Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in the United States was last recorded at 4.50 percent. This dataset provides the latest reported value for - United States Fed Funds Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
30 Year Mortgage Rate in the United States decreased to 6.63 percent in August 7 from 6.72 percent in the previous week. This dataset includes a chart with historical data for the United States 30 Year Mortgage Rate.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Fixed 30-year mortgage rates in the United States averaged 6.77 percent in the week ending August 1 of 2025. This dataset provides the latest reported value for - United States MBA 30-Yr Mortgage Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
FocusEconomics' economic data is provided by official state statistical reporting agencies as well as our global network of leading banks, think tanks and consultancies. Our datasets provide not only historical data, but also Consensus Forecasts and individual forecasts from the aformentioned global network of economic analysts. This includes the latest forecasts as well as historical forecasts going back to 2010. Our global network consists of over 1000 world-renowned economic analysts from which we calculate our Consensus Forecasts. In this specific dataset you will find economic data for Canada Interest Rate.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘ Zillow Housing Aspirations Report’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/zillow-housing-aspirations-reporte on 13 February 2022.
--- Dataset description provided by original source is as follows ---
Additional Data Products
Product: Zillow Housing Aspirations Report
Date: April 2017
Definitions
Home Types and Housing Stock
- All Homes: Zillow defines all homes as single-family, condominium and co-operative homes with a county record. Unless specified, all series cover this segment of the housing stock.
- Condo/Co-op: Condominium and co-operative homes.
- Multifamily 5+ units: Units in buildings with 5 or more housing units, that are not a condominiums or co-ops.
- Duplex/Triplex: Housing units in buildings with 2 or 3 housing units.
Additional Data Products
- Zillow Home Value Forecast (ZHVF): The ZHVF is the one-year forecast of the ZHVI. Our forecast methodology is methodology post.
- Zillow creates our negative equity data using our own data in conjunction with data received through our partnership with TransUnion, a leading credit bureau. We match estimated home values against actual outstanding home-related debt amounts provided by TransUnion. To read more about how we calculate our negative equity metrics, please see our here.
- Cash Buyers: The share of homes in a given area purchased without financing/in cash. To read about how we calculate our cash buyer data, please see our research brief.
- Mortgage Affordability, Rental Affordability, Price-to-Income Ratio, Historical ZHVI, Historical ZHVI and Houshold Income are calculated as a part of Zillow’s quarterly Affordability Indices. To calculate mortgage affordability, we first calculate the mortgage payment for the median-valued home in a metropolitan area by using the metro-level Zillow Home Value Index for a given quarter and the 30-year fixed mortgage interest rate during that time period, provided by the Freddie Mac Primary Mortgage Market Survey (based on a 20 percent down payment). Then, we consider what portion of the monthly median household income (U.S. Census) goes toward this monthly mortgage payment. Median household income is available with a lag. For quarters where median income is not available from the U.S. Census Bureau, we calculate future quarters of median household income by estimating it using the Bureau of Labor Statistics’ Employment Cost Index. The affordability forecast is calculated similarly to the current affordability index but uses the one year Zillow Home Value Forecast instead of the current Zillow Home Value Index and a specified interest rate in lieu of PMMS. It also assumes a 20 percent down payment. We calculate rent affordability similarly to mortgage affordability; however we use the Zillow Rent Index, which tracks the monthly median rent in particular geographical regions, to capture rental prices. Rents are chained back in time by using U.S. Census Bureau American Community Survey data from 2006 to the start of the Zillow Rent Index, and Decennial Census for all other years.
- The mortgage rate series is the average mortgage rate quoted on Zillow Mortgages for a 30-year, fixed-rate mortgage in 15-minute increments during business hours, 6:00 AM to 5:00 PM Pacific. It does not include quotes for jumbo loans, FHA loans, VA loans, loans with mortgage insurance or quotes to consumers with credit scores below 720. Federal holidays are excluded. The jumbo mortgage rate series is the average jumbo mortgage rate quoted on Zillow Mortgages for a 30-year, fixed-rate, jumbo mortgage in one-hour increments during business hours, 6:00 AM to 5:00 PM Pacific Time. It does not include quotes to consumers with credit scores below 720. Traditional federal holidays and hours with insufficient sample sizes are excluded.
