Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Big Stone Gap population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Big Stone Gap. The dataset can be utilized to understand the population distribution of Big Stone Gap by age. For example, using this dataset, we can identify the largest age group in Big Stone Gap.
Key observations
The largest age group in Big Stone Gap, VA was for the group of age 30 to 34 years years with a population of 602 (11.59%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Big Stone Gap, VA was the 85 years and over years with a population of 57 (1.10%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Big Stone Gap Population by Age. You can refer the same here
This map shows population density of the United States. Areas in darker magenta have much higher population per square mile than areas in orange or yellow. Data is from the U.S. Census Bureau’s 2020 Census Demographic and Housing Characteristics. The map's layers contain total population counts by sex, age, and race groups for Nation, State, County, Census Tract, and Block Group in the United States and Puerto Rico. From the Census:"Population density allows for broad comparison of settlement intensity across geographic areas. In the U.S., population density is typically expressed as the number of people per square mile of land area. The U.S. value is calculated by dividing the total U.S. population (316 million in 2013) by the total U.S. land area (3.5 million square miles).When comparing population density values for different geographic areas, then, it is helpful to keep in mind that the values are most useful for small areas, such as neighborhoods. For larger areas (especially at the state or country scale), overall population density values are less likely to provide a meaningful measure of the density levels at which people actually live, but can be useful for comparing settlement intensity across geographies of similar scale." SourceAbout the dataYou can use this map as is and you can also modify it to use other attributes included in its layers. This map's layers contain total population counts by sex, age, and race groups data from the 2020 Census Demographic and Housing Characteristics. This is shown by Nation, State, County, Census Tract, Block Group boundaries. Each geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P2, P3, P5, P12, P13, P17, PCT12 (Not all lines of these DHC tables are available in this feature layer.)Data downloaded from: U.S. Census Bureau’s data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, State, County, Census Tract, Block GroupNational Figures: included in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This map is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from the US Census TIGER geodatabases. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For Census tracts and block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract and block group boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters). The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Big Lake by race. It includes the population of Big Lake across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Big Lake across relevant racial categories.
Key observations
The percent distribution of Big Lake population by race (across all racial categories recognized by the U.S. Census Bureau): 100% are white.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Big Lake Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Demographic projections for the Shared Socioeconomic Pathways SSP1 and SSP3 scenarios with demographic breakdown for "young", "adult" and "old" populations, defined as <15 years old, 15-65 years old, and >65 years old, at 10 year intervals. Projections are calculated combining SSP population projections, UN WPP country wide demographic trends, and SEDAC demographic spatial distributions.
The "interp" version of the files includes linear interpolationed values for each grid cell for every year.
A data set of cross-nationally comparable microdata samples for 15 Economic Commission for Europe (ECE) countries (Bulgaria, Canada, Czech Republic, Estonia, Finland, Hungary, Italy, Latvia, Lithuania, Romania, Russia, Switzerland, Turkey, UK, USA) based on the 1990 national population and housing censuses in countries of Europe and North America to study the social and economic conditions of older persons. These samples have been designed to allow research on a wide range of issues related to aging, as well as on other social phenomena. A common set of nomenclatures and classifications, derived on the basis of a study of census data comparability in Europe and North America, was adopted as a standard for recoding. This series was formerly called Dynamics of Population Aging in ECE Countries. The recommendations regarding the design and size of the samples drawn from the 1990 round of censuses envisaged: (1) drawing individual-based samples of about one million persons; (2) progressive oversampling with age in order to ensure sufficient representation of various categories of older people; and (3) retaining information on all persons co-residing in the sampled individual''''s dwelling unit. Estonia, Latvia and Lithuania provided the entire population over age 50, while Finland sampled it with progressive over-sampling. Canada, Italy, Russia, Turkey, UK, and the US provided samples that had not been drawn specially for this project, and cover the entire population without over-sampling. Given its wide user base, the US 1990 PUMS was not recoded. Instead, PAU offers mapping modules, which recode the PUMS variables into the project''''s classifications, nomenclatures, and coding schemes. Because of the high sampling density, these data cover various small groups of older people; contain as much geographic detail as possible under each country''''s confidentiality requirements; include more extensive information on housing conditions than many other data sources; and provide information for a number of countries whose data were not accessible until recently. Data Availability: Eight of the fifteen participating countries have signed the standard data release agreement making their data available through NACDA/ICPSR (see links below). Hungary and Switzerland require a clearance to be obtained from their national statistical offices for the use of microdata, however the documents signed between the PAU and these countries include clauses stipulating that, in general, all scholars interested in social research will be granted access. Russia requested that certain provisions for archiving the microdata samples be removed from its data release arrangement. The PAU has an agreement with several British scholars to facilitate access to the 1991 UK data through collaborative arrangements. Statistics Canada and the Italian Institute of statistics (ISTAT) provide access to data from Canada and Italy, respectively. * Dates of Study: 1989-1992 * Study Features: International, Minority Oversamples * Sample Size: Approx. 