Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">
A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?
Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
House Price Index YoY in the United States decreased to 1.70 percent in September from 2.40 percent in August of 2025. This dataset includes a chart with historical data for the United States FHFA House Price Index YoY.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
30 Year Mortgage Rate in the United States decreased to 6.23 percent in November 26 from 6.26 percent in the previous week. This dataset includes a chart with historical data for the United States 30 Year Mortgage Rate.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about House Prices Growth
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
This dataset was actually made to check the correlations between a housing price index and its crime rate. Rise and fall of housing prices can be due to various factors with obvious reasons being the facilities of the house and its neighborhood. Think of a place like Detroit where there are hoodlums and you don't want to end up buying a house in the wrong place. This data set will serve as historical data for crime rate data and this in turn can be used to predict whether the housing price will rise or fall. Rise in housing price will suggest decrease in crime rate over the years and vice versa.
The headers are self explanatory. index_nsa is the housing price non seasonal index.
Thank you to my team who helped in achieving this.
https://www.kaggle.com/marshallproject/crime-rates https://catalog.data.gov/dataset/fhfa-house-price-indexes-hpis Data was collected from these 2 sources and merged to get the resulting dataset.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Reference: https://www.zillow.com/research/zhvi-methodology/
In setting out to create a new home price index, a major problem Zillow sought to overcome in existing indices was their inability to deal with the changing composition of properties sold in one time period versus another time period. Both a median sale price index and a repeat sales index are vulnerable to such biases (see the analysis here for an example of how influential the bias can be). For example, if expensive homes sell at a disproportionately higher rate than less expensive homes in one time period, a median sale price index will characterize this market as experiencing price appreciation relative to the prior period of time even if the true value of homes is unchanged between the two periods.
The ideal home price index would be based off sale prices for the same set of homes in each time period so there was never an issue of the sales mix being different across periods. This approach of using a constant basket of goods is widely used, common examples being a commodity price index and a consumer price index. Unfortunately, unlike commodities and consumer goods, for which we can observe prices in all time periods, we can’t observe prices on the same set of homes in all time periods because not all homes are sold in every time period.
The innovation that Zillow developed in 2005 was a way of approximating this ideal home price index by leveraging the valuations Zillow creates on all homes (called Zestimates). Instead of actual sale prices on every home, the index is created from estimated sale prices on every home. While there is some estimation error associated with each estimated sale price (which we report here), this error is just as likely to be above the actual sale price of a home as below (in statistical terms, this is referred to as minimal systematic error). Because of this fact, the distribution of actual sale prices for homes sold in a given time period looks very similar to the distribution of estimated sale prices for this same set of homes. But, importantly, Zillow has estimated sale prices not just for the homes that sold, but for all homes even if they didn’t sell in that time period. From this data, a comprehensive and robust benchmark of home value trends can be computed which is immune to the changing mix of properties that sell in different periods of time (see Dorsey et al. (2010) for another recent discussion of this approach).
For an in-depth comparison of the Zillow Home Value Index to the Case Shiller Home Price Index, please refer to the Zillow Home Value Index Comparison to Case-Shiller
Each Zillow Home Value Index (ZHVI) is a time series tracking the monthly median home value in a particular geographical region. In general, each ZHVI time series begins in April 1996. We generate the ZHVI at seven geographic levels: neighborhood, ZIP code, city, congressional district, county, metropolitan area, state and the nation.
Estimated sale prices (Zestimates) are computed based on proprietary statistical and machine learning models. These models begin the estimation process by subdividing all of the homes in United States into micro-regions, or subsets of homes either near one another or similar in physical attributes to one another. Within each micro-region, the models observe recent sale transactions and learn the relative contribution of various home attributes in predicting the sale price. These home attributes include physical facts about the home and land, prior sale transactions, tax assessment information and geographic location. Based on the patterns learned, these models can then estimate sale prices on homes that have not yet sold.
The sale transactions from which the models learn patterns include all full-value, arms-length sales that are not foreclosure resales. The purpose of the Zestimate is to give consumers an indication of the fair value of a home under the assumption that it is sold as a conventional, non-foreclosure sale. Similarly, the purpose of the Zillow Home Value Index is to give consumers insight into the home value trends for homes that are not being sold out of foreclosure status. Zillow research indicates that homes sold as foreclosures have typical discounts relative to non-foreclosure sales of between 20 and 40 percent, depending on the foreclosure saturation of the market. This is not to say that the Zestimate is not influenced by foreclosure resales. Zestimates are, in fact, influenced by foreclosure sales, but the pathway of this influence is through the downward pressure foreclosure sales put on non-foreclosure sale prices. It is the price signal observed in the latter that we are attempting to measure and, in turn, predict with the Zestimate.
