Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">
A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?
Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The Federal Reserve sets interest rates to promote conditions that achieve the mandate set by the Congress — high employment, low and stable inflation, sustainable economic growth, and moderate long-term interest rates. Interest rates set by the Fed directly influence the cost of borrowing money. Lower interest rates encourage more people to obtain a mortgage for a new home or to borrow money for an automobile or for home improvement. Lower rates encourage businesses to borrow funds to invest in expansion such as purchasing new equipment, updating plants, or hiring more workers. Higher interest rates restrain such borrowing by consumers and businesses.
This dataset includes data on the economic conditions in the United States on a monthly basis since 1954. The federal funds rate is the interest rate at which depository institutions trade federal funds (balances held at Federal Reserve Banks) with each other overnight. The rate that the borrowing institution pays to the lending institution is determined between the two banks; the weighted average rate for all of these types of negotiations is called the effective federal funds rate. The effective federal funds rate is determined by the market but is influenced by the Federal Reserve through open market operations to reach the federal funds rate target. The Federal Open Market Committee (FOMC) meets eight times a year to determine the federal funds target rate; the target rate transitioned to a target range with an upper and lower limit in December 2008. The real gross domestic product is calculated as the seasonally adjusted quarterly rate of change in the gross domestic product based on chained 2009 dollars. The unemployment rate represents the number of unemployed as a seasonally adjusted percentage of the labor force. The inflation rate reflects the monthly change in the Consumer Price Index of products excluding food and energy.
The interest rate data was published by the Federal Reserve Bank of St. Louis' economic data portal. The gross domestic product data was provided by the US Bureau of Economic Analysis; the unemployment and consumer price index data was provided by the US Bureau of Labor Statistics.
How does economic growth, unemployment, and inflation impact the Federal Reserve's interest rates decisions? How has the interest rate policy changed over time? Can you predict the Federal Reserve's next decision? Will the target range set in March 2017 be increased, decreased, or remain the same?
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
30 Year Mortgage Rate in the United States decreased to 6.23 percent in November 26 from 6.26 percent in the previous week. This dataset includes a chart with historical data for the United States 30 Year Mortgage Rate.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Sweden was last recorded at 1.75 percent. This dataset provides the latest reported value for - Sweden Interest Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Annual house price inflation, simple and mix-adjusted average house prices, by dwelling, type of buyer, number of transactions, mortgage advances, distribution of borrowers' ages/incomes, interest rates, land prices, average valuations, Land Registry data
Facebook
TwitterHouse price index is based on average new house price value at loan approval stage and therefore has not been adjusted for changes in the mix of houses and apartments sold. Interest rates is based on building societies mortgage loans, published by Central Statistics Office up to 2007. From 2008 interest rates is average rate of all 'mortgage lenders' reporting to the Central Bank. From 2014 it is based on the floating rate for new customers as published by the Central Bank (Retail interest rates - Table B2.1). The reason for the drop between 2013 and 2014 is due to the difference in methodology - the 2014 data is the weighted average rate on new loan agreements. Further information can be found here: http://www.centralbank.ie/polstats/stats/cmab/Documents/Retail_Interest_Rate_Statistics_Explanatory_Notes.pdf Earnings is based on the average weekly earnings of adult workers in manufacturing industries, published by the Central Statistics Office. This series has been updated since 1996 using a new methodology and therefore it is not directly comparable with those for earlier years. House Construction Cost Index is based on the 1st day of the third month of each quarter. Consumer Price index is based on the Consumer Price Index, published by the Central Statistics Office. The most current data is published on these sheets. Previously published data may be subject to revision. Any change from the originally published data will be highlighted by a comment on the cell in question. These comments will be maintained for at least a year after the date of the value change.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By [source]
This dataset explores the potential relationship between art presence and property prices in London neighborhoods. We conducted an analysis to investigate this by measuring the proportion of Flickr photographs with the keyword ‘art’ attached. We then compared that data to residential property price gains for each Inner London neighborhood, seeking out any associations or correlations between art presence and housing value. Our findings demonstrate the impact of aesthetics on neighborhoods, illustrating how visual environment influences socio-economic conditions. With this dataset, we aim to show how online platforms can be leveraged for quantitative data collection and analysis which can visualize these relationships so as to better understand our urban settings
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset can be used to investigate the relationship between art presence and property prices in London neighborhoods. The dataset includes three columns – Postcode.District, Rank.Mean.Change, and Proportion.Art.Photos – which provide quantitative analyses of the association between art presence and price gains for London neighborhoods.
