Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
30 Year Mortgage Rate in the United States decreased to 6.23 percent in November 26 from 6.26 percent in the previous week. This dataset includes a chart with historical data for the United States 30 Year Mortgage Rate.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Fixed 30-year mortgage rates in the United States averaged 6.40 percent in the week ending November 21 of 2025. This dataset provides the latest reported value for - United States MBA 30-Yr Mortgage Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The interest rate set by the Federal Reserve is a crucial tool for promoting economic conditions that meet the mandate established by the United States Congress, which includes high employment, low and stable inflation, sustainable economic growth, and the moderation of long-term interest rates. The interest rates determined by the Fed directly influence the cost of credit, making financing either more accessible or more restrictive. When interest rates are low, there is a greater incentive for consumers to purchase homes through mortgages, finance automobiles, or undertake home renovations. Additionally, businesses are encouraged to invest in expanding their operations, whether by purchasing new equipment, modernizing facilities, or hiring more workers. Conversely, higher interest rates tend to curb such activity, discouraging borrowing and slowing economic expansion.
The dataset analyzed contains information on the economic conditions in the United States on a monthly basis since 1954, including the federal funds rate, which represents the percentage at which financial institutions trade reserves held at the Federal Reserve with each other in the interbank market overnight. This rate is determined by the market but is directly influenced by the Federal Reserve through open market operations to reach the established target. The Federal Open Market Committee (FOMC) meets eight times a year to determine the federal funds rate target, which has been defined within a range with upper and lower limits since December 2008.
Furthermore, real Gross Domestic Product (GDP) is calculated based on the seasonally adjusted quarterly rate of change in the economy, using chained 2009 dollars as a reference. The unemployment rate represents the seasonally adjusted percentage of the labor force that is unemployed. Meanwhile, the inflation rate is determined by the monthly change in the Consumer Price Index, excluding food and energy prices for a more stable analysis of core inflation.
The interest rate data was sourced from the Federal Reserve Bank of St. Louis' economic data portal, while GDP information was provided by the U.S. Bureau of Economic Analysis, and unemployment and inflation data were made available by the U.S. Bureau of Labor Statistics.
The analysis of this data helps to understand how economic growth, the unemployment rate, and inflation influence the Federal Reserve’s monetary policy decisions. Additionally, it allows for a study of the evolution of interest rate policies over time and raises the question of how predictable the Fed’s future decisions may be. Based on observed trends, it is possible to speculate whether the target range set in March 2017 will be maintained, lowered, or increased, considering the prevailing economic context and the challenges faced in conducting U.S. monetary policy.
Facebook
TwitterZillow's Economic Research Team collects, cleans and publishes housing and economic data from a variety of public and proprietary sources. Public property record data filed with local municipalities -- including deeds, property facts, parcel information and transactional histories -- forms the backbone of our data products, and is fleshed out with proprietary data derived from property listings and user behavior on Zillow.
The large majority of Zillow's aggregated housing market and economic data is made available for free download at zillow.com/data.
Variable Availability:
Zillow Home Value Index (ZHVI): A smoothed seasonally adjusted measure of the median estimated home value across a given region and housing type. A dollar denominated alternative to repeat-sales indices. Find a more detailed methodology here: http://www.zillow.com/research/zhvi-methodology-6032/
Zillow Rent Index (ZRI): A smoothed seasonally adjusted measure of the median estimated market rate rent across a given region and housing type. A dollar denominated alternative to repeat-rent indices. Find a more detailed methodology here: http://www.zillow.com/research/zillow-rent-index-methodology-2393/
For-Sale Listing/Inventory Metrics: Zillow provides many variables capturing current and historical for-sale listings availability, generally from 2012 to current. These variables include median list prices and inventory counts, both by various property types. Variables capturing for-sale market competitiveness including share of listings with a price cut, median price cut size, age of inventory, and the days a listing spend on Zillow before the sale is final.
