exploit The GEBCO Grid, by, for example, combining it with other information, or by including it in their own product or application

    Users must:

    • Acknowledge the source of The GEBCO Grid. A suitable form of attribution is given in the documentation that accompanies The GEBCO Grid.

    • Not use The GEBCO Grid in a way that suggests any official status or that GEBCO, or the IHO or IOC, endorses any particular application of The GEBCO Grid.

    • Not mislead others or misrepresent The GEBCO Grid or its source.

    je-e-21.03.02.xls

    Information on the websites of the Federal Authorities is accessible to the public. Downloading, copying or integrating content (texts, tables, graphics, maps, photos or any other data) does not entail any transfer of rights to the content.

    Copyright and any other rights relating to content available on the websites of the Federal Authorities are the exclusive property of the Federal Authorities or of any other expressly mentioned owners.

    Any reproduction requires the prior written consent of the copyright holder. The source of the content (statistical results) should always be given.

  10. t

    Subregional Plan Map - Detail Plans - Open Data

    • gisdata.tucsonaz.gov
    • hub.arcgis.com
    Updated Aug 9, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tucson (2018). Subregional Plan Map - Detail Plans - Open Data [Dataset]. https://gisdata.tucsonaz.gov/datasets/subregional-plan-map-detail-plans-open-data
    Explore at:
    Dataset updated
    Aug 9, 2018
    Dataset authored and provided by
    City of Tucson
    Area covered
    Description

    COMPLETED 2010. The data was converted from the most recent (2010) versions of the adopted plans, which can be found at https://cms3.tucsonaz.gov/planning/plans/Supplemental Information: In March 2010, Pima Association of Governments (PAG), in cooperation with the City of Tucson (City), initiated the Planned Land Use Data Conversion Project. This 9-month effort involved evaluating mapped land use designations and selected spatially explicit policies for nearly 50 of the City's adopted neighborhood, area, and subregional plans and converting the information into a Geographic Information System (GIS) format. Further documentation for this file can be obtained from the City of Tucson Planning and Development Services Department or Pima Association of Governments Technical Services. A brief summary report was provided, as requested, to the City of Tucson which highlights some of the key issues found during the conversion process (e.g., lack of mapping and terminology consistency among plans). The feature class "Plan_boundaries" represents the boundaries of the adopted plans. The feature class "Plan_mapped_land_use" represents the land use designations as they are mapped in the adopted plans. Some information was gathered that is implicit based on the land use designation or zones (see field descriptions below). Since this information is not explicitly stated in the plans, it should only be viewed by City staff for general planning purposes. The feature class "Plan_selected_policies" represents the spatially explicit policies that were fairly straightforward to map. Since these policies are not represented in adopted maps, this feature class should only be viewed by City staff for general planning purposes only.2010 - created by Jamison Brown, working as an independent contractor for Pima Association of Governments, created this file in 2010 by digitizing boundaries as depicted (i.e. for the mapped land use) or described in the plans (i.e. for the narrative policies). In most cases, this involved tracing based on parcel (paregion) or street center line (stnetall) feature classes. Snapping was used to provide line coincidence. For some map conversions, freehand sketches were drawn to mimick the freehand sketches in the adopted plan. Field descriptionsField descriptions for the "Plan_boundaries" feature class: Plan_Name: Plan name Plan_Type: Plan type (e.g., Neighborhood Plan) Plan_Num: Plan number ADOPT_DATE: Date of Plan adoption IMPORTANT: A disclaimer about the data as it is unofficial. URL: Uniform Resource Locator Field descriptions for the "Plan_mapped_land_use" feature class: Plan_Name: Plan name Plan_Type: Plan type (e.g., Neighborhood Plan) Plan_Num: Plan number LU_DES: Land use designation (e.g., Low density residential) LISTED_ALLOWABLE_ZONES: Allowable zones as listed in the Plan LISTED_RAC_MIN: Minimum residences per acre (if applicable), as listed in the Plan LISTED_RAC_TARGET: Target residences per acre (if applicable), as listed in the Plan LISTED_RAC_MAX: Maximum residences per acre (if applicable), as listed in the Plan LISTED_FAR_MIN: Minimum Floor Area Ratio (if applicable), as listed in the Plan LISTED_FAR_TARGET: Target Floor Area Ratio (if applicable), as listed in the Plan LISTED_FAR_MAX: Maximum Floor Area Ratio (if applicable), as listed in the Plan BUILDING_HEIGHT_MAX Building height maximum (ft.) if determined by Plan policy IMPORTANT: A disclaimer about the data as it is unofficial. URL: Uniform Resource Locator IMPLIED_ALLOWABLE_ZONES: Implied (not listed in the Plan) allowable zones IMPLIED_RAC_MIN: Implied (not listed in the Plan) minimum residences per acre (if applicable) IMPLIED_RAC_TARGET: Implied (not listed in the Plan) target residences per acre (if applicable) IMPLIED_RAC_MAX: Implied (not listed in the Plan) maximum residences per acre (if applicable) IMPLIED_FAR_MIN: Implied (not listed in the Plan) minimum Floor Area Ratio (if applicable) IMPLIED_FAR_TARGET: Implied (not listed in the Plan) target Floor Area Ratio (if applicable) IMPLIED_FAR_MAX: Implied (not listed in the Plan) maximum Floor Area Ratio (if applicable) IMPLIED_LU_CATEGORY: Implied (not listed in the Plan) general land use category. General categories used include residential, office, commercial, industrial, and other.PurposeLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Dataset ClassificationLevel 0 - OpenKnown UsesLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Known ErrorsLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Data ContactJohn BeallCity of Tucson Development Services520-791-5550John.Beall@tucsonaz.govUpdate FrequencyLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