About Zillow Data (and Terms of Use Information)
- Zillow is in the process of transitioning some data sources with the goal of producing published data that is more comprehensive, reliable, accurate and timely. As this new data is incorporated, the publication of select metrics may be delayed or temporarily suspended. We look forward to resuming our usual publication schedule for all of our established datasets as soon as possible, and we apologize for any inconvenience. Thank you for your patience and understanding.
- All data accessed and downloaded from this page is free for public use by consumers, media, analysts, academics etc., consistent with our published Terms of Use. Proper and clear attribution of all data to Zillow is required.
- For other data requests or inquiries for Zillow Real Estate Research, contact us here.
- All files are time series unless noted otherwise.
- To download all Zillow metrics for specific levels of geography, click here.
- To download a crosswalk between Zillow regions and federally defined regions for counties and metro areas, click here.
- Unless otherwise noted, all series cover single-family residences, condominiums and co-op homes only.
Source: https://www.zillow.com/research/data/
This dataset was created by Zillow Data and contains around 200 samples along with Unnamed: 1, Unnamed: 0, technical information and other features such as: - Unnamed: 1 - Unnamed: 0 - and more.
- Analyze Unnamed: 1 in relation to Unnamed: 0
- Study the influence of Unnamed: 1 on Unnamed: 0
- More datasets
If you use this dataset in your research, please credit Zillow Data
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Sweden was last recorded at 2 percent. This dataset provides the latest reported value for - Sweden Interest Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Inflation Rate in the United States increased to 2.70 percent in June from 2.40 percent in May of 2025. This dataset provides - United States Inflation Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
SPECIAL NOTE: C-MAPSS and C-MAPSS40K ARE CURRENTLY UNAVAILABLE FOR DOWNLOAD. Glenn Research Center management is reviewing the availability requirements for these software packages. We are working with Center management to get the review completed and issues resolved in a timely manner. We will post updates on this website when the issues are resolved. We apologize for any inconvenience. Please contact Jonathan Litt, jonathan.s.litt@nasa.gov, if you have any questions in the meantime. Subject Area: Engine Health Description: This data set was generated with the C-MAPSS simulator. C-MAPSS stands for 'Commercial Modular Aero-Propulsion System Simulation' and it is a tool for the simulation of realistic large commercial turbofan engine data. Each flight is a combination of a series of flight conditions with a reasonable linear transition period to allow the engine to change from one flight condition to the next. The flight conditions are arranged to cover a typical ascent from sea level to 35K ft and descent back down to sea level. The fault was injected at a given time in one of the flights and persists throughout the remaining flights, effectively increasing the age of the engine. The intent is to identify which flight and when in the flight the fault occurred. How Data Was Acquired: The data provided is from a high fidelity system level engine simulation designed to simulate nominal and fault engine degradation over a series of flights. The simulated data was created with a Matlab Simulink tool called C-MAPSS. Sample Rates and Parameter Description: The flights are full flight recordings sampled at 1 Hz and consist of 30 engine and flight condition parameters. Each flight contains 7 unique flight conditions for an approximately 90 min flight including ascent to cruise at 35K ft and descent back to sea level. The parameters for each flight are the flight conditions, health indicators, measurement temperatures and pressure measurements. Faults/Anomalies: Faults arose from the inlet engine fan, the low pressure compressor, the high pressure compressor, the high pressure turbine and the low pressure turbine.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Coronavirus infection is currently the most important health topic. It surely tested and continues to test to the fullest extent the healthcare systems around the world. Although big progress is made in handling this pandemic, a tremendous number of questions are needed to be answered. I hereby present to you the local Bulgarian COVID-19 dataset with some context. It could be used as a comparator because it stands out compared to other countries and deserves analysis.
Context for Bulgarian population: Population - 6 948 445 Median age - 44.7 years Aged >65 - 20.801 % Aged >70 - 13.272%
Summary of the results: - first pandemic wave was weak, probably because of the early state of emergency (5 days after the first confirmed case). Whether this was a good decision or it was too early and just postpone the inevitable is debatable. -healthcare system collapses (probably due to delayed measures) in the second and third waves which resulted in Bulgaria gaining the top ranks for mortality and morbidity tables worldwide and in the EU. - low percentage of vaccinated people results in a prolonged epidemic and delaying the lifting of the preventive measures.
