Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in the United States was last recorded at 4 percent. This dataset provides the latest reported value for - United States Fed Funds Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Sweden was last recorded at 1.75 percent. This dataset provides the latest reported value for - Sweden Interest Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
30 Year Mortgage Rate in the United States decreased to 6.23 percent in November 26 from 6.26 percent in the previous week. This dataset includes a chart with historical data for the United States 30 Year Mortgage Rate.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Source: From lending institutions and local authorities The loan payments dataset stops in 2007. The figures on fixed interest rate mortgages relate to mortgages which provide that the rate of interest may not be changed, or may only be changed at intervals of not less than one year. The most current data is published on these sheets. Previously published data may be subject to revision. Any change from the originally published data will be highlighted by a comment on the cell in question. These comments will be maintained for at least a year after the date of the value change.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Japan was last recorded at 0.50 percent. This dataset provides - Japan Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
Twitterhttps://www.gnu.org/licenses/gpl-3.0.htmlhttps://www.gnu.org/licenses/gpl-3.0.html
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F5445802%2F232b3878bd6f687f8337100be97a2059%2F2daa5d51-a570-4240-a994-21b429313d86.webp?generation=1702448669305664&alt=media" alt="">
The raw data that is used in this dataset is the basic OHLC time series dataset for a gold market of the last 20 years collected and verified from different exchanges. This dataset contains over 8677 daily candle prices (rows) and in order to make it wealthy, extra datasets were merged with it to provide more details to each data frame. The sub-datasets contain historical economic information such as interest rates, inflation rates, and others that are highly related and affecting the gold market movement.
Raw dataset:
Time Range: 1988-08-01 to 2023-11-10 Number of data entries: 4050 Number of features: 4 (open, high, low, close OHLC daily candle price)
What are done to prepare this dataset : 1. Starting Exploratory Data Analysis (EDA) for all the raw datasets. 2. Find and fill in missing days. 3. Merge all the datasets into one master dataset based on the time index. 4. Verify the merge process. 5. Check and remove Duplicates. 6. Check and fill in missing values. 7. Including the basic technical indicators and price moving averages. 8. Outliers Inspection and treatment by different methods. 9. Adding targets. 10. Feature Analysis to identify the importance of each feature. 11. Final check.
After data preparation and feature engineering:
Time Range: 1999-12-30 to 2023-10-01
Number of data entries: 8677
Number of featuers: 28
Features list: open, high, low, close (OHLC daily candle price) dxy_open, dxy_close, dxy_high, dxy_low, fred_fedfunds, usintr, usiryy (Ecnomic inducators) RSI, MACD, MACD_signal, MACD_hist, ADX, CCI (Technical indicators) ROC SMA_10, SMA_20, EMA_10, EMA_20, SMA_50, EMA_50, SMA_100, SMA_200, EMA_100, EMA_200 (Moving avrages)
Targets List: next_1_day_price next_3_day_price next_7_day_price next_30_day_price next_1_day_Price_Change next_3_day_Price_Change next_7_day_Price_Change next_30_day_Price_Change next_30_day_Price_Change next_1_day_price_direction( Up, Same ,Down) next_3_day_price_direction( Up, Same ,Down) next_7_day_price_direction( Up, Same ,Down) next_30_day_price_direction( Up, Same ,Down)
Abbreviations of Features: dxy = US Dollar Index fred_fedfunds= Effective Federal Funds Rate usintr= US Interest Rate usiryy= US Inflation Rate YOY RSI= Relative Strength Index MACD= Moving Average Convergence Divergence ADX= Avrerage Directional Index CCI=Commodity Channel Index ROC= Rate of Change SMA= Simple Moving Average EMA= Exponential Moving Average
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Fixed 30-year mortgage rates in the United States averaged 6.40 percent in the week ending November 21 of 2025. This dataset provides the latest reported value for - United States MBA 30-Yr Mortgage Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterThis dataset shows the average interest rates for U.S. Treasury securities for the most recent month compared with the same month of the previous year. The data is broken down by the various marketable and non-marketable securities. The summary page for the data provides links for monthly reports from 2001 through the current year. Average Interest Rates are calculated on the total unmatured interest-bearing debt. The average interest rates for total marketable, total non-marketable and total interest-bearing debt do not include the U.S. Treasury Inflation-Protected Securities.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains 30,000 rows of synthetic but highly realistic financial time-series data representing approximately 15 years of trading days. Each row corresponds to a single business day and includes key variables used in real financial modeling, such as open and close prices, trading volume, daily percent returns, and intraday volatility.