  11. c

    Living England Habitat Map (Phase 4)

    • data.catchmentbasedapproach.org
    • naturalengland-defra.opendata.arcgis.com
    • +2more
    Updated Mar 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Defra group ArcGIS Online organisation (2022). Living England Habitat Map (Phase 4) [Dataset]. https://data.catchmentbasedapproach.org/items/b3069e7cb3084732b92478b3db51b9c6
    Explore at:
    Dataset updated
    Mar 23, 2022
    Dataset authored and provided by
    Defra group ArcGIS Online organisation
    Area covered
    Description

    PLEASE NOTE: This data product is not available in Shapefile format or KML at https://naturalengland-defra.opendata.arcgis.com/datasets/Defra::living-england-habitat-map-phase-4/about, as the data exceeds the limits of these formats. Please select an alternative download format.This data product is also available for download in multiple formats via the Defra Data Services Platform at https://environment.data.gov.uk/explore/4aa716ce-f6af-454c-8ba2-833ebc1bde96?download=true.The Living England project, led by Natural England, is a multi-year programme delivering a satellite-derived national habitat layer in support of the Environmental Land Management (ELM) System and the Natural Capital and Ecosystem Assessment (NCEA) Pilot. The project uses a machine learning approach to image classification, developed under the Defra Living Maps project (SD1705 – Kilcoyne et al., 2017). The method first clusters homogeneous areas of habitat into segments, then assigns each segment to a defined list of habitat classes using Random Forest (a machine learning algorithm). The habitat probability map displays modelled likely broad habitat classifications, trained on field surveys and earth observation data from 2021 as well as historic data layers. This map is an output from Phase IV of the Living England project, with future work in Phase V (2022-23) intending to standardise the methodology and Phase VI (2023-24) to implement the agreed standardised methods.The Living England habitat probability map will provide high-accuracy, spatially consistent data for a range of Defra policy delivery needs (e.g. 25YEP indicators and Environment Bill target reporting Natural capital accounting, Nature Strategy, ELM) as well as external users. As a probability map, it allows the extrapolation of data to areas that we do not have data. These data will also support better local and national decision making, policy development and evaluation, especially in areas where other forms of evidence are unavailable. Process Description: A number of data layers are used to inform the model to provide a habitat probability map of England. The main sources layers are Sentinel-2 and Sentinel-1 satellite data from the ESA Copericus programme. Additional datasets were incorporated into the model (as detailed below) to aid the segmentation and classification of specific habitat classes. Datasets used:Agri-Environment Higher Level Stewardship (HLS) Monitoring, British Geological Survey Bedrock Mapping 1:50k, Coastal Dune Geomatics Mapping Ground Truthing, Crop Map of England (RPA), Dark Peak Bog State Survey, Desktop Validation and Manual Points, EA Integrated Height Model 10m, EA Saltmarsh Zonation and Extent, Field Unit NEFU, Living England Collector App NEFU/EES, Long Term Monitoring Network (LTMN), Lowland Heathland Survey, National Forest Inventory (NFI), National Grassland Survey, National Plant Monitoring Scheme, NEFU Surveys, Northumberland Border Mires, OS Vector Map District , Priority Habitats Inventory (PHI) B Button, European Space Agency (ESA) Sentinel-1 and Sentinel-2 , Space2 Eye Lens: Ainsdale NNR, Space2 Eye Lens: State of the Bog Bowland Survey, Space2 Eye Lens: State of the Bog Dark Peak Condition Survey, Space2 Eye Lens: State of the Bog (MMU) Mountain Hare Habitat Survey Dark Peak, Uplands Inventory, West Pennines Designation NVC Survey, Wetland Inventories, WorldClim - Global Climate DataFull metadata can be viewed on data.gov.uk.