Market Segments Within each region, we calculate the ZHVI for various subsets of homes (or mar...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about House Prices Growth
Facebook
Twitterhttps://cdla.io/sharing-1-0/https://cdla.io/sharing-1-0/
The property listings dataset contains information about real estate properties available for sale or rent in Brazil. It includes details such as property type (apartment, house, commercial property), location (city, neighborhood), size (square footage, number of rooms), price, amenities, and contact information for the property owner or real estate agent. This dataset can be used for market analysis, property valuation, and identifying trends in the real estate market.
Sales and Rental Prices Dataset: The sales and rental prices dataset provides information about the prices of real estate properties in Brazil. It includes data on property transactions, including sale prices and rental prices per square meter or per month. This dataset can be used to analyze price trends, compare property prices across different regions, and identify areas with high or low real estate market demand.
Property Characteristics Dataset: The property characteristics dataset contains detailed information about the features and attributes of real estate properties. It includes data such as the number of bedrooms, bathrooms, parking spaces, floor plan, construction year, building amenities, and property condition. This dataset can be used for property classification, identifying popular property features, and evaluating property quality.
Geographical Data: Geographical data includes information about the location and spatial features of real estate properties in Brazil. It can include data such as latitude and longitude coordinates, zoning information, proximity to amenities (schools, hospitals, parks), and neighborhood demographics. This dataset can be used for spatial analysis, identifying hotspots or desirable locations, and understanding the neighborhood characteristics.
Property Market Trends Dataset: The property market trends dataset provides information about market conditions and trends in the real estate sector in Brazil. It includes data such as the number of property listings, average time on the market, price fluctuations, mortgage interest rates, and economic indicators that impact the real estate market. This dataset can be used for market forecasting, understanding market dynamics, and making informed investment decisions.
Real Estate Regulatory Data: Real estate regulatory data includes information about legal and regulatory aspects of the real estate sector in Brazil. It can include data on property ownership, property taxes, zoning regulations, building permits, and legal restrictions on property transactions. This dataset can be used for legal compliance, understanding property ownership rights, and assessing the legal framework for real estate transactions.
Historical Data: Historical real estate data includes past records and trends of property prices, market conditions, and sales volumes in Brazil. This dataset can span several years and can be used to analyze long-term market trends, compare current market conditions with historical data, and assess the performance of the real estate market over time.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By [source]
This dataset explores the potential relationship between art presence and property prices in London neighborhoods. We conducted an analysis to investigate this by measuring the proportion of Flickr photographs with the keyword ‘art’ attached. We then compared that data to residential property price gains for each Inner London neighborhood, seeking out any associations or correlations between art presence and housing value. Our findings demonstrate the impact of aesthetics on neighborhoods, illustrating how visual environment influences socio-economic conditions. With this dataset, we aim to show how online platforms can be leveraged for quantitative data collection and analysis which can visualize these relationships so as to better understand our urban settings
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset can be used to investigate the relationship between art presence and property prices in London neighborhoods. The dataset includes three columns – Postcode.District, Rank.Mean.Change, and Proportion.Art.Photos – which provide quantitative analyses of the association between art presence and price gains for London neighborhoods.
To use this dataset, first identify the postcode district for which you wish to access data by referencing a street list or PostCodeSearcher website that outlines postcodes for each neighborhood in London(http://postcodesearcher.com/london). This will allow you to easily find properties within each neighborhood as there are specific postcode districts that demarcate boundaries of particular areas (for example W2 covers Bayswater).
Once you have identified a postcode district of interest, review the ‘Rank.Mean Change’ column to explore how residential property prices have changed relative to other areas in Inner London since 2010-13 using fractions (1 = highest gain; 25 = lowest gain). Focusing on one particular location will also provide an idea about their current pricing level compared with others in order to evaluate whether further investment is worthwhile or not based on its past history of growth rates . It is important to note that higher rank numbers indicate higher price gains while lower rank numbers indicate lower price gains relative with respect from 2010-13 timeframe therefore comparing these values across many neighborhoods gives an indication as what area offers more value growth wise over given time period..