Some of the important moments that should be considered when interpreting the data: 08.03.2020 - Bulgaria confirmed its first two cases. The government issued a nationwide ban on closed-door public events (first lockdown); 13.03.2020- after 16 reported cases in one day, Bulgaria declared a state of emergency for one month until 13.04.2020. Schools, shopping centres, cinemas, restaurants, and other places of business were closed. All sports events were suspended. Only supermarkets, food markets, pharmacies, banks, and gas stations remain open. 03.04.2020 - The National Assembly approved the government's proposal to extend the state of emergency by one month until 13.05.2020; 14.05.2020 - the national emergency was lifted, and in its place was declared a state of an emergency epidemic situation. Schools and daycares remain closed, as well as shopping centers and indoor restaurants; 18.05.2020 - Shopping malls and fitness centers opened; 01.06.2020 - Restaurants and gaming halls opened; 10.07.2020 - discos and bars are closed, the sports events are without an audience; 29.10.2020 - High school and college students are transitioning to online learning; 27.11.2020 - the whole education is online, restaurants, nightclubs, bars, and discos are closed (second lockdown 27.11 - 21.12); 05.12.2020 - the 14-day mortality rate is the highest in the world; 16.01.2021 - some of the students went back to school; 01.03.2021 - restaurants and casinos opened; 22.03.2021 - restaurants, shopping malls, fitness centers, and schools are closed (third lockdown for 10 days - 22.03 - 31.03); 19.04.2021 - children daycare facilities, fitness centers, and nightclubs are opened;
This dataset consists of 447 rows with 29 columns and covers the period 08.03.2020 - 28.05.2021. In the beginning, there are some missing values until the proper statistical report was established.
A publication proposal is sent to anyone who wishes to collaborate. Based on the results and the value of the findings and the relevance of the topic it is expected to publish: - in a local journal (guaranteed); - in a SCOPUS journal (highly probable); - in an IF journal (if the results are really insightful).
The topics could be, but not limited to: - descriptive analysis of the pandemic outbreak in the country; - prediction of the pandemic or the vaccination rate; - discussion about the numbers compared to other countries/world; - discussion about the government decisions; - estimating cut-off values for step-down or step-up of the restrictions.
If you find an error, have a question, or wish to make a suggestion, I encourage you to reach me.
Oresti Banos, Department of Computer Architecture and Computer Technology, University of Granada Rafael Garcia, Department of Computer Architecture and Computer Technology, University of Granada Alejandro Saez, Department of Computer Architecture and Computer Technology, University of Granada
Email to whom correspondence should be addressed: oresti '@' ugr.es (oresti.bl '@' gmail.com)
The MHEALTH (Mobile HEALTH) dataset comprises body motion and vital signs recordings for ten volunteers of the diverse profile while performing several physical activities. Sensors placed on the subject's chest, right wrist, and left ankle are used to measure the motion experienced by diverse body parts, namely, acceleration, rate of turn, and magnetic field orientation. The sensor positioned on the chest also provides 2-lead ECG measurements, which can be potentially used for basic heart monitoring, checking for various arrhythmias, or looking at the effects of exercise on the ECG.
The collected dataset comprises body motion and vital signs recordings for ten volunteers of the diverse profile while performing 12 physical activities (Table 1). Shimmer2 [BUR10] wearable sensors were used for the recordings. The sensors were respectively placed on the subject's chest, right wrist, and left ankle and attached by using elastic straps (as shown in the figure in the attachment). The use of multiple sensors permits us to measure the motion experienced by diverse body parts, namely, the acceleration, the rate of turn, and the magnetic field orientation, thus better capturing the body dynamics. The sensor positioned on the chest also provides 2-lead ECG measurements which are not used for the development of the recognition model but rather collected for future work purposes. This information can be used, for example, for basic heart monitoring, checking for various arrhythmias, or looking at the effects of exercise on the ECG. All sensing modalities are recorded at a sampling rate of 50 Hz, which is considered sufficient for capturing human activity. Each session was recorded using a video camera. This dataset is found to generalize to common activities of daily living, given the diversity of body parts involved in each one (e.g., the frontal elevation of arms vs. knees bending), the intensity of the actions (e.g., cycling vs. sitting and relaxing) and their execution speed or dynamicity (e.g., running vs. standing still). The activities were collected in an out-of-lab environment with no constraints on the way these must be executed, with the exception that the subject should try their best when executing them.