  12. Natural Resources Conservation Service Soil Data Viewer

    • agdatacommons.nal.usda.gov
    bin
    Updated Nov 30, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    USDA Natural Resources Conservation Service (2023). Natural Resources Conservation Service Soil Data Viewer [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/Natural_Resources_Conservation_Service_Soil_Data_Viewer/24664734
    Explore at:
    binAvailable download formats
    Dataset updated
    Nov 30, 2023
    Dataset provided by
    United States Department of Agriculturehttp://usda.gov/
    Authors
    USDA Natural Resources Conservation Service
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Soil Data Viewer is a tool built as an extension to ArcMap that allows a user to create soil-based thematic maps. The application can also be run independently of ArcMap, but output is then limited to a tabular report. The soil survey attribute database associated with the spatial soil map is a complicated database with more than 50 tables. Soil Data Viewer provides users access to soil interpretations and soil properties while shielding them from the complexity of the soil database. Each soil map unit, typically a set of polygons, may contain multiple soil components that have different use and management. Soil Data Viewer makes it easy to compute a single value for a map unit and display results, relieving the user from the burden of querying the database, processing the data and linking to the spatial map. Soil Data Viewer contains processing rules to enforce appropriate use of the data. This provides the user with a tool for quick geospatial analysis of soil data for use in resource assessment and management. Resources in this dataset:Resource Title: Soil Data Viewer. File Name: Web Page, url: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2_053620 Soil Data Viewer is a tool built as an extension to ArcMap that allows a user to create soil-based thematic maps. The application can also be run independent of ArcMap, but output is then limited to a tabular report. Soil Data Viewer contains processing rules to enforce appropriate use of the data. This provides the user with a tool for quick geospatial analysis of soil data for use in resource assessment and management. Links to download and install Download Soil Data Viewer 6.2 for use with ArcGIS 10.x and Windows XP, Windows 7, Windows 8.x, or Windows 10. Earlier versions are also available.

  13. Large Scale International Boundaries

    • catalog.data.gov
    • geodata.state.gov
    Updated Jun 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of State (Point of Contact) (2025). Large Scale International Boundaries [Dataset]. https://catalog.data.gov/dataset/large-scale-international-boundaries
    Explore at:
    Dataset updated
    Jun 13, 2025
    Dataset provided by
    United States Department of Statehttp://state.gov/
    Description