Finally pay attention how much did art contributes as far change in property price goes? To answer this question , review ‘Proportion Art Photos’ column which provides ratio of Flickr photographs associated with keyword 'art' attached within given regions helps identify visual characteristics within different localities.. Comparing proportions across various locations provide detail information regarding how much did share visual aesthetic characterstics impacts change in pricings accross different region.. For example it can give us further understandings if majority photographs are made up of urban landscape , abstracts or simply portrait presences had any role play when we look at relativity gains over past few years? Such comparisons help inform our understanding about potential impact art presence can have on changes stay relatively stable even during volatile market times..
By combining this data with other datasets related to demographics, infrastructure and socioeconomics present within londons different areas we can gain further insight which then allows us making informed decisions when it comes investing particular locations .
- Use this dataset to develop a predictive analytics model to identify areas in London most likely to experience an increase in residential property prices associated with the presence of art.
- Use this dataset to develop strategies and policies that promote both artistic expression and urban development in Inner London neighborhoods.
- Compare the presence of art across inner London boroughs, as well as against other cities, to gain insight into the socio-economic conditions related to the visual environment of a city and its impact on life quality for citizens
If you use this dataset in your research, please credit the original authors. Data Source
**License: [CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication](https://creativecommons.org/publicd...
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The Federal Reserve sets interest rates to promote conditions that achieve the mandate set by the Congress — high employment, low and stable inflation, sustainable economic growth, and moderate long-term interest rates. Interest rates set by the Fed directly influence the cost of borrowing money. Lower interest rates encourage more people to obtain a mortgage for a new home or to borrow money for an automobile or for home improvement. Lower rates encourage businesses to borrow funds to invest in expansion such as purchasing new equipment, updating plants, or hiring more workers. Higher interest rates restrain such borrowing by consumers and businesses.
This dataset includes data on the economic conditions in the United States on a monthly basis since 1954. The federal funds rate is the interest rate at which depository institutions trade federal funds (balances held at Federal Reserve Banks) with each other overnight. The rate that the borrowing institution pays to the lending institution is determined between the two banks; the weighted average rate for all of these types of negotiations is called the effective federal funds rate. The effective federal funds rate is determined by the market but is influenced by the Federal Reserve through open market operations to reach the federal funds rate target. The Federal Open Market Committee (FOMC) meets eight times a year to determine the federal funds target rate; the target rate transitioned to a target range with an upper and lower limit in December 2008. The real gross domestic product is calculated as the seasonally adjusted quarterly rate of change in the gross domestic product based on chained 2009 dollars. The unemployment rate represents the number of unemployed as a seasonally adjusted percentage of the labor force. The inflation rate reflects the monthly change in the Consumer Price Index of products excluding food and energy.
The interest rate data was published by the Federal Reserve Bank of St. Louis' economic data portal. The gross domestic product data was provided by the US Bureau of Economic Analysis; the unemployment and consumer price index data was provided by the US Bureau of Labor Statistics.
How does economic growth, unemployment, and inflation impact the Federal Reserve's interest rates decisions? How has the interest rate policy changed over time? Can you predict the Federal Reserve's next decision? Will the target range set in March 2017 be increased, decreased, or remain the same?
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about House Prices Growth
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The interest rate set by the Federal Reserve is a crucial tool for promoting economic conditions that meet the mandate established by the United States Congress, which includes high employment, low and stable inflation, sustainable economic growth, and the moderation of long-term interest rates. The interest rates determined by the Fed directly influence the cost of credit, making financing either more accessible or more restrictive. When interest rates are low, there is a greater incentive for consumers to purchase homes through mortgages, finance automobiles, or undertake home renovations. Additionally, businesses are encouraged to invest in expanding their operations, whether by purchasing new equipment, modernizing facilities, or hiring more workers. Conversely, higher interest rates tend to curb such activity, discouraging borrowing and slowing economic expansion.
The dataset analyzed contains information on the economic conditions in the United States on a monthly basis since 1954, including the federal funds rate, which represents the percentage at which financial institutions trade reserves held at the Federal Reserve with each other in the interbank market overnight. This rate is determined by the market but is directly influenced by the Federal Reserve through open market operations to reach the established target. The Federal Open Market Committee (FOMC) meets eight times a year to determine the federal funds rate target, which has been defined within a range with upper and lower limits since December 2008.
Furthermore, real Gross Domestic Product (GDP) is calculated based on the seasonally adjusted quarterly rate of change in the economy, using chained 2009 dollars as a reference. The unemployment rate represents the seasonally adjusted percentage of the labor force that is unemployed. Meanwhile, the inflation rate is determined by the monthly change in the Consumer Price Index, excluding food and energy prices for a more stable analysis of core inflation.