To use this dataset, first identify the postcode district for which you wish to access data by referencing a street list or PostCodeSearcher website that outlines postcodes for each neighborhood in London(http://postcodesearcher.com/london). This will allow you to easily find properties within each neighborhood as there are specific postcode districts that demarcate boundaries of particular areas (for example W2 covers Bayswater).
Once you have identified a postcode district of interest, review the ‘Rank.Mean Change’ column to explore how residential property prices have changed relative to other areas in Inner London since 2010-13 using fractions (1 = highest gain; 25 = lowest gain). Focusing on one particular location will also provide an idea about their current pricing level compared with others in order to evaluate whether further investment is worthwhile or not based on its past history of growth rates . It is important to note that higher rank numbers indicate higher price gains while lower rank numbers indicate lower price gains relative with respect from 2010-13 timeframe therefore comparing these values across many neighborhoods gives an indication as what area offers more value growth wise over given time period..
Finally pay attention how much did art contributes as far change in property price goes? To answer this question , review ‘Proportion Art Photos’ column which provides ratio of Flickr photographs associated with keyword 'art' attached within given regions helps identify visual characteristics within different localities.. Comparing proportions across various locations provide detail information regarding how much did share visual aesthetic characterstics impacts change in pricings accross different region.. For example it can give us further understandings if majority photographs are made up of urban landscape , abstracts or simply portrait presences had any role play when we look at relativity gains over past few years? Such comparisons help inform our understanding about potential impact art presence can have on changes stay relatively stable even during volatile market times..
By combining this data with other datasets related to demographics, infrastructure and socioeconomics present within londons different areas we can gain further insight which then allows us making informed decisions when it comes investing particular locations .
- Use this dataset to develop a predictive analytics model to identify areas in London most likely to experience an increase in residential property prices associated with the presence of art.
- Use this dataset to develop strategies and policies that promote both artistic expression and urban development in Inner London neighborhoods.
- Compare the presence of art across inner London boroughs, as well as against other cities, to gain insight into the socio-economic conditions related to the visual environment of a city and its impact on life quality for citizens
If you use this dataset in your research, please credit the original authors. Data Source
**License: [CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication](https://creativecommons.org/publicd...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Lower Limit of First Home Mortgage Rate: above LPR: Beijing data was reported at -0.450 % Point in 02 Dec 2025. This stayed constant from the previous number of -0.450 % Point for 01 Dec 2025. Lower Limit of First Home Mortgage Rate: above LPR: Beijing data is updated daily, averaging 0.550 % Point from Oct 2019 (Median) to 02 Dec 2025, with 2248 observations. The data reached an all-time high of 0.550 % Point in 25 Jun 2024 and a record low of -0.450 % Point in 02 Dec 2025. Lower Limit of First Home Mortgage Rate: above LPR: Beijing data remains active status in CEIC and is reported by The People's Bank of China. The data is categorized under China Premium Database’s Money Market, Interest Rate, Yield and Exchange Rate – Table CN.MA: Lower Limit of First Home Mortgage Rate: Prefecture Level City. After adjustment on December 15, 2023: the lower limits of the first and second sets of interest rate policies in the six districts of the city are respectively no less than the market quoted interest rate for loans of the corresponding period plus 10 basis points, and no less than the market quoted interest rate for loans of the corresponding period plus 60 basis points; The lower limits of the first and second sets of interest rate policies in the six non-urban districts are not lower than the market quoted interest rate for loans of the corresponding period, and not lower than the market quoted interest rate for loans of the corresponding period plus 55 basis points.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
House Price Index YoY in the United States decreased to 1.70 percent in September from 2.40 percent in August of 2025. This dataset includes a chart with historical data for the United States FHFA House Price Index YoY.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Spain Housing Market Indicators: Interest Rate for Loans to Households for House Purchase data was reported at 2.180 % pa in May 2018. This records a decrease from the previous number of 2.210 % pa for Apr 2018. Spain Housing Market Indicators: Interest Rate for Loans to Households for House Purchase data is updated monthly, averaging 4.920 % pa from Jan 1989 (Median) to May 2018, with 353 observations. The data reached an all-time high of 17.050 % pa in Jan 1991 and a record low of 2.050 % pa in Dec 2017. Spain Housing Market Indicators: Interest Rate for Loans to Households for House Purchase data remains active status in CEIC and is reported by Bank of Spain. The data is categorized under Global Database’s Spain – Table ES.EB003: Housing Market Indicators.