    Overview The Office of the Geographer and Global Issues at the U.S. Department of State produces the Large Scale International Boundaries (LSIB) dataset. The current edition is version 11.4 (published 24 February 2025). The 11.4 release contains updated boundary lines and data refinements designed to extend the functionality of the dataset. These data and generalized derivatives are the only international boundary lines approved for U.S. Government use. The contents of this dataset reflect U.S. Government policy on international boundary alignment, political recognition, and dispute status. They do not necessarily reflect de facto limits of control. National Geospatial Data Asset This dataset is a National Geospatial Data Asset (NGDAID 194) managed by the Department of State. It is a part of the International Boundaries Theme created by the Federal Geographic Data Committee. Dataset Source Details Sources for these data include treaties, relevant maps, and data from boundary commissions, as well as national mapping agencies. Where available and applicable, the dataset incorporates information from courts, tribunals, and international arbitrations. The research and recovery process includes analysis of satellite imagery and elevation data. Due to the limitations of source materials and processing techniques, most lines are within 100 meters of their true position on the ground. Cartographic Visualization The LSIB is a geospatial dataset that, when used for cartographic purposes, requires additional styling. The LSIB download package contains example style files for commonly used software applications. The attribute table also contains embedded information to guide the cartographic representation. Additional discussion of these considerations can be found in the Use of Core Attributes in Cartographic Visualization section below. Additional cartographic information pertaining to the depiction and description of international boundaries or areas of special sovereignty can be found in Guidance Bulletins published by the Office of the Geographer and Global Issues: https://data.geodata.state.gov/guidance/index.html Contact Direct inquiries to internationalboundaries@state.gov. Direct download: https://data.geodata.state.gov/LSIB.zip Attribute Structure The dataset uses the following attributes divided into two categories: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | Core CC1_GENC3 | Extension CC1_WPID | Extension COUNTRY1 | Core CC2 | Core CC2_GENC3 | Extension CC2_WPID | Extension COUNTRY2 | Core RANK | Core LABEL | Core STATUS | Core NOTES | Core LSIB_ID | Extension ANTECIDS | Extension PREVIDS | Extension PARENTID | Extension PARENTSEG | Extension These attributes have external data sources that update separately from the LSIB: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | GENC CC1_GENC3 | GENC CC1_WPID | World Polygons COUNTRY1 | DoS Lists CC2 | GENC CC2_GENC3 | GENC CC2_WPID | World Polygons COUNTRY2 | DoS Lists LSIB_ID | BASE ANTECIDS | BASE PREVIDS | BASE PARENTID | BASE PARENTSEG | BASE The core attributes listed above describe the boundary lines contained within the LSIB dataset. Removal of core attributes from the dataset will change the meaning of the lines. An attribute status of “Extension” represents a field containing data interoperability information. Other attributes not listed above include “FID”, “Shape_length” and “Shape.” These are components of the shapefile format and do not form an intrinsic part of the LSIB. Core Attributes The eight core attributes listed above contain unique information which, when combined with the line geometry, comprise the LSIB dataset. These Core Attributes are further divided into Country Code and Name Fields and Descriptive Fields. County Code and Country Name Fields “CC1” and “CC2” fields are machine readable fields that contain political entity codes. These are two-character codes derived from the Geopolitical Entities, Names, and Codes Standard (GENC), Edition 3 Update 18. “CC1_GENC3” and “CC2_GENC3” fields contain the corresponding three-character GENC codes and are extension attributes discussed below. The codes “Q2” or “QX2” denote a line in the LSIB representing a boundary associated with areas not contained within the GENC standard. The “COUNTRY1” and “COUNTRY2” fields contain the names of corresponding political entities. These fields contain names approved by the U.S. Board on Geographic Names (BGN) as incorporated in the ‘"Independent States in the World" and "Dependencies and Areas of Special Sovereignty" lists maintained by the Department of State. To ensure maximum compatibility, names are presented without diacritics and certain names are rendered using common cartographic abbreviations. Names for lines associated with the code "Q2" are descriptive and not necessarily BGN-approved. Names rendered in all CAPITAL LETTERS denote independent states. Names rendered in normal text represent dependencies, areas of special sovereignty, or are otherwise presented for the convenience of the user. Descriptive Fields The following text fields are a part of the core attributes of the LSIB dataset and do not update from external sources. They provide additional information about each of the lines and are as follows: ATTRIBUTE NAME | CONTAINS NULLS RANK | No STATUS | No LABEL | Yes NOTES | Yes Neither the "RANK" nor "STATUS" fields contain null values; the "LABEL" and "NOTES" fields do. The "RANK" field is a numeric expression of the "STATUS" field. Combined with the line geometry, these fields encode the views of the United States Government on the political status of the boundary line. ATTRIBUTE NAME | | VALUE | RANK | 1 | 2 | 3 STATUS | International Boundary | Other Line of International Separation | Special Line A value of “1” in the “RANK” field corresponds to an "International Boundary" value in the “STATUS” field. Values of ”2” and “3” correspond to “Other Line of International Separation” and “Special Line,” respectively. The “LABEL” field contains required text to describe the line segment on all finished cartographic products, including but not limited to print and interactive maps. The “NOTES” field contains an explanation of special circumstances modifying the lines. This information can pertain to the origins of the boundary lines, limitations regarding the purpose of the lines, or the original source of the line. Use of Core Attributes in Cartographic Visualization Several of the Core Attributes provide information required for the proper cartographic representation of the LSIB dataset. The cartographic usage of the LSIB requires a visual differentiation between the three categories of boundary lines. Specifically, this differentiation must be between: International Boundaries (Rank 1); Other Lines of International Separation (Rank 2); and Special Lines (Rank 3). Rank 1 lines must be the most visually prominent. Rank 2 lines must be less visually prominent than Rank 1 lines. Rank 3 lines must be shown in a manner visually subordinate to Ranks 1 and 2. Where scale permits, Rank 2 and 3 lines must be labeled in accordance with the “Label” field. Data marked with a Rank 2 or 3 designation does not necessarily correspond to a disputed boundary. Please consult the style files in the download package for examples of this depiction. The requirement to incorporate the contents of the "LABEL" field on cartographic products is scale dependent. If a label is legible at the scale of a given static product, a proper use of this dataset would encourage the application of that label. Using the contents of the "COUNTRY1" and "COUNTRY2" fields in the generation of a line segment label is not required. The "STATUS" field contains the preferred description for the three LSIB line types when they are incorporated into a map legend but is otherwise not to be used for labeling. Use of the “CC1,” “CC1_GENC3,” “CC2,” “CC2_GENC3,” “RANK,” or “NOTES” fields for cartographic labeling purposes is prohibited. Extension Attributes Certain elements of the attributes within the LSIB dataset extend data functionality to make the data more interoperable or to provide clearer linkages to other datasets. The fields “CC1_GENC3” and “CC2_GENC” contain the corresponding three-character GENC code to the “CC1” and “CC2” attributes. The code “QX2” is the three-character counterpart of the code “Q2,” which denotes a line in the LSIB representing a boundary associated with a geographic area not contained within the GENC standard. To allow for linkage between individual lines in the LSIB and World Polygons dataset, the “CC1_WPID” and “CC2_WPID” fields contain a Universally Unique Identifier (UUID), version 4, which provides a stable description of each geographic entity in a boundary pair relationship. Each UUID corresponds to a geographic entity listed in the World Polygons dataset. These fields allow for linkage between individual lines in the LSIB and the overall World Polygons dataset. Five additional fields in the LSIB expand on the UUID concept and either describe features that have changed across space and time or indicate relationships between previous versions of the feature. The “LSIB_ID” attribute is a UUID value that defines a specific instance of a feature. Any change to the feature in a lineset requires a new “LSIB_ID.” The “ANTECIDS,” or antecedent ID, is a UUID that references line geometries from which a given line is descended in time. It is used when there is a feature that is entirely new, not when there is a new version of a previous feature. This is generally used to reference countries that have dissolved. The “PREVIDS,” or Previous ID, is a UUID field that contains old versions of a line. This is an additive field, that houses all Previous IDs. A new version of a feature is defined by any change to the