The interest rate data was sourced from the Federal Reserve Bank of St. Louis' economic data portal, while GDP information was provided by the U.S. Bureau of Economic Analysis, and unemployment and inflation data were made available by the U.S. Bureau of Labor Statistics.
The analysis of this data helps to understand how economic growth, the unemployment rate, and inflation influence the Federal Reserve’s monetary policy decisions. Additionally, it allows for a study of the evolution of interest rate policies over time and raises the question of how predictable the Fed’s future decisions may be. Based on observed trends, it is possible to speculate whether the target range set in March 2017 will be maintained, lowered, or increased, considering the prevailing economic context and the challenges faced in conducting U.S. monetary policy.
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
The residential vacancy rate is the percentage of residential units that are unoccupied, or vacant, in a given year. The U.S. Census Bureau defines occupied housing units as “owner-occupied” or “renter-occupied.” Vacant housing units are not classified by tenure in this way, as they are not occupied by an owner or renter.
The residential vacancy rate serves as an indicator of the condition of the area’s housing market. Low residential vacancy rates indicate that demand for housing is high compared to the housing supply. However, the aggregate residential vacancy rate is lacking in granularity. For example, the housing market for rental units in the area and the market for buying a unit in the same area may be very different, and the aggregate rate will not show those distinct conditions. Furthermore, the vacancy rate may be high, or low, for a variety of reasons. A high vacancy rate may result from a falling population, but it may also result from a recent construction spree that added many units to the total stock.
The residential vacancy rate in Champaign County appears to have fluctuated between 8% and 14% from 2005 through 2022, reaching a peak near 14% in 2019. In 2023, this rate dropped to about 7%, its lowest value since 2005. However, this rate was calculated using the American Community Survey’s (ACS) estimated number of vacant houses per year, which has year-to-year fluctuations that are largely not statistically significant. Thus, we cannot establish a trend for this data.
The residential vacancy rate data shown here was calculated using the estimated total housing units and estimated vacant housing units from the U.S. Census Bureau’s American Community Survey 1-Year Estimates, which are released annually.
As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.
Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.
For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Occupancy Status.
Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table B25002, generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table B25002, generated by CCRPC staff; using data.census.gov; (25 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table B25002, generated by CCRPC staff; using data.census.gov; (4 October 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table B25002, generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table B25002, generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table B25002, generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table B25002, generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table B25002, generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table B25002; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table SB25002; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table B25002; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table B25002; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table B25002; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table B25002; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table B25002; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table B25002; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table B25002; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table B25002; generated by CCRPC staff; using American FactFinder; (16 March 2016).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Existing Home Sales in the United States increased to 4100 Thousand in October from 4050 Thousand in September of 2025. This dataset provides the latest reported value for - United States Existing Home Sales - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All-Transactions House Price Index for California (CASTHPI) from Q1 1975 to Q3 2025 about appraisers, CA, HPI, housing, price index, indexes, price, and USA.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Fixed 30-year mortgage rates in the United States averaged 6.40 percent in the week ending November 21 of 2025. This dataset provides the latest reported value for - United States MBA 30-Yr Mortgage Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterThe Chinese economy has undergone a long-term transition reform, but there is still a planned economy characteristic in the financial sector, which is financial repression. Due to the existence of financial repression, China’s actual interest rate level should be lower than the Consumer Price Index (CPI). However, based on official China’s interest rates and CPI, over half of the years China’s actual interest rate remained higher than CPI by our calculation from 1999 to 2022. This is inconsistent with the financial repression that exists in China, and the main reason is the calculation methods of China’s CPI. China’s CPI measurement system originated from the planned economy era, which did not fully consider the rise in housing purchase prices, so the current CPI measurement system can be more realistically presented by taking the rise in housing prices into consider. The core idea of this study is to mining relevant official statistical data and calculate the proportion of Chinese residents’ expenditure on purchasing houses to their total expenditure. By taking the proportion of house purchases as the weight of house price factor, and taking the proportion of other consumption as the weight of official CPI, the Generalized CPI (GCPI) is formulated. The GCPI is then compared with market interest rates to determine the actual interest rate situation in China over the past 20 years. This study has found that if GCPI is used as a measure, China’s real interest rates have been negative for most years since 1999. Chinese residents have suffered the negative effects of financial repression over the past 20 years, and their property income cannot keep up with the actual losses caused by inflation. Therefore, it is believed that China’s CPI calculation method should be adjusted to take into account the rise in housing prices, so China’s actual inflation level could be more accurately reflected. In view of the above, deepening interest rate marketization reform and expand channels for financial investment are the future development goals of China’s financial system.