The activity set is listed in the following: L1: Standing still (1 min) L2: Sitting and relaxing (1 min) L3: Lying down (1 min) L4: Walking (1 min) L5: Climbing stairs (1 min) L6: Waist bends forward (20x) L7: Frontal elevation of arms (20x) L8: Knees bending (crouching) (20x) L9: Cycling (1 min) L10: Jogging (1 min) L11: Running (1 min) L12: Jump front & back (20x) NOTE: In brackets are the number of repetitions (Nx) or the duration of the exercises (min).
A complete and illustrated description (including table of activities, sensor setup, etc.) of the dataset is provided in the papers presented in the section “Citation Requests†.
The data collected for each subject is stored in a different log file: 'mHealth_subject.log'. Each file contains the samples (by rows) recorded for all sensors (by columns). The labels used to identify the activities are similar to the abovementioned (e.g., the label for walking is '4').
The meaning of each column is detailed next: Column 1: acceleration from the chest sensor (X-axis) Column 2: acceleration from the chest sensor (Y axis) Column 3: acceleration from the chest sensor (Z axis) Column 4: electrocardiogram signal (lead 1) Column 5: electrocardiogram signal (lead 2) Column 6: acceleration from the left-ankle sensor (X-axis) Column 7: acceleration from the left-ankle sensor (Y axis) Column 8: acceleration from the left-ankle sensor (Z axis) Column 9: gyro from the left-ankle sensor (X-axis) Column 10: gyro from the left-ankle sensor (Y axis) Column 11: gyro from the left-ankle sensor (Z axis) Column 13: magnetometer from the left-ankle sensor (X-axis) Column 13: magnetometer from the left-ankle sensor (Y axis) Column 14: magnetometer from the left-ankle sensor (Z axis) Column 15: acceleration from the right-lower-arm sensor (X-axis) Column 16: acceleration from the right-lower-arm sensor (Y axis) Column 17: acceleration from the right-lower-arm sensor (Z axis) Column 18: gyro from the right-lower-arm sensor (X-axis) Column 19: gyro from the right-lower-arm sensor (Y axis) Column 20: gyro fro...
***Starting on March 7th, 2024, the Los Angeles Police Department (LAPD) will adopt a new Records Management System for reporting crimes and arrests. This new system is being implemented to comply with the FBI's mandate to collect NIBRS-only data (NIBRS — FBI - https://www.fbi.gov/how-we-can-help-you/more-fbi-services-and-information/ucr/nibrs). During this transition, users will temporarily see only incidents reported in the retiring system. However, the LAPD is actively working on generating new NIBRS datasets to ensure a smoother and more efficient reporting system. *** **Update 1/18/2024 - LAPD is facing issues with posting the Crime data, but we are taking immediate action to resolve the problem. We understand the importance of providing reliable and up-to-date information and are committed to delivering it. As we work through the issues, we have temporarily reduced our updates from weekly to bi-weekly to ensure that we provide accurate information. Our team is actively working to identify and resolve these issues promptly. We apologize for any inconvenience this may cause and appreciate your understanding. Rest assured, we are doing everything we can to fix the problem and get back to providing weekly updates as soon as possible. ** This dataset reflects incidents of crime in the City of Los Angeles dating back to 2020. This data is transcribed from original crime reports that are typed on paper and therefore there may be some inaccuracies within the data. Some location fields with missing data are noted as (0°, 0°). Address fields are only provided to the nearest hundred block in order to maintain privacy. This data is as accurate as the data in the database. Please note questions or concerns in the comments.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Bank Lending Rate in the United States remained unchanged at 7.50 percent in July. This dataset provides - United States Average Monthly Prime Lending Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve.