  14. w

    Childcare Map

    • data.wu.ac.at
    • gimi9.com
    html
    Updated Jan 5, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Reinvestment Fund (2015). Childcare Map [Dataset]. https://data.wu.ac.at/odso/www_opendataphilly_org/MjUxNDNjYmItMjdjNi00ZDRmLWFlNjEtYTI3NGM0YmZlYmYy
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jan 5, 2015
    Dataset provided by
    The Reinvestment Fund
    Description

    Childcare Map helps Philadelphians make decisions about childcare.

    Collection Process: TRF culled childcare data for the City of Philadelphia from various sources, and incorporated data from the Census related to demographics, income, poverty, and transportation. TRF also gathered overlays of various city boundaries from OpenDataPhilly and other local sources. More information on sources is available at http://www.policymap.com/files/ChildcareMapDataDirectory.pdf.

    Data Purpose: TRF collected the data to provide as clear a picture as possible of the supply of and demand for childcare in the city, and to better understand where the gaps are so that stakeholders can work to address them. Intended Audience: Childcare providers, investors, policy makers, and parents. Why Collected: High-quality childcare supports positive child development and prepares children for success in school and beyond. As such, accessing high-quality care is important for the well-being of neighborhoods and families. By identifying areas where shortages of high-quality childcare exist, policymakers and investors can work towards increasing access for all.

  15. Justice40 Tracts May 2022 (Archive)

    • resilience.climate.gov
    • resilience-and-adaptation-information-portal-nationalclimate.hub.arcgis.com
    • +2more
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Justice40 Tracts May 2022 (Archive) [Dataset]. https://resilience.climate.gov/datasets/990e8d269a0348cba9ae28b344d2957d
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This map uses an archive of Version 1.0 of the CEJST data as a fully functional GIS layer. See an archive of the latest version of the CEJST tool using Version 2.0 of the data released in December 2024 here.Note: A new version of this data was released November 22, 2022 and is available here. There are significant changes, see the Justice40 Initiative criteria for details.This layer assesses and identifies communities that are disadvantaged according to Justice40 Initiative criteria. Census tracts in the U.S. and its territories that meet the Version 0.1 criteria are shaded in a semi-transparent blue to work with a variety of basemaps.Details of the assessment are provided in the popup for every census tract in the United States and its territories American Samoa, Guam, the Northern Mariana Islands, Puerto Rico, and the U.S. Virgin Islands. This map uses 2010 census tracts from Version 0.1 of the source data downloaded May 30, 2022.Use this layer to help plan for grant applications, to perform spatial analysis, and to create informative dashboards and web applications. See this blog post for more information.From the source:"Census tract geographical boundaries are determined by the U.S. Census Bureau once every ten years. This tool utilizes the census tract boundaries from 2010 because they match the datasets used in the tool. The U.S. Census Bureau will update these tract boundaries in 2020.Under the current formula, a census tract will be identified as disadvantaged in one or more categories of criteria:IF the tract is above the threshold for one or more environmental or climate indicators AND the tract is above the threshold for the socioeconomic indicatorsCommunities are identified as disadvantaged by the current version of the tool for the purposes of the Justice40 Initiative if they are located in census tracts that are at or above the combined thresholds in one or more of eight categories of criteria.The goal of the Justice40 Initiative is to provide 40 percent of the overall benefits of certain Federal investments in [eight] key areas to disadvantaged communities. These [eight] key areas are: climate change, clean energy and energy efficiency, clean transit, affordable and sustainable housing, training and workforce development, the remediation and reduction of legacy pollution, [health burdens] and the development of critical clean water infrastructure." Source: Climate and Economic Justice Screening toolPurpose"Sec. 219. Policy. To secure an equitable economic future, the United States must ensure that environmental and economic justice are key considerations in how we govern. That means investing and building a clean energy economy that creates well‑paying union jobs, turning disadvantaged communities — historically marginalized and overburdened — into healthy, thriving communities, and undertaking robust actions to mitigate climate change while preparing for the impacts of climate change across rural, urban, and Tribal areas. Agencies shall make achieving environmental justice part of their missions by developing programs, policies, and activities to address the disproportionately high and adverse human health, environmental, climate-related and other cumulative impacts on disadvantaged communities, as well as the accompanying economic challenges of such impacts. It is therefore the policy of my Administration to secure environmental justice and spur economic opportunity for disadvantaged communities that have been historically marginalized and overburdened by pollution and underinvestment in housing, transportation, water and wastewater infrastructure, and health care." Source: Executive Order on Tackling the Climate Crisis at Home and AbroadUse of this Data"The pilot identifies 21 priority programs to immediately begin enhancing benefits for disadvantaged communities. These priority programs will provide a blueprint for other agencies to help inform their work to implement the Justice40 Initiative across government." Source: The Path to Achieving Justice 40The layer has some transparency applied to allow it to work sufficiently well on top of many basemaps. For optimum map display where streets and labels are clearly shown on top of this layer, try one of the Human Geography basemaps and set transparency to 0%, as is done in this example web map.Browse the DataView the Data tab in the top right of this page to browse the data in a table and view the metadata available for each field, including field name, field alias, and a field description explaining what the field represents.