1 million/country Links: * Bulgaria (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02200 * Czech Republic (1991), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06857 * Estonia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06780 * Finland (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06797 * Romania (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06900 * Latvia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02572 * Lithuania (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03952 * Turkey (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03292 * U.S. (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06219
Country Population (Admin0) using aggregated Facebook high resolution population density data (https://data.humdata.org/organization/facebook).The world population data sourced from Facebook Data for Good is some of the most accurate population density data in the world. The data is accumulated using highly accurate technology to identify buildings from satellite imagery and can be viewed at up to 30-meter resolution. This building data is combined with publicly available census data to create the most accurate population estimates. This data is used by a wide range of nonprofit and humanitarian organizations, for example, to examine trends in urbanization and climate migration or discover the impact of a natural disaster on a region. This can help to inform aid distribution to reach communities most in need. There is both country and region-specific data available. The data also includes demographic estimates in addition to the population density information. This population data can be accessed via the Humanitarian Data Exchange website.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Population Estimate, Total, Hispanic or Latino (5-year estimate) in Big Stone County, MN (B03002012E027011) from 2009 to 2023 about Big Stone County, MN; MN; latino; hispanic; estimate; persons; 5-year; population; and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Big Flats town by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Big Flats town across both sexes and to determine which sex constitutes the majority.
Key observations
There is a slight majority of male population, with 51.12% of total population being male. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Big Flats town Population by Race & Ethnicity. You can refer the same here
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Resident Population in Big Horn County, WY (WYBIGH3POP) from 1970 to 2024 about Big Horn County, WY; WY; residents; population; and USA.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Widely distributed taxa provide an opportunity to compare biogeographic responses to climatic fluctuations on multiple continents and to investigate speciation. We conducted the most geographically and genomically comprehensive study to date of the red fox (Vulpes vulpes), the world's most widely distributed wild terrestrial carnivore. Analyses of 697 bp of mitochondrial sequence in ~1000 individuals suggested an ancient Middle Eastern origin for all extant red foxes and a 400 kya (SD = 139 kya) origin of the primary North American (Nearctic) clade. Demographic analyses indicated a major expansion in Eurasia during the last glaciation (~50 kya), coinciding with a previously described secondary transfer of a single matriline (Holarctic) to North America. In contrast, North American matrilines (including the transferred portion of Holarctic clade) exhibited no signatures of expansion until the end of the Pleistocene (~12 kya). Analyses of 11 autosomal loci from a subset of foxes supported the colonization timeframe suggested by mtDNA (and the fossil record) but, in contrast, reflected no detectable secondary transfer, resulting in the most fundamental genomic division of red foxes at the Bering Strait. Endemic continental Y-chromosome clades further supported this pattern. Thus, intercontinental genomic exchange was overall very limited, consistent with long-term reproductive isolation since the initial colonization of North America. Based on continental divergence times in other carnivoran species pairs, our findings support a model of peripatric speciation and are consistent with the previous classification of the North American red fox as a distinct species, V. fulva.
https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain
This dataset contains information about the demographics of all US cities and census-designated places with a population greater or equal to 65,000. This data comes from the US Census Bureau's 2015 American Community Survey. This product uses the Census Bureau Data API but is not endorsed or certified by the Census Bureau.
This 2011 Population Census dataset contains statistics relevant to demographic, household, educational, economic and housing characteristics of the Hong Kong population residing in the 1620 Large Street Block Groups in 2011. The dataset also contains the boundaries of individual Large Street Block Groups. Since 1961, a population census has been conducted in Hong Kong every 10 years and a by-census in the middle of the intercensal period. The 2011 Population Census, which was conducted in June to August 2011, provides benchmark statistics on the socio-economic characteristics of the Hong Kong population vital to the planning and policy formulation of the government. This dataset will be incorporated into Population Distribution Framework Spatial Data Theme.
REVISED_ dataThe attached file is in ped format consists of 43421 markers of 848 animals after QC mentioned in the paper.REVISED_ dataMap file of the 43421 markers mentioned in the ped file.BioPed file of one population which consists of 44230 markers from 31 animals.BioMap file the 44230 markers ped file.