Home Sales Metrics: Zillow provides data on sold homes including median sale price by various housing types, sale counts (methodology here: http://www.zillow.com/research/home-sales-methodology-7733/), and a normalized view of sale volume referred to as turnover. The prevalence of foreclosures is also provided as ratio of the housing stock and the share of all sales in which the home was previously foreclosed upon.
For-Rent Listing Metrics: Zillow provides median rents prices and median rent price per square foot by property type and bedroom count.
Housing type definitions:
All Homes: Zillow defines all homes as single-family, condominium and co-operative homes with a county record. Unless specified, all series cover this segment of the housing stock.
Condo/Co-op: Condominium and co-operative homes.
Multifamily 5+ units: Units in buildings with 5 or more housing units, that are not a condominiums or co-ops.
Duplex/Triplex: Housing units in buildings with 2 or 3 housing units.
Tiers: By metro, we determine price tier cutoffs that divide the all homes housing stock into thirds using the full distribution of estimated home values. We then estimate real estate metrics within the property sets, Bottom, Middle, and Top, defined by these cutoffs. When reported at the national level, all Bottom Tier homes defined at the metro level are pooled together to form the national bottom tier. The same holds for Middle and Top Tier homes.
Regional Availability:
Zillow metrics are reported for common US geographies including Nation, State, Metro (2013 Census Defined CBSAs), County, City, ZIP code, and Neighborhood.
We provide a crosswalk between colloquial Zillow region names and federally defined region names and linking variables such as County FIPS codes and CBSA codes. Cities and Neighborhoods do not match standard jurisdictional boundaries. Zillow city boundaries reflect mailing address conventions and so are often visually similar to collections of ZIP codes. Zillow neighborhood boundaries can be found here.
Suppression Rules: To ensure reliability of reported values the Zillow Economic Research team applies suppression rules triggered by low sample sizes and excessive volatility. These rules are customized to the metric and region type and explain most missingness found in the provided datasets.
Additional Data Products
The following data products and more are available for free download exclusively at [Zillow.com/Data][1]:
The mission of the Zillow Economic Research Team is to be the most open, authoritative source for timely and accurate housing data and unbiased insight. We...
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
BUSINESS PROBLEM-1 BACKGROUND: The Lending Club is a peer-to-peer lending site where members make loans to each other. The site makes anonymized data on loans and borrowers publicly available. BUSINESS PROBLEM: Using lending club loans data, the team would like to test below hypothesis on how different factors effecing each other (Hint: You may leverage hypothesis testing using statistical tests) a. Intrest rate is varied for different loan amounts (Less intrest charged for high loan amounts) b. Loan length is directly effecting intrest rate. c. Inrest rate varies for different purpose of loans d. There is relationship between FICO scores and Home Ownership. It means that, People with owning home will have high FICO scores. DATA AVAILABLE: LoansData.csv The data have the following variables (with data type and explanation of meaning) Amount.Requested - numeric. The amount (in dollars) requested in the loan application. Amount.Funded.By.Investors - numeric. The amount (in dollars) loaned to the individual. Interest.rate – character. The lending interest rate charged to the borrower. Loan.length - character. The length of time (in months) of the loan. Loan.Purpose – categorical variable. The purpose of the loan as stated by the applicant. Debt.to.Income.Ratio – character. The % of consumer’s gross income going toward paying debts. State - character. The abbreviation for the U.S. state of residence of the loan applicant. Home.ownership - character. Indicates whether the applicant owns, rents, or has a mortgage. Monthly.income - categorical. The monthly income of the applicant (in dollars). FICO.range – categorical (expressed as a string label e.g. “650-655”). A range indicating the applicants FICO score. Open.CREDIT.Lines - numeric. The number of open lines of credit at the time of application. Revolving.CREDIT.Balance - numeric. The total amount outstanding all lines of credit. Inquiries.in.the.Last.6.Months - numeric. Number of credit inquiries in the previous 6 months. Employment.Length - character. Length of time employed at current job.