  16. I

    India Geospatial Analytics Market Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). India Geospatial Analytics Market Report [Dataset]. https://www.marketreportanalytics.com/reports/india-geospatial-analytics-market-89133
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Apr 24, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    India
    Variables measured
    Market Size
    Description

    The India Geospatial Analytics Market is experiencing robust growth, projected to reach $1.38 billion in 2025 and exhibiting a Compound Annual Growth Rate (CAGR) of 14.82% from 2025 to 2033. This expansion is fueled by several key drivers. Firstly, increasing government initiatives promoting digitalization and infrastructure development create significant demand for geospatial data and analytics across sectors like agriculture, utilities, and defense. Secondly, the rising adoption of advanced technologies such as AI, Machine Learning, and IoT enhances the capabilities of geospatial analytics, leading to more accurate insights and improved decision-making. Furthermore, the growing need for efficient resource management, precise urban planning, and enhanced disaster response mechanisms further propel market growth. Segmentation reveals strong contributions from surface analysis and network analysis within the 'By Type' category, while the 'By End-user Vertical' segment is dominated by Agriculture, Utility & Communication, and Defense & Intelligence sectors, reflecting their significant reliance on location-based intelligence. However, challenges exist. Data security and privacy concerns, particularly with sensitive location data, pose a restraint. The high cost of implementation and the requirement for specialized expertise also hinder wider adoption. Despite these challenges, the market's positive trajectory is anticipated to continue, driven by increasing data availability, improved technological capabilities, and growing awareness of the value of geospatial insights across various industries. The competitive landscape includes both global giants like Google and Esri, as well as domestic players like Esri India and Matrix Geo Solutions, indicating a dynamic market with opportunities for both established companies and emerging businesses. The forecast period of 2025-2033 promises further significant expansion, making the India Geospatial Analytics Market an attractive investment opportunity. Recent developments include: January 2023: Eris India, a company providing Geographic Information System (GIS) software and solutions, announced that the company is developing a policy map to offer data to help states and policymakers in decision-making. The Policy Maps have been designed to provide meaningful insights into various government functions., July 2022: Google announced a new partnership in India with local authorities and organizations in order to provide customized features for the diverse needs of the people in the country. Also, Google is building helpful maps that provide more visual and accurate navigation.. Key drivers for this market are: Increasing Demand of Location Based Service, Growing Availability of Spatial Data. Potential restraints include: Increasing Demand of Location Based Service, Growing Availability of Spatial Data. Notable trends are: Increasing Demand of Location Based Service.

  17. M

    Status of Free and Open Public Geospatial Data from Minnesota Counties

    • gisdata.mn.gov
    • data.wu.ac.at
    fgdb, gpkg, html +3
    Updated Apr 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Geospatial Information Office (2025). Status of Free and Open Public Geospatial Data from Minnesota Counties [Dataset]. https://gisdata.mn.gov/dataset/bdry-mn-county-open-data-status
    Explore at:
    printable_map, jpeg, fgdb, html, shp, gpkgAvailable download formats
    Dataset updated
    Apr 24, 2025
    Dataset provided by
    Geospatial Information Office
    Area covered
    Minnesota
    Description

    This map shows the free and open data status of county public geospatial (GIS) data across Minnesota. The accompanying data set can be used to make similar maps using GIS software.