Mapping Layer Data Released: 06/15/2017, | Last Updated 04/20/2024Data Currency: This data is checked semi-annually from it's enterprise federal source fo 2010 CENSUS Data and will support mapping, analysis, data exports and the Open Geospatial Consortium (OGC) Application Programming Interface (API).Data Update Frequency: Twice, YearlyData Cycle | History (as required below)QA/QC Performed: December, 2024Next Scheduled Data QA/QC: July, 2024CDC PLACES (2010 CENSUS) FEATURE LAYERData Requester: Rhode Island Executive Office of Health and Human Service (OHHS) via Health Equity Institute (HEI).Data Requester: Rhode Island Department of Health, Maternal Child Health via Health Equity Institute (HEI).Data Request: Provide a database deliverable via download that contains both US CENSUS tracts and USPS Zip Code Tabulation Areas (ZCTA).HEALTH EQUITY INSTITUTE DATA CONNECT RI Using Modern GIS (Mapping)🡅 Click IT 🡅Facilitate transformative mapping visualizations that engage constituents and measure the impact of real-world solutions.Instructions to Join Your Data Provided Below STEP 1: Video (Pending)STEP 2: Video (Pending)STEP 3: Video (Pending)There are twenty-two U.S. CENSUS fields (download here) that you can join to your datasets. For additional insight, please contact the Center for Health Data and Analysis (CHDA) Rhode Island Department of Health (GIS) Mapping Department for assistance.Database Enhancement: This database contains two (2) additional data fields for consideration to be added to the existing 2020 State of Rhode Island Health Equity Map.Zip Code Tabulation Area (ZCTA)ZCTA/Tract Relationship (Singular ZCTAs per Tract, versus Multiple ZCTAs per Tract)Additional Information: While ZCTAs can be useful for certain qualitative purposes, such as broad or general high level analysis, they may not provide the level of granularity and accuracy required for in-depth demographic research which is required for policy mapping. ZCTAs can change frequently as the US Postal Service (USPS) adjusts postal routes and boundaries. These changes can lead to inconsistencies and challenges in tracking demographic trends and making accurate comparisons over time.RIDOH GIS encourages analysts to make the appropriate choice of using census based data, with their consistent boundaries readily available for suitability for spatial analysis when conducting detailed demographic research.Here are a few reasons why you might want to consider using census based data (tracts, block groups, and blocks) instead of ZCTAs:1. Inaccurate Representations: ZCTAs are not designed for statistical analysis or demographic research. They are created by the United States Postal Service (USPS) for efficient mail delivery and can often span multiple cities, counties, or even states. As a result, ZCTAs may not accurately represent the actual geographic boundaries or demographic characteristics of a specific area.2. Lack of Granularity: ZCTAs are typically larger than census tracts, which are smaller, more homogeneous geographic units defined by the U.S. Census Bureau. Census tracts are designed to be relatively consistent in terms of population size, allowing for more detailed analysis at a local level. ZCTAs, on the other hand, can vary significantly in terms of population size, making it challenging to draw precise conclusions about specific neighborhoods or communities.3. Data Availability and Compatibility: Census tracts are used by the U.S. Census Bureau to collect and report demographic data. Consequently, a wide range of demographic information, such as population counts, age distribution, income levels, and education levels, is readily available at the census tract level. In contrast, data specifically tailored to ZCTAs may be more limited, making it difficult to obtain comprehensive and consistent data for demographic analysis.4. Changes Over Time: Census tracts are relatively stable over time, allowing for consistent longitudinal analysis. ZCTAs, however, can change frequently as the USPS adjusts postal routes and boundaries. These changes can lead to inconsistencies and challenges in tracking demographic trends and making accurate comparisons over time.5. Spatial Analysis: Census tracts are designed to maintain a level of spatial proximity, adjacency, or connectedness of these data containers while providing consistency and continuity over time - making them useful for spatial analysis. Mapping. ZCTAs, on the other hand, may not exhibit the same level of spatial coherence due to their primary purpose being mail delivery efficiency rather than geographic representation.State Agencies - Contact RIDOH GIS - Learn More About Mapping Data Available at the Census Tract LevelRIDOH GIS releases this database with the caveats noted above and that the researcher can accurately align the ZCTAs with the corresponding census tracts. Careful consideration should be given to the comparability and compatibility of the data collected at different geographic levels to ensure valid and meaningful statistical conclusions. Data Dictionary: 2010 Decennial CensusOBJECT ID - the count of each census tract entity.GEOID (10) STATE,COUNTY,TRACT - Numeric US CENSUS Tract Description (2010) HEZ (10) - Health Equity Zone (2020)LOCATION (10) - Plain Language Census Tract Descriptor (2010)COUNTY (10) NAME - County Name (2010)STATE (10) NAME - State Name (2010)ZCTA (23) - Zip Code Tabulation Area - Numeric US CENSUS ZCTA Description (2023)ZCTA/TRACT CONTEXT - Number of ZCTAs (Singular/Multiple) that reside within a US CENSUS TractST (10) - Numeric US CENSUS Tract Description (2010) CO (10) - Numeric US CENSUS Tract Description (2010)ST (10) CO (10) - Numeric US CENSUS Tract Description (2010)TRACT (10) - Numeric US CENSUS Tract Description (2010)GEOID (10) - Numeric US CENSUS Tract Description (2010)TRIBAL TRACT (10) - Numeric US CENSUS Tract Description (2010)Additional Mapping DataThe user is provided authoritative Federal Information Processing Standards (FIPS) such as numeric descriptions of state, county and tract identification, in addition to shape and length measurements of each census tract for data joining purposes.STATE (10) - Federal Information Processing Standards (FIPS)COUNTY (10) - Federal Information Processing Standards (FIPS)STATE (10), COUNTY (10) - Federal Information Processing Standards (FIPS)TRACT (10) - Federal Information Processing Standards (FIPS)TRIBAL TRACT (10) - Federal Information Processing Standards (FIPS)ST ABBRV (10) - State AbbreviationShape_Length - Total length of the polygon's (census tract) perimeter, in the units used by the feature class' coordinate system.Shape_Area - Total area of the polygon's (census tract) in the units used by the feature class' coordinate system.Data Source: Series Information for 2020 Census 5-Digit ZIP Code Tabulation Area (ZCTA5) National TIGER/Line Shapefiles, Current Open Geospatial Consortium (OGC) Application Programming Interface (API) Census ZIP Code Tabulation Areas - OGC Features copy this link to embed it in OGC Compliant viewers. For more information, please visit: ZIP Code Tabulation Areas (ZCTAs)To Report Data Discrepancies Contact the Rhode Island Department of Health (RIDOH) GIS (mapping) OfficePlease Be Certain To --Provide a Brief Description of What the Discrepancy IsInclude Your, Name, Organization, Telephone NumberAttach the Complete .xlsx with the Discrepancy Highlighted
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Big Flats town population by year. The dataset can be utilized to understand the population trend of Big Flats town.
The dataset constitues the following datasets
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Table S13. Outgroup f3 statistic. (XLSX 305 kb)
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Population Estimate, Total, Hispanic or Latino, Black or African American Alone (5-year estimate) in Big Horn County, WY (B03002014E056003) from 2009 to 2023 about Big Horn County, WY; WY; African-American; latino; hispanic; estimate; persons; 5-year; population; and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
GAM model estimation results (assuming gamma distribution).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Pooled and agency-specific tests performed. Shaded cells indicate significance of adjusted p-value.
This study engaged 409 participants over a period spanning from July 10 to August 8, 2023, ensuring representation across various demographic factors: 221 females, 186 males, 2 non-binary, year of birth between 1951 and 2005, with varied annual incomes and from 15 Spanish regions. The MobileWell400+ dataset, openly accessible, encompasses a wide array of data collected via the participants' mobile phone, including demographic, emotional, social, behavioral, and well-being data. Methodologically, the project presents a promising avenue for uncovering new social, behavioral, and emotional indicators, supplementing existing literature. Notably, artificial intelligence is considered to be instrumental in analysing these data, discerning patterns, and forecasting trends, thereby advancing our comprehension of individual and population well-being. Ethical standards were upheld, with participants providing informed consent.
The following is a non-exhaustive list of collected data:
Data continuously collected through the participants' smartphone sensors: physical activity (resting, walking, driving, cycling, etc.), name of detected WiFi networks, connectivity type (WiFi, mobile, none), ambient light, ambient noise, and status of the device screen (on, off, locked, unlocked).
Data corresponding to an initial survey prompted via the smartphone, with information related to demographic data, effects and COVID vaccination, average hours of physical activity, and answers to a series of questions to measure mental health, many of them taken from internationally recognised psychological and well-being scales (PANAS, PHQ, GAD, BRS and AAQ), social isolation (TILS) and economic inequality perception.
Data corresponding to daily surveys prompted via the smartphone, where variables related to mood (valence, activation, energy and emotional events) and social interaction (quantity and quality) are measured.
Data corresponding to weekly surveys prompted via the smartphone, where information on overall health, hours of physical activity per week, lonileness, and questions related to well-being are asked.
Data corresponding to an final survey prompted via the smartphone, consisting of similar questions to the ones asked in the initial survey, namely psychological and well-being items (PANAS, PHQ, GAD, BRS and AAQ), social isolation (TILS) and economic inequality perception questions.
For a more detailed description of the study please refer to MobileWell400+StudyDescription.pdf.
For a more detailed description of the collected data, variables and data files please refer to MobileWell400+FilesDescription.pdf.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Big Stone Gap population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Big Stone Gap. The dataset can be utilized to understand the population distribution of Big Stone Gap by age. For example, using this dataset, we can identify the largest age group in Big Stone Gap.
Key observations
The largest age group in Big Stone Gap, VA was for the group of age 30 to 34 years years with a population of 602 (11.59%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Big Stone Gap, VA was the 85 years and over years with a population of 57 (1.10%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Big Stone Gap Population by Age. You can refer the same here