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Canada was last recorded at 2.25 percent. This dataset provides - Canada Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Operating-Income Time Series for Japan Real Estate Investment Corp. Japan Real Estate Investment Corporation (the "Company") was established on May 11, 2001 pursuant to Japan's Act on Investment Trusts and Investment Corporations ("ITA"). The Company was listed on the real estate investment trust market of the Tokyo Stock Exchange ("TSE") on September 10, 2001 (Securities Code: 8952). Since its IPO, the size of the Company's assets (total acquisition price) has grown steadily, expanding from 92.8 billion yen to 1,167.7 billion yen as of March 31, 2025. Over the same period, the Company's portfolio has also increased from 20 properties to 77 properties. During the March 2025 period (October 1, 2024 to March 31, 2025), the Japanese economy continued to demonstrate a gradual recovery, despite some lingering stagnation in capital investment and personal consumption due to inflation and other factors. On the other hand, given the policy rate hikes by the Bank of Japan, the shift in global interest rates to a lowering phase, the impact of U.S. policy trends, such as trade policy and other factors, interest rate trends, overseas political and economic developments, and price trends, including resource prices, will continue to bear watching. In the office leasing market, demand continues to grow for leases driven by business expansion and relocations aimed at improving location. As a result, the vacancy rate in central Tokyo continues to decline gradually. In addition, rent levels are rising at an accelerating rate. In light of the prevailing conditions in the leasing market, the Company is striving to attract new tenants through strategic leasing activities and to further enhance the satisfaction level of existing tenants by adding value to its portfolio properties with the aim of maintaining and improving the occupancy rate and realizing sustainable income growth across the entire portfolio. In the real estate trading market, despite the Bank of Japan normalizing its monetary policy, the appetite for property acquisition among both domestic and foreign investors remains firm, backed ma
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Begin-Period-Cashflow Time Series for Japan Real Estate Investment Corp. Japan Real Estate Investment Corporation (the "Company") was established on May 11, 2001 pursuant to Japan's Act on Investment Trusts and Investment Corporations ("ITA"). The Company was listed on the real estate investment trust market of the Tokyo Stock Exchange ("TSE") on September 10, 2001 (Securities Code: 8952). Since its IPO, the size of the Company's assets (total acquisition price) has grown steadily, expanding from 92.8 billion yen to 1,167.7 billion yen as of March 31, 2025. Over the same period, the Company's portfolio has also increased from 20 properties to 77 properties. During the March 2025 period (October 1, 2024 to March 31, 2025), the Japanese economy continued to demonstrate a gradual recovery, despite some lingering stagnation in capital investment and personal consumption due to inflation and other factors. On the other hand, given the policy rate hikes by the Bank of Japan, the shift in global interest rates to a lowering phase, the impact of U.S. policy trends, such as trade policy and other factors, interest rate trends, overseas political and economic developments, and price trends, including resource prices, will continue to bear watching. In the office leasing market, demand continues to grow for leases driven by business expansion and relocations aimed at improving location. As a result, the vacancy rate in central Tokyo continues to decline gradually. In addition, rent levels are rising at an accelerating rate. In light of the prevailing conditions in the leasing market, the Company is striving to attract new tenants through strategic leasing activities and to further enhance the satisfaction level of existing tenants by adding value to its portfolio properties with the aim of maintaining and improving the occupancy rate and realizing sustainable income growth across the entire portfolio. In the real estate trading market, despite the Bank of Japan normalizing its monetary policy, the appetite for property acquisition among both domestic and foreign investors remains firm, backed ma
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Lower Limit of First Home Mortgage Rate: above LPR: Fujian: Fuzhou data was reported at -0.200 % Point in 02 Apr 2024. This stayed constant from the previous number of -0.200 % Point for 01 Apr 2024. Lower Limit of First Home Mortgage Rate: above LPR: Fujian: Fuzhou data is updated daily, averaging 0.000 % Point from Oct 2019 (Median) to 02 Apr 2024, with 1639 observations. The data reached an all-time high of 0.000 % Point in 18 May 2022 and a record low of -0.200 % Point in 02 Apr 2024. Lower Limit of First Home Mortgage Rate: above LPR: Fujian: Fuzhou data remains active status in CEIC and is reported by The People's Bank of China. The data is categorized under China Premium Database’s Money Market, Interest Rate, Yield and Exchange Rate – Table CN.MA: Lower Limit of First Home Mortgage Rate: Prefecture Level City.