    Counties shown in this dataset as having free and open public geospatial data (with or without a policy) are: Aitkin, Anoka, Becker, Beltrami, Benton, Big Stone, Carlton, Carver, Cass, Chippewa, Chisago, Clay, Clearwater, Cook, Crow Wing, Dakota, Douglas, Grant, Hennepin, Hubbard, Isanti, Itasca, Kittson, Koochiching, Lac qui Parle, Lake, Lyon, Marshall, McLeod, Meeker, Mille Lacs, Morrison, Mower, Norman, Olmsted, Otter Tail, Pipestone, Polk, Pope, Ramsey, Renville, Rice, Scott, Sherburne, Stearns, Steele, Stevens, St. Louis, Traverse, Waseca, Washington, Wilkin, Winona, Wright and Yellow Medicine.

    To see if a county's data is distributed via the Minnesota Geospatial Commons, check the Commons organizations page: https://gisdata.mn.gov/organization

    To see if a county distributes data via its website, check the link(s) on the Minnesota County GIS Contacts webpage: https://www.mngeo.state.mn.us/county_contacts.html

  18. H

    Data from: The COVID Border Accountability Project (COBAP): Mapping Travel...

    • dataverse.harvard.edu
    pdf, tsv, txt
    Updated Dec 21, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Harvard Dataverse (2021). The COVID Border Accountability Project (COBAP): Mapping Travel and Immigration Policy Responses to COVID-19 [Dataset]. http://doi.org/10.7910/DVN/U6DJAC
    Explore at:
    pdf(4766016), tsv(2289263), txt(14025)Available download formats
    Dataset updated
    Dec 21, 2021
    Dataset provided by
    Harvard Dataverse
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2020 - Dec 31, 2020
    Description

    The unprecedented travel bans introduced in response to the COVID-19 pandemic is a pertinent phenomenon of interest to scholars across the globe. Quantifying the timing and content of policy changes affecting travel and immigration is key to future research on the spread of SARS-CoV-2 and the socioeconomic impacts of these policies. The COVID Border Accountability Project (COBAP) provides a systematized dataset of >1000 policies, reflecting a timeline of new country-level restrictions on movement across international borders during the 2020 year. Using a 20-question survey, trained research assistants (RAs) sourced and documented for each new border policy: start and end dates, whether the closure constitutes a "complete closure" or "partial closure", which exceptions are made, which countries are banned, and which borders are closed, among other variables. In addition, the full text of each policy was included in the database. We maintain and update the data monthly. For public use, we visualize the data in an interactive map tool visualization: covidborderaccountability.org. For ongoing and future pandemic research, the dataset will be useful to policymakers, social and biomedical scientists, and public health experts alike.

  19. o

    CoronaNet COVID-19 Policy Responses: Taxonomy Maps and Data for Data...

    • openicpsr.org
    delimited
    Updated Nov 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cindy Cheng; Luca Messerschmidt; Isaac Bravo; Marco Waldbauer; Rohan Bhavikatti; Caress Schenk; Vanja Grujic; Timothy Model; Robert Kubinec; Joan Barceló (2023). CoronaNet COVID-19 Policy Responses: Taxonomy Maps and Data for Data Harmonization [Dataset]. http://doi.org/10.3886/E195081V2
    Explore at:
    delimitedAvailable download formats
    Dataset updated
    Nov 11, 2023
    Dataset provided by
    Technical University of Munich
    Universidade de Brasília
    New York University Abu Dhabi
    Delve
    Nazarbayev University,
    Authors
    Cindy Cheng; Luca Messerschmidt; Isaac Bravo; Marco Waldbauer; Rohan Bhavikatti; Caress Schenk; Vanja Grujic; Timothy Model; Robert Kubinec; Joan Barceló
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 2019 - Sep 21, 2021
    Area covered
    World
    Description

    This deposit contains the taxonomy maps and data we used to translate data on COVID-19 government responses from 7 different datasets into taxonomy developed by the CoronaNet Research Project (CoronaNet; Cheng et al 2020). These taxonomy maps form the basis of our efforts to harmonize this data into the CoronaNet database. The following taxonomy maps are deposited in the 'Taxonomy' folder:ACAPS COVID-19 Government Measures - CoronaNet Taxonomy Map Canadian Data Set of COVID-19 Interventions from the Canadian Institute for Health Information (CIHI) - CoronaNet Taxonomy Map COVID Analysis and Maping of Policies (COVID AMP) - CoronaNet Taxonomy Map Johns Hopkins Health Intervention Tracking for COVID-19 (HIT-COVID) - CoronaNet Taxonomy Map Oxford Covid-19 Government Response Tracker (OxCGRT) - CoronaNet Taxonomy Map World Health Organisation Public Health and Safety Measures (WHO PHSM) - CoronaNet Taxonomy MapMeanwhile the 'Data' folder contains the raw and mapped data for each external dataset (i.e. ACAPS, CIHI, COVID AMP, HIT-COVID, OxCGRT and WHO PHSM) as well as the combined external data for Steps 1 and 3 of the data harmonization process described in Cheng et al (2023) 'Harmonizing Government Responses to the COVID-19 Pandemic.'