In addition to core trading features, this dataset includes widely-used technical indicators such as the 20-day Simple Moving Average (SMA-20), 50-day Simple Moving Average (SMA-50), and the popular Relative Strength Index (RSI-14). These indicators enable advanced quantitative analysis and machine-learning workflows such as regression forecasting, classification of market movement, algorithmic trading simulations, and trend modeling.
This dataset is ideal for:
Stock price prediction Trend and volatility modeling Time-series machine learning (LSTM, Prophet, ARIMA, Transformers) Quantitative finance teaching and learning Algorithmic trading strategy development Market simulation and risk analysis
All values are simulated using realistic market distributions and stochastic processes to closely resemble authentic stock data. The dataset is fully synthetic and safe for public use.
COLUMN DESCRIPTIONS
Date — The trading day of the observation. Open_Price — Starting price at market open. Close_Price — Final price at market close; often used as the main forecasting target. High_Price — Highest intraday price. Low_Price — Lowest intraday price. Volume — Total number of shares traded that day, representing market interest. Daily_Return_Pct — Percentage change from previous close; used for Up/Down classification. Volatility_Range — Intraday price range (High − Low); represents market energy or risk. Market_Cap — Synthetic market capitalization based on price; helps model scaling effects. SMA_20 — 20-day moving average; short-term trend indicator. SMA_50 — 50-day moving average; medium-term trend signal commonly used by traders. RSI_14 — 14-day Relative Strength Index; momentum indicator showing buying or selling pressure.
Facebook
Twitterhttps://www.focus-economics.com/terms-and-conditions/https://www.focus-economics.com/terms-and-conditions/
Monthly and long-term Brazil Interest Rate data: historical series and analyst forecasts curated by FocusEconomics.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This data set represents thousands of loans made through the Lending Club platform, which is a platform that allows individuals to lend to other individuals. Of course, not all loans are created equal. Someone who is a essentially a sure bet to pay back a loan will have an easier time getting a loan with a low interest rate than someone who appears to be riskier. And for people who are very risky? They may not even get a loan offer, or they may not have accepted the loan offer due to a high interest rate. It is important to keep that last part in mind, since this data set only represents loans actually made, i.e. do not mistake this data for loan applications!
A data frame with 10,000 observations on the following 55 variables.
Job title.
Number of years in the job, rounded down. If longer than 10 years, then this is represented by the value 10.
Two-letter state code.
The ownership status of the applicant's residence.
Annual income.
Type of verification of the applicant's income.
Debt-to-income ratio.
If this is a joint application, then the annual income of the two parties applying.
Type of verification of the joint income.
Debt-to-income ratio for the two parties.
Delinquencies on lines of credit in the last 2 years.
Months since the last delinquency.
Year of the applicant's earliest line of credit
Inquiries into the applicant's credit during the last 12 months.
Total number of credit lines in this applicant's credit history.
Number of currently open lines of credit.
Total available credit, e.g. if only credit cards, then the total of all the credit limits. This excludes a mortgage.
Total credit balance, excluding a mortgage.
Number of collections in the last 12 months. This excludes medical collections.
The number of derogatory public records, which roughly means the number of times the applicant failed to pay.
Months since the last time the applicant was 90 days late on a payment.
Number of accounts where the applicant is currently delinquent.
The total amount that the applicant has had against them in collections.
Number of installment accounts, which are (roughly) accounts with a fixed payment amount and period. A typical example might be a 36-month car loan.
Number of new lines of credit opened in the last 24 months.
Number of months since the last credit inquiry on this applicant.
Number of satisfactory accounts.
Number of current accounts that are 120 days past due.
Number of current accounts that are 30 days past due.
Number of currently active bank cards.
Total of all bank card limits.
Total number of credit card accounts in the applicant's history.
Total number of currently open credit card accounts.
Number of credit cards that are carrying a balance.
Number of mortgage accounts.
Percent of all lines of credit where the applicant was never delinquent.
a numeric vector
Number of bankruptcies listed in the public record for this applicant.
The category for the purpose of the loan.
The type of application: either individual or joint.
The amount of the loan the applicant received.
The number of months of the loan the applicant received.
Interest rate of the loan the applicant received.
Monthly payment for the loan the applicant received.
Grade associated with the loan.
Detailed grade associated with the loan.
Month the loan was issued.
Status of the loan.
Initial listing status of the loan. (I think this has to do with whether the lender provided the entire loan or if the loan is across multiple lenders.)
Dispersement method of the loan.
Current...
