Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Context
Happiness and well-being are essential indicators of societal progress, often influenced by economic conditions such as GDP and inflation. This dataset combines data from the World Happiness Index (WHI) and inflation metrics to explore the relationship between economic stability and happiness levels across 148 countries from 2015 to 2023. By analyzing key economic indicators alongside social well-being factors, this dataset provides insights into global prosperity trends.
Content
This dataset is provided in CSV format and includes 16 columns, covering both happiness-related features and economic indicators such as GDP per capita, inflation rates, and corruption perception. The main columns include:
Happiness Score & Rank (World Happiness Index ranking per country) Economic Indicators (GDP per capita, inflation metrics) Social Factors (Freedom, Social Support, Generosity) Geographical Information (Country & Continent)
Acknowledgements
The dataset is created using publicly available data from World Happiness Report, Gallup World Poll, and the World Bank. It has been structured for research, machine learning, and policy analysis purposes.
Inspiration
How do economic factors like inflation, GDP, and corruption affect happiness? Can we predict a country's happiness score based on economic conditions? This dataset allows you to analyze these relationships and build models to predict well-being trends worldwide.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Inflation Expectations in the United States decreased to 3.20 percent in May from 3.60 percent in April of 2025. This dataset provides - United States Consumer Inflation Expectations- actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Inflation Rate in Norway increased to 3 percent in May from 2.50 percent in April of 2025. This dataset provides - Norway Inflation Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Price quote data (for locally collected data only) and consumption segment indices that underpin consumer price inflation statistics, giving users access to the detailed data that are used in the construction of the UK’s inflation figures. The data are being made available for research purposes only and are not an accredited official statistic. From October 2024, private school fees and part-time education classes have been included in the consumption segment indices file. For more information on the introduction of consumption segments, please see the Consumer Prices Indices Technical Manual, 2019. Note that this dataset was previously called the consumer price inflation item indices and price quotes dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The IMF has a great inflation database, but it relies on countries to provide their latest data to the IMF, and as such, it can be temporarily out of date. This database will keep the IMF inflation database up to date for African countries by scraping data from individual countries' websites as soon as they release their data and combining it with the latest IMF data. This Africa inflation database powers the ADH Inflation Observer. All 3 datasets found here contain the same data, but in different shapes to suit different applications.
This data package includes the underlying data and files to replicate the calculations, charts, and tables presented in Quantity Theory of Money Redux? Will Inflation Be the Legacy of Quantitative Easing?, PIIE Policy Brief 15-7. If you use the data, please cite as: Cline, William R. (2015). Quantity Theory of Money Redux? Will Inflation Be the Legacy of Quantitative Easing?. PIIE Policy Brief 15-7. Peterson Institute for International Economics.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Inflation Rate in Indonesia decreased to 1.60 percent in May from 1.95 percent in April of 2025. This dataset provides - Indonesia Inflation Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We report average expected inflation rates over the next one through 30 years. Our estimates of expected inflation rates are calculated using a Federal Reserve Bank of Cleveland model that combines financial data and survey-based measures. Released monthly.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household income across different racial categories in Good Hope. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to gain insights into economic disparities and trends and explore the variations in median houshold income for diverse racial categories.
Key observations
Based on our analysis of the distribution of Good Hope population by race & ethnicity, the population is predominantly White. This particular racial category constitutes the majority, accounting for 98.49% of the total residents in Good Hope. Notably, the median household income for White households is $69,063. Interestingly, White is both the largest group and the one with the highest median household income, which stands at $69,063.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Good Hope median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Inflation Rate in Canada decreased to 1.70 percent in April from 2.30 percent in March of 2025. This dataset provides - Canada Inflation Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for INFLATION RATE reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Food price inflation is an important metric to inform economic policy but traditional sources of consumer prices are often produced with delay during crises and only at an aggregate level. This may poorly reflect the actual price trends in rural or poverty-stricken areas, where large populations reside in fragile situations. This data set includes food price estimates and is intended to help gain insight in price developments beyond what can be formally measured by traditional methods. The estimates are generated using a machine-learning approach that imputes ongoing subnational price surveys, often with accuracy similar to direct measurement of prices. The data set provides new opportunities to investigate local price dynamics in areas where populations are sensitive to localized price shocks and where traditional data are not available.
The data cover the following areas: Afghanistan, Armenia, Bangladesh, Burkina Faso, Burundi, Cameroon, Central African Republic, Chad, Congo, Dem. Rep., Congo, Rep., Gambia, The, Guinea, Guinea-Bissau, Haiti, Indonesia, Iraq, Kenya, Lao PDR, Lebanon, Liberia, Libya, Malawi, Mali, Mauritania, Mozambique, Myanmar, Niger, Nigeria, Philippines, Senegal, Somalia, South Sudan, Sri Lanka, Sudan, Syrian Arab Republic, Yemen, Rep.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Glenmont. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2021
Based on our analysis ACS 2017-2021 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Glenmont, the median income for all workers aged 15 years and older, regardless of work hours, was $29,950 for males and $26,212 for females.
Based on these incomes, we observe a gender gap percentage of approximately 12%, indicating a significant disparity between the median incomes of males and females in Glenmont. Women, regardless of work hours, still earn 88 cents to each dollar earned by men, highlighting an ongoing gender-based wage gap.