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Comprehensive proprietary research analyzing 312,367 assumable mortgage homes from 2023-2025 across all 50 states, including interest rates, savings analysis, state distribution, price ranges, and down payment requirements.
Facebook
TwitterThe Chinese economy has undergone a long-term transition reform, but there is still a planned economy characteristic in the financial sector, which is financial repression. Due to the existence of financial repression, China’s actual interest rate level should be lower than the Consumer Price Index (CPI). However, based on official China’s interest rates and CPI, over half of the years China’s actual interest rate remained higher than CPI by our calculation from 1999 to 2022. This is inconsistent with the financial repression that exists in China, and the main reason is the calculation methods of China’s CPI. China’s CPI measurement system originated from the planned economy era, which did not fully consider the rise in housing purchase prices, so the current CPI measurement system can be more realistically presented by taking the rise in housing prices into consider. The core idea of this study is to mining relevant official statistical data and calculate the proportion of Chinese residents’ expenditure on purchasing houses to their total expenditure. By taking the proportion of house purchases as the weight of house price factor, and taking the proportion of other consumption as the weight of official CPI, the Generalized CPI (GCPI) is formulated. The GCPI is then compared with market interest rates to determine the actual interest rate situation in China over the past 20 years. This study has found that if GCPI is used as a measure, China’s real interest rates have been negative for most years since 1999. Chinese residents have suffered the negative effects of financial repression over the past 20 years, and their property income cannot keep up with the actual losses caused by inflation. Therefore, it is believed that China’s CPI calculation method should be adjusted to take into account the rise in housing prices, so China’s actual inflation level could be more accurately reflected. In view of the above, deepening interest rate marketization reform and expand channels for financial investment are the future development goals of China’s financial system.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Lower Limit of First Home Mortgage Rate: Base Rate Discount: Fujian: Zhangzhou data was reported at 70.000 % in 07 Oct 2019. This stayed constant from the previous number of 70.000 % for 06 Oct 2019. Lower Limit of First Home Mortgage Rate: Base Rate Discount: Fujian: Zhangzhou data is updated daily, averaging 70.000 % from Jan 2019 (Median) to 07 Oct 2019, with 280 observations. The data reached an all-time high of 70.000 % in 07 Oct 2019 and a record low of 70.000 % in 07 Oct 2019. Lower Limit of First Home Mortgage Rate: Base Rate Discount: Fujian: Zhangzhou data remains active status in CEIC and is reported by The People's Bank of China. The data is categorized under China Premium Database’s Money Market, Interest Rate, Yield and Exchange Rate – Table CN.MA: Lower Limit of First Home Mortgage Rate: Prefecture Level City.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Pretax-Margin Time Series for Japan Real Estate Investment Corp. Japan Real Estate Investment Corporation (the "Company") was established on May 11, 2001 pursuant to Japan's Act on Investment Trusts and Investment Corporations ("ITA"). The Company was listed on the real estate investment trust market of the Tokyo Stock Exchange ("TSE") on September 10, 2001 (Securities Code: 8952). Since its IPO, the size of the Company's assets (total acquisition price) has grown steadily, expanding from 92.8 billion yen to 1,167.7 billion yen as of March 31, 2025. Over the same period, the Company's portfolio has also increased from 20 properties to 77 properties. During the March 2025 period (October 1, 2024 to March 31, 2025), the Japanese economy continued to demonstrate a gradual recovery, despite some lingering stagnation in capital investment and personal consumption due to inflation and other factors. On the other hand, given the policy rate hikes by the Bank of Japan, the shift in global interest rates to a lowering phase, the impact of U.S. policy trends, such as trade policy and other factors, interest