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The index relates to costs ruling on the first day of each month. NATIONAL HOUSE CONSTRUCTION COST INDEX; Up until October 2006 it was known as the National House Building Index Oct 2000 data; The index since October, 2000, includes the first phase of an agreement following a review of rates of pay and grading structures for the Construction Industry and the first phase increase under the PPF. April, May and June 2001; Figures revised in July 2001due to 2% PPF Revised Terms. March 2002; The drop in the March 2002 figure is due to a decrease in the rate of PRSI from 12% to 10¾% with effect from 1 March 2002. The index from April 2002 excludes the one-off lump sum payment equal to 1% of basic pay on 1 April 2002 under the PPF. April, May, June 2003; Figures revised in August'03 due to the backdated increase of 3% from 1April 2003 under the National Partnership Agreement 'Sustaining Progress'. The increases in April and October 2006 index are due to Social Partnership Agreement "Towards 2016". March 2011; The drop in the March 2011 figure is due to a 7.5% decrease in labour costs. Methodology in producing the Index Prior to October 2006: The index relates solely to labour and material costs which should normally not exceed 65% of the total price of a house. It does not include items such as overheads, profit, interest charges, land development etc. The House Building Cost Index monitors labour costs in the construction industry and the cost of building materials. It does not include items such as overheads, profit, interest charges or land development. The labour costs include insurance cover and the building material costs include V.A.T. Coverage: The type of construction covered is a typical 3 bed-roomed, 2 level local authority house and the index is applied on a national basis. Data Collection: The labour costs are based on agreed labour rates, allowances etc. The building material prices are collected at the beginning of each month from the same suppliers for the same representative basket. Calculation: Labour and material costs for the construction of a typical 3 bed-roomed house are weighted together to produce the index. Post October 2006: The name change from the House Building Cost Index to the House Construction Cost Index was introduced in October 2006 when the method of assessing the materials sub-index was changed from pricing a basket of materials (representative of a typical 2 storey 3 bedroomed local authority house) to the CSO Table 3 Wholesale Price Index. The new Index does maintains continuity with the old HBCI. The most current data is published on these sheets. Previously published data may be subject to revision. Any change from the originally published data will be highlighted by a comment on the cell in question. These comments will be maintained for at least a year after the date of the value change. Oct 2008 data; Decrease due to a fall in the Oct Wholesale Price Index. .hidden { display: none }
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
The purpose of this dataset is to provide updated data on the Zillow Observed Rent Index (ZORI). Most of the Zillow datasets on Kaggle have not been updated in four years, and no other dataset except one contains information related to rent. Providing updated data on this will also allow the community to analyze the effects of COVID-19 on rent prices, which could not be done with previous available data sets.
Zillow Observed Rent Index (ZORI): A smoothed measure of the typical observed market rate rent across a given region. ZORI is a repeat-rent index that is weighted to the rental housing stock to ensure representativeness across the entire market, not just those homes currently listed for-rent. The index is dollar-denominated by computing the mean of listed rents that fall into the 40th to 60th percentile range for all homes and apartments in a given region, which is once again weighted to reflect the rental housing stock. Details available in ZORI methodology. https://www.zillow.com/research/methodology-zori-repeat-rent-27092/
This dataset contains two files. The Metro dataset looks at the median rent prices for large US cities. The ZIP code dataset breaks the US cities down by their ZIP codes. Note that the region IDs in both datasets are only used for tracking purposes. Also, some of the ZIP codes under the Region Name are less than the standard five-digit zip code and unreliable. Even if you add zeros in accounting for possible formatting mistakes. It is recommended to remove these entries since there is no way to identify which ZIP code the entry actually represents. These entries are left in here in case some analyst can solve the issue.