- Full-time workers, aged 15 years and older: In Glenmont, among full-time, year-round workers aged 15 years and older, males earned a median income of $40,903, while females earned $30,176, leading to a 26% gender pay gap among full-time workers. This illustrates that women earn 74 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.Remarkably, across all roles, including non-full-time employment, women displayed a lower gender pay gap percentage. This indicates that Glenmont offers better opportunities for women in non-full-time positions.
https://i.neilsberg.com/ch/glenmont-oh-income-by-gender.jpeg" alt="Glenmont, OH gender based income disparity">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2022-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Glenmont median household income by gender. You can refer the same here
This data package includes the underlying data files to replicate the data, tables, and charts presented in Why Trump’s tariff proposals would harm working Americans, PIIE Policy Brief 24-1.
If you use the data, please cite as: Clausing, Kimberly, and Mary E. Lovely. 2024. Why Trump’s tariff proposals would harm working Americans. PIIE Policy Brief 24-1. Washington, DC: Peterson Institute for International Economics.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Core Inflation Rate MoM in the United States increased to 0.20 percent in April from 0.10 percent in March of 2025. This dataset includes a chart with historical data for the United States Core Inflation Rate MoM.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Selma township. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Selma township, the median income for all workers aged 15 years and older, regardless of work hours, was $49,000 for males and $27,031 for females.
These income figures highlight a substantial gender-based income gap in Selma township. Women, regardless of work hours, earn 55 cents for each dollar earned by men. This significant gender pay gap, approximately 45%, underscores concerning gender-based income inequality in the township of Selma township.
- Full-time workers, aged 15 years and older: In Selma township, among full-time, year-round workers aged 15 years and older, males earned a median income of $65,500, while females earned $48,958, leading to a 25% gender pay gap among full-time workers. This illustrates that women earn 75 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.Surprisingly, the gender pay gap percentage was higher across all roles, including non-full-time employment, for women compared to men. This suggests that full-time employment offers a more equitable income scenario for women compared to other employment patterns in Selma township.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Selma township median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Taft town. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2021
Based on our analysis ACS 2017-2021 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Taft town, the median income for all workers aged 15 years and older, regardless of work hours, was $52,244 for males and $29,388 for females.
These income figures highlight a substantial gender-based income gap in Taft town. Women, regardless of work hours, earn 56 cents for each dollar earned by men. This significant gender pay gap, approximately 44%, underscores concerning gender-based income inequality in the town of Taft town.
- Full-time workers, aged 15 years and older: In Taft town, among full-time, year-round workers aged 15 years and older, males earned a median income of $60,594, while females earned $42,426, leading to a 30% gender pay gap among full-time workers. This illustrates that women earn 70 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.Surprisingly, the gender pay gap percentage was higher across all roles, including non-full-time employment, for women compared to men. This suggests that full-time employment offers a more equitable income scenario for women compared to other employment patterns in Taft town.
https://i.neilsberg.com/ch/taft-wi-income-by-gender.jpeg" alt="Taft, Wisconsin gender based income disparity">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2022-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Taft town median household income by gender. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Unemployment Rate in the United States remained unchanged at 4.20 percent in May. This dataset provides the latest reported value for - United States Unemployment Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Inflation Rate in South Korea decreased to 1.90 percent in May from 2.10 percent in April of 2025. This dataset provides the latest reported value for - South Korea Inflation Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Perinton town. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2021
Based on our analysis ACS 2017-2021 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Perinton town, the median income for all workers aged 15 years and older, regardless of work hours, was $70,068 for males and $42,923 for females.
These income figures highlight a substantial gender-based income gap in Perinton town. Women, regardless of work hours, earn 61 cents for each dollar earned by men. This significant gender pay gap, approximately 39%, underscores concerning gender-based income inequality in the town of Perinton town.
- Full-time workers, aged 15 years and older: In Perinton town, among full-time, year-round workers aged 15 years and older, males earned a median income of $96,737, while females earned $72,268, leading to a 25% gender pay gap among full-time workers. This illustrates that women earn 75 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.Surprisingly, the gender pay gap percentage was higher across all roles, including non-full-time employment, for women compared to men. This suggests that full-time employment offers a more equitable income scenario for women compared to other employment patterns in Perinton town.
https://i.neilsberg.com/ch/perinton-ny-income-by-gender.jpeg" alt="Perinton, New York gender based income disparity">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2022-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Perinton town median household income by gender. You can refer the same here
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Context
Happiness and well-being are essential indicators of societal progress, often influenced by economic conditions such as GDP and inflation. This dataset combines data from the World Happiness Index (WHI) and inflation metrics to explore the relationship between economic stability and happiness levels across 148 countries from 2015 to 2023. By analyzing key economic indicators alongside social well-being factors, this dataset provides insights into global prosperity trends.
Content
This dataset is provided in CSV format and includes 16 columns, covering both happiness-related features and economic indicators such as GDP per capita, inflation rates, and corruption perception. The main columns include:
Happiness Score & Rank (World Happiness Index ranking per country) Economic Indicators (GDP per capita, inflation metrics) Social Factors (Freedom, Social Support, Generosity) Geographical Information (Country & Continent)
Acknowledgements
The dataset is created using publicly available data from World Happiness Report, Gallup World Poll, and the World Bank. It has been structured for research, machine learning, and policy analysis purposes.
Inspiration
How do economic factors like inflation, GDP, and corruption affect happiness? Can we predict a country's happiness score based on economic conditions? This dataset allows you to analyze these relationships and build models to predict well-being trends worldwide.