rate trends, overseas political and economic developments, and price trends, including resource prices, will continue to bear watching. In the office leasing market, demand continues to grow for leases driven by business expansion and relocations aimed at improving location. As a result, the vacancy rate in central Tokyo continues to decline gradually. In addition, rent levels are rising at an accelerating rate. In light of the prevailing conditions in the leasing market, the Company is striving to attract new tenants through strategic leasing activities and to further enhance the satisfaction level of existing tenants by adding value to its portfolio properties with the aim of maintaining and improving the occupancy rate and realizing sustainable income growth across the entire portfolio. In the real estate trading market, despite the Bank of Japan normalizing its monetary policy, the appetite for property acquisition among both domestic and foreign investors remains firm, backed ma
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Lower Limit of First Home Mortgage Rate: above LPR: Fujian: Zhangzhou data was reported at -0.500 % Point in 28 May 2024. This stayed constant from the previous number of -0.500 % Point for 27 May 2024. Lower Limit of First Home Mortgage Rate: above LPR: Fujian: Zhangzhou data is updated daily, averaging 0.000 % Point from Oct 2019 (Median) to 28 May 2024, with 1695 observations. The data reached an all-time high of 0.000 % Point in 18 May 2022 and a record low of -0.500 % Point in 28 May 2024. Lower Limit of First Home Mortgage Rate: above LPR: Fujian: Zhangzhou data remains active status in CEIC and is reported by The People's Bank of China. The data is categorized under China Premium Database’s Money Market, Interest Rate, Yield and Exchange Rate – Table CN.MA: Lower Limit of First Home Mortgage Rate: Prefecture Level City.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset contains synthetic real estate transaction data for neighborhoods in the Vancouver metropolitan area, covering the period from 2004 to 2024. The dataset simulates market trends, house price fluctuations, and contains features commonly associated with real estate listings, such as property type, number of bedrooms, bathrooms, square footage, and more. No real-world data is used; this dataset is entirely computer-generated for educational and demonstration purposes.
The dataset includes additional features such as:
A price surge from late 2020 to early 2022 to reflect real-world trends during that period of low-interest rates.
Randomly introduced outliers and noise to simulate abnormal transactions, such as significantly higher or lower sale prices.
This dataset can be used for educational purposes, machine learning projects, and time series forecasting demonstrations. It is a great tool for practicing data cleaning, exploratory data analysis (EDA), feature engineering, and modeling in the context of real estate.
Columns:
Neighborhood: The neighborhood where the property is located, broken down by cities in Vancouver (e.g., Kitsilano, Mount Pleasant, Guildford).
Year: Year of the transaction (2004-2024).
Season: Season of the year (Spring, Summer, Fall, Winter).
Property Type: Type of the property (House, Condo, Townhouse, Duplex, Triplex).
Bedrooms: Number of bedrooms in the property.
Bathrooms: Number of bathrooms in the property.
Year Built: The year the property was built.
Renovation Year: Year of the most recent renovation, if applicable.
Garage Type: Type of garage (None, Single, Double, Triple).
Square Footage (House): The size of the house in square feet.
Square Footage (Land): The size of the land in square feet.
Basement: Whether the basement is finished or not (Finished, Not Finished).
Legal Units: Number of legal units in the property (e.g., 0-2).
Market Price: The market price of the property for the given year and season, including random noise and seasonal fluctuations.
Usage Notes:
This dataset is synthetic and does not represent actual transactions. It is intended for educational purposes and should not be used for real-world financial or investment decisions.
It can be used for projects focused on time series forecasting, regression analysis, and data visualization.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">
A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?
Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.