  20. A

    Residential Displacement Risk Map Scores

    • data.boston.gov
    csv, docx, xlsx
    Updated Mar 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mayor's Office of Housing (2025). Residential Displacement Risk Map Scores [Dataset]. https://data.boston.gov/dataset/residential-displacement-risk-map-scores
    Explore at:
    docx(627326), xlsx(58631), docx(3904), csv(51801)Available download formats
    Dataset updated
    Mar 26, 2025
    Dataset authored and provided by
    Mayor's Office of Housing
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    This data contains the scores from the Residential Displacement Risk Map, created by the Mayor’s Office of Housing (MOH) and released in March of 2025. The Residential Displacement Risk Map is Boston’s first interactive map measuring current displacement pressures and levels of residential displacement risk across Boston. The map aims to increase understanding of this challenge, and will be updated every couple of years to keep track of changing patterns.

    This map is part of Boston’s first ever Anti-Displacement Action Plan. The Action Plan responds to residential, small business, and cultural displacement with new tools to fill gaps in Boston’s existing anti-displacement toolkit. It will also better position the City to target resources to people, places, and spaces at greatest risk of displacement, and it includes recommendations for how to use this map in planning, policy, and development decision making.

    The Residential Displacement Risk Map can also be used to raise awareness of displacement and housing instability challenges and provide a data-driven understanding of displacement risk. It is meant to be used by the City, residents, community organizations, academics, housing advocates, and more.

    The Residential Displacement Risk Map measures community-level displacement, meaning how likely it is for high numbers of households to be displaced from an area, changing its fundamental demographic makeup. The Residential Displacement Risk Map does not measure household- or individual-level displacement risk, or how likely it is for any one household or individual to be displaced. Those who live in a high-risk area will not necessarily be displaced. The map only paints a general picture of an area’s sensitivity to displacement pressures. A higher score indicates a higher risk of displacement.

    The Residential Displacement Risk Map measures direct displacement (when residents are forced to move from their homes, such as in an eviction or a foreclosure) and estimates economic displacement (when current residents of an area can no longer afford to live there). The map uses direct displacement as a guidepost for predicting where economic displacement is likely to occur, based on a variety of characteristics that are associated with direct displacement. If an area has high direct displacement (evictions and foreclosures), then it is likely to also have high economic displacement. More detail on how the Residential Displacement Risk Map measures risk can be found in the technical documentation linked below.

    The Displacement Risk Map can be directly accessed here: https://experience.arcgis.com/experience/177e64a85f4041d2b4655d7cd1991c56/

    Learn more about the City’s Anti-Displacement Action Plan here: https://www.boston.gov/departments/planning-advisory-council/anti-displacement-action-plan#:~:text=It%20lays%20out%20priority%20policies,and%20preserving%20existing%20affordable%20housing

    Technical documentation for the map can be accessed here: https://docs.google.com/document/d/1ctv0S67Rx5GA46GbY_Glo_y-JYoQRCMS336yPDw_18o/edit?usp=sharing

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri (2019). Esri Maps for Public Policy [Dataset]. https://center-for-community-investment-lincolninstitute.hub.arcgis.com/datasets/esri::esri-maps-for-public-policy
Organization logo

Esri Maps for Public Policy

Explore at:
Dataset updated
Oct 1, 2019
Dataset authored and provided by
Esrihttp://esri.com/
Description

OVERVIEWThis site is dedicated to raising the level of spatial and data literacy used in public policy. We invite you to explore curated content, training, best practices, and datasets that can provide a baseline for your research, analysis, and policy recommendations. Learn about emerging policy questions and how GIS can be used to help come up with solutions to those questions.EXPLOREGo to your area of interest and explore hundreds of maps about various topics such as social equity, economic opportunity, public safety, and more. Browse and view the maps, or collect them and share via a simple URL. Sharing a collection of maps is an easy way to use maps as a tool for understanding. Help policymakers and stakeholders use data as a driving factor for policy decisions in your area.ISSUESBrowse different categories to find data layers, maps, and tools. Use this set of content as a driving force for your GIS workflows related to policy. RESOURCESTo maximize your experience with the Policy Maps, we’ve assembled education, training, best practices, and industry perspectives that help raise your data literacy, provide you with models, and connect you with the work of your peers.

Search
Clear search
Close search
Google apps
Main menu