Facebook
TwitterThis table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Canada was last recorded at 2.25 percent. This dataset provides - Canada Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Germany was last recorded at 4.50 percent. This dataset provides - Germany Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterFocusEconomics' economic data is provided by official state statistical reporting agencies as well as our global network of leading banks, think tanks and consultancies. Our datasets provide not only historical data, but also Consensus Forecasts and individual forecasts from the aformentioned global network of economic analysts. This includes the latest forecasts as well as historical forecasts going back to 2010. Our global network consists of over 1000 world-renowned economic analysts from which we calculate our Consensus Forecasts. In this specific dataset you will find economic data for South Africa Interest Rate.
Facebook
TwitterThe I Bonds Interest Rates Table contains all fixed rates, inflation rates, and composite rates for all Series I savings bonds issued. The interest rate on a Series I savings bond changes every 6 months based on inflation. The rate can go up. The rate can go down. I bonds earn interest until the first of these events: You cash in the bond or the bond reaches 30 years old.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Pakistan was last recorded at 11 percent. This dataset provides - Pakistan Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In March 2024 Bitcoin BTC reached a new all-time high with prices exceeding 73000 USD marking a milestone for the cryptocurrency market This surge was due to the approval of Bitcoin exchange-traded funds ETFs in the United States allowing investors to access Bitcoin without directly holding it This development increased Bitcoin’s credibility and brought fresh demand from institutional investors echoing previous price surges in 2021 when Tesla announced its 15 billion investment in Bitcoin and Coinbase was listed on the Nasdaq By the end of 2022 Bitcoin prices dropped sharply to 15000 USD following the collapse of cryptocurrency exchange FTX and its bankruptcy which caused a loss of confidence in the market By August 2024 Bitcoin rebounded to approximately 64178 USD but remained volatile due to inflation and interest rate hikes Unlike fiat currency like the US dollar Bitcoin’s supply is finite with 21 million coins as its maximum supply By September 2024 over 92 percent of Bitcoin had been mined Bitcoin’s value is tied to its scarcity and its mining process is regulated through halving events which cut the reward for mining every four years making it harder and more energy-intensive to mine The next halving event in 2024 will reduce the reward to 3125 BTC from its current 625 BTC The final Bitcoin is expected to be mined around 2140 The energy required to mine Bitcoin has led to criticisms about its environmental impact with estimates in 2021 suggesting that one Bitcoin transaction used as much energy as Argentina Bitcoin’s future price is difficult to predict due to the influence of large holders known as whales who own about 92 percent of all Bitcoin These whales can cause dramatic market swings by making large trades and many retail investors still dominate the market While institutional interest has grown it remains a small fraction compared to retail Bitcoin is vulnerable to external factors like regulatory changes and economic crises leading some to believe it is in a speculative bubble However others argue that Bitcoin is still in its early stages of adoption and will grow further as more institutions and governments recognize its potential as a hedge against inflation and a store of value 2024 has also seen the rise of Bitcoin Layer 2 technologies like the Lightning Network which improve scalability by enabling faster and cheaper transactions These innovations are crucial for Bitcoin’s wider adoption especially for day-to-day use and cross-border remittances At the same time central bank digital currencies CBDCs are gaining traction as several governments including China and the European Union have accelerated the development of their own state-controlled digital currencies while Bitcoin remains decentralized offering financial sovereignty for those who prefer independence from government control The rise of CBDCs is expected to increase interest in Bitcoin as a hedge against these centralized currencies Bitcoin’s journey in 2024 highlights its growing institutional acceptance alongside its inherent market volatility While the approval of Bitcoin ETFs has significantly boosted interest the market remains sensitive to events like exchange collapses and regulatory decisions With the limited supply of Bitcoin and improvements in its transaction efficiency it is expected to remain a key player in the financial world for years to come Whether Bitcoin is currently in a speculative bubble or on a sustainable path to greater adoption will ultimately be revealed over time.
Facebook
TwitterA table that shows in detail by CUSIP, the interest rate, the STRIP CUSIP, maturity date, and amounts outstanding for securities held in unstripped form, stripped form and amount that have been reconstituted. STRIP stands for Separate Trading of Registered Interest and Principal of Securities. This is a security that has been stripped down into separate securities representing the principal and each interest payment. Each payment has its own identification number and can be traded individually. These securities are also known as zero-coupon bonds.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Norway was last recorded at 4 percent. This dataset provides the latest reported value for - Norway Interest Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in the United States was last recorded at 4 percent. This dataset provides the latest reported value for - United States Fed Funds Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.