Zillow provides many useful open source datasets that relate to housing, which can be found at Zillow Research Data. https://www.zillow.com/research/data/ This dataset was also prompted by an older dataset I came across that only lacked updated data. https://www.kaggle.com/zillow/rent-index Thumbnail and banner picture is from this pixabay artist https://pixabay.com/users/pexels-2286921/
Facebook
Twitterhttps://rightsstatements.org/page/InC/1.0/?language=enhttps://rightsstatements.org/page/InC/1.0/?language=en
Urban housing location and locational amenities play an important role in median house price distribution and growth among the suburbs of many metropolitan cities in developed countries, such as Australia. In particular, distance from the central business district (CBD) and access to the transport network plays a vital role in house price distribution and growth over various suburbs in a city. However, Australian metropolitan cities have experienced increases in housing prices by up to 120% over the last 20 years, and the growth pattern was different across all suburbs in a city, such as in Melbourne. Therefore, this study examines the impacts of locational amenities on house price changes across various suburbs in Melbourne over the three census periods of 2006, 2011, and 2016, and suggests some strategic guidelines to improve the availability and accessibility of locational amenities in the suburbs with less concentrated amenities. This study chose three Local Government Areas (LGAs) of Maribyrnong, Brimbank and Wyndham in Melbourne. Each LGA has been selected as a case study because many low-income people live in these LGAs’ areas. Further, some suburbs of these LGAs have maintained similar housing prices for an extended time, while some have not.The study applied a quantitative spatial methodology to examine the housing price distribution and growth patterns by evaluating the concentration and accessibility of locational urban amenities using GIS-based techniques and a spatial data set. The spatial data analyses were performed by spatial statistics methods to measure central tendency, Local Moran’s I of LISA clustering, Kernel Density Estimation (KDE), Kernel Density Smoothing (KDS). These tests were used to find the patterns of house price distribution and growth. The study also identified the accessibility of amenities in relation to median house price distribution and growth. Spatial Autoregressive Regression (SAR), Spatial Lag, and Spatial Errors models were used to identify the spatial dependencies to test the statistical significance between the median house price and the concentration and access of local urban amenities over the three census years.This study found three median house price distribution and growth patterns among the suburbs in the three selected LGAs. There are growth differences in the median house price for different census years between 2006 and 2011, 2011 and 2016, and 2006 and 2016. The Low-High (LH) median house price distribution clusters between 2006 and 2011 became High-High (HH) clusters between the census years 2011 and 2016, and 2006 and 2016. The median house price growth rate increased significantly in the census years between 2006 and 2011. Most of the HH median house price distribution and growth clusters’ tendencies were closer to the Melbourne CBD. On the other hand, the Low-Low (LL) distribution and growth clusters were closer to Melbourne’s periphery. The suburbs located further away had low access to amenities. The HH median house price clusters are located closer to stations and educational institutes. Better access to locational amenities led to more significant HH median house price clusters, as the median house price increased at an increasing rate between 2011 and 2016. The HH median house price clusters recorded more growth between 2006 and 2016. The suburbs with train stations had better access to most other locational amenities. Almost all HH median house price clusters had train stations with higher access to amenities.There was a consistent relationship between median house price distribution, growth patterns, and locational urban amenities. The spatial lag and spatial error model tests showed that between 2006 and 2011, and 2006 and 2016, there were differences in the amenities. Still, these did not affect the outcomes in observations, and were related only to immeasurable factors for some reason. Therefore, the higher house price in the neighbouring suburb could increase the price in that suburb. The research also found from the regression analysis that highly significant amenities confirming travel time to the CBD by bus, and distance to the CBD, were negatively related in all three previous census years. This negative relationship estimates that the house price growth is lower when the distance is longer. Due to this travel to the CBD by bus is not a popular option for households. The train stations are essential for high house price growth. The house price growth is low when homes are further away from train stations and workplaces.This thesis has three contributions. Firstly, it uses the Rational Choice Theory (RCT), providing a theoretical basis for analysing households’ mutually interdependent preferences of urban amenities that are found to regulate house price growth clusters. Secondly, the methodological contribution uses the GIS-defined cluster mapping and spatial statistics in queries and reasoning, measurements, transformations, descriptive summaries, optimisation, and hypothesis testing models between house price distribution and growth, and access to urban locational amenities. Thirdly, this research contributes to designing practical guidelines to identify local urban amenities for planning local area development.Overall, this thesis demonstrates that the median house price distribution and growth patterns are highly correlated with the concentration and accessibility of locational urban amenities among the suburbs in three selected LGAs in Melbourne over the three census years (i.e., 2006, 2011, and 2016). The findings bring to the fore the need for research at the local and state levels to identify specific amenities relevant to the middle-class house distribution strategy, which can be helpful for investors, estate agents, town planners, and builders as partners for effective local development. The future study might use social, psychological, and macroeconomic variables not considered or used in this research.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">
A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?
Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.