BUSINESS PROBLEM - 2 BACKGROUND: When an order is placed by a customer of a small manufacturing company, a price quote must be developed for that order. Because each order is unique, quotes must be established on an order-by-order basis by a pricing expert. The price quote process is laborintensive, as prices depend on many factors such as the part number, customer, geographic location, market, and order volume. The sales department manager is concerned that the pricing process is too complex, and that there might be too much variability in the quoted prices. An improvement team is tasked with studying and improving the pricing process. After interviewing experts to develop a better understanding of the current process, the team designed a study to determine if there is variability between pricing experts. That is, do different pricing experts provide different price quotes? Two randomly selected pricing experts, Mary and Barry, were asked to independently provide prices for twelve randomly selected orders. Each expert provided one price for each of the twelve orders. BUSINESS PROBLEM: We would like to assess if there is any difference in the average price quotes provided by Mary and Barry. DATA AVAILABLE: Price_Quotes.csv The data set contains the order number, 1 through 12, and the price quotes by Mary and Barry for each order. Each row in the data set is the same order. Thus, Mary and Barry produced quotes for the same orders. BUSINESS PROBLEM-3: BACKGROUND: The New Life Residential Treatment Facility is a NGO that treatsteenagers who have shown signs of mental illness. It provides housing and supervision of teenagers who are making the transition from psychiatric hospitals back into the community. Because many of the teenagers were severely abused as children and have been involved with the juvenile justice system, behavioral problems are common at New Life. Employee pay is low and staff turnover (attrition) is high. A reengineering program wasinstituted at New Life with the goals of lowering behavioral problems of the kids and decreasing employee turnover rates. As a part of this effort, the following changes were made: Employee shifts were shortened from 10 hours to 8 hours each day. Employees were motivated to become more involved in patient treatments. This included encouraging staff to run varioustherapeutic treatment sessions and allowing staff to have more say in program changes. The activities budget wasincreased. A facility-wide performance evaluation system was putinto place that rewarded staff participation andinnovation. Management and staff instituted a program designed to raise expectations about appropriate behavior from the kids. Thisincluded strict compliance with reporting of behavioral violations, insistence o...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Sweden was last recorded at 1.75 percent. This dataset provides the latest reported value for - Sweden Interest Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Norway was last recorded at 4 percent. This dataset provides the latest reported value for - Norway Interest Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Mortgage Application in the United States increased by 0.20 percent in the week ending November 21 of 2025 over the previous week. This dataset provides - United States MBA Mortgage Applications - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in China was last recorded at 3 percent. This dataset provides the latest reported value for - China Interest Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Germany was last recorded at 4.50 percent. This dataset provides - Germany Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Mexico was last recorded at 7.25 percent. This dataset provides - Mexico Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in India was last recorded at 5.50 percent. This dataset provides - India Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Mortgage Rate in Australia decreased to 5.51 percent in September from 5.52 percent in August of 2025. This dataset includes a chart with historical data for Australia Mortgage Rate.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Netherlands was last recorded at 4.50 percent. This dataset provides - Netherlands Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Philippines was last recorded at 4.75 percent. This dataset provides the latest reported value for - Philippines Interest Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for INTEREST RATE reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Australia was last recorded at 3.60 percent. This dataset provides - Australia Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Bank Lending Rate in Germany increased to 3.95 percent in September from 3.92 percent in August of 2025. This dataset provides the latest reported value for - Germany Bank Lending Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Mortgage Rate in the United Kingdom remained unchanged at 6.78 percent in October. This dataset provides - United Kingdom BBA Mortgage Rate- actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Mortgage Approvals in the United Kingdom decreased to 65.02 Thousand in October from 65.65 Thousand in September of 2025. This dataset provides the latest reported value for - United Kingdom Mortgage Approvals - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
30 Year Mortgage Rate in the United States decreased to 6.23 percent in November 26 from 6.26 percent in the previous week. This dataset includes a chart with historical data for the United States 30 Year Mortgage Rate.