The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj.
The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 .
The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 .
The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed.
COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update.
The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates.
The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used.
Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf
Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic.
Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More information on COVID-19 mortality can be found at the following link: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Mortality/Mortality-Statistics
Data are subject to future revision as reporting changes.
Starting in July 2020, this dataset will be updated every weekday.
Additional notes: A delay in the data pull schedule occurred on 06/23/2020. Data from 06/22/2020 was processed on 06/23/2020 at 3:30 PM. The normal data cycle resumed with the data for 06/23/2020.
A network outage on 05/19/2020 resulted in a change in the data pull schedule. Data from 5/19/2020 was processed on 05/20/2020 at 12:00 PM. Data from 5/20/2020 was processed on 5/20/2020 8:30 PM. The normal data cycle resumed on 05/20/2020 with the 8:30 PM data pull. As a result of the network outage, the timestamp on the datasets on the Open Data Portal differ from the timestamp in DPH's daily PDF reports.
Starting 5/10/2021, the date field will represent the date this data was updated on data.ct.gov. Previously the date the data was pulled by DPH was listed, which typically coincided with the date before the data was published on data.ct.gov. This change was made to standardize the COVID-19 data sets on data.ct.gov.
These National Statistics provide monthly estimates of the number of residential and non-residential property transactions in the UK and its constituent countries. National Statistics are accredited official statistics.
England and Northern Ireland statistics are based on information submitted to the HM Revenue and Customs (HMRC) Stamp Duty Land Tax (SDLT) database by taxpayers on SDLT returns.
Land and Buildings Transaction Tax (LBTT) replaced SDLT in Scotland from 1 April 2015 and this data is provided to HMRC by https://www.revenue.scot/" class="govuk-link">Revenue Scotland to continue the time series.
Land Transaction Tax (LTT) replaced SDLT in Wales from 1 April 2018. To continue the time series, the https://gov.wales/welsh-revenue-authority" class="govuk-link">Welsh Revenue Authority (WRA) have provided HMRC with a monthly data feed of LTT transactions since July 2021.
LTT figures for the latest month are estimated using a grossing factor based on data for the most recent and complete financial year. Until June 2021, LTT transactions for the latest month were estimated by HMRC based upon year on year growth in line with other UK nations.
LTT transactions up to the penultimate month are aligned with LTT statistics.
Go to Stamp Duty Land Tax guidance for the latest rates and information.
Go to Stamp Duty Land Tax rates from 1 December 2003 to 22 September 2022 and Stamp Duty: rates on land transfers before December 2003 for historic rates.
Further details for this statistical release, including data suitability and coverage, are included within the ‘Monthly property transactions completed in the UK with value of £40,000 or above’ quality report.
The latest release was published 09:30 31 July 2025 and was updated with provisional data from completed transactions during June 2025.
The next release will be published 09:30 29 August 2025 and will be updated with provisional data from completed transactions during July 2025.
https://webarchive.nationalarchives.gov.uk/ukgwa/20240320184933/https://www.gov.uk/government/statistics/monthly-property-transactions-completed-in-the-uk-with-value-40000-or-above" class="govuk-link">Archive versions of the Monthly property transactions completed in the UK with value of £40,000 or above are available via the UK Government Web Archive, from the National Archives.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in China was last recorded at 3 percent. This dataset provides the latest reported value for - China Interest Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Japan was last recorded at 0.50 percent. This dataset provides - Japan Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Gross Domestic Product (GDP) in the United States expanded 3 percent in the second quarter of 2025 over the previous quarter. This dataset provides the latest reported value for - United States GDP Growth Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Brazil was last recorded at 15 percent. This dataset provides - Brazil Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Core consumer prices in the United States increased 2.90 percent in June of 2025 over the same month in the previous year. This dataset provides - United States Core Inflation Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Household Saving Rate in the United States remained unchanged at 4.50 percent in June from 4.50 percent in May of 2025. This dataset provides - United States Personal Savings Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in the United States was last recorded at 4.50 percent. This dataset provides the latest reported value for - United States Fed Funds Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.