Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Nahb Housing Market Index in the United States increased to 38 points in November from 37 points in October of 2025. This dataset provides the latest reported value for - United States Nahb Housing Market Index - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides a comprehensive overview of new housing price indexes in Canada. The data is sourced from a reliable statistical survey, offering a detailed breakdown of housing prices across different components such as total house and land, house only, and land only. The dataset is structured to include key metrics such as geographical location, price index classification, and specific price values, providing a robust foundation for analyzing housing price dynamics within the country.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Median Sales Price of Houses Sold for the United States (MSPUS) from Q1 1963 to Q2 2025 about sales, median, housing, and USA.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Existing Home Sales in the United States increased to 4100 Thousand in October from 4050 Thousand in September of 2025. This dataset provides the latest reported value for - United States Existing Home Sales - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Single Family Home Prices in the United States increased to 415200 USD in October from 412300 USD in September of 2025. This dataset provides - United States Existing Single Family Home Prices- actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about House Prices Growth
Facebook
TwitterThis dataset uses data provided from Washington State’s Housing Market, a publication of the Washington Center for Real Estate Research (WCRER) at the University of Washington.
Median sales prices represent that price at which half the sales in a county (or the state) took place at higher prices, and half at lower prices. Since WCRER does not receive sales data on individual transactions (only aggregated statistics), the median is determined by the proportion of sales in a given range of prices required to reach the midway point in the distribution. While average prices are not reported, they tend to be 15-20 percent above the median.
Movements in sales prices should not be interpreted as appreciation rates. Prices are influenced by changes in cost and changes in the characteristics of homes actually sold. The table on prices by number of bedrooms provides a better measure of appreciation of types of homes than the overall median, but it is still subject to composition issues (such as square footage of home, quality of finishes and size of lot, among others).
There is a degree of seasonal variation in reported selling prices. Prices tend to hit a seasonal peak in summer, then decline through the winter before turning upward again, but home sales prices are not seasonally adjusted. Users are encouraged to limit price comparisons to the same time period in previous years.
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Class materials for REE 6315 in Fall 2017. We will be using this data as an ongoing example throughout the course. Students will need this data to complete in class quizzes and out of class assignments. Please also download the free real estate listing data also required for the course: https://www.dataandsons.com/categories/sales_&_transactions/u.s._real_estate_inventory
Data was sourced by combining open data sources with instructors original content.
Classroom Datasets
housing,equity,realestate,transactions,sales
929
$75.00
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Average Sales Price of Houses Sold for the United States (ASPUS) from Q1 1963 to Q2 2025 about sales, housing, and USA.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Housing Index in China remained unchanged at -2.20 percent in October. This dataset provides the latest reported value for - China Newly Built House Prices YoY Change - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterThe average resale house price in Canada was forecast to reach nearly ******* Canadian dollars in 2026, according to a January forecast. In 2024, house prices increased after falling for the first time since 2019. One of the reasons for the price correction was the notable drop in transaction activity. Housing transactions picked up in 2024 and are expected to continue to grow until 2026. British Columbia, which is the most expensive province for housing, is projected to see the average house price reach *** million Canadian dollars in 2026. Affordability in Vancouver Vancouver is the most populous city in British Columbia and is also infamously expensive for housing. In 2023, the city topped the ranking for least affordable housing market in Canada, with the average homeownership cost outweighing the average household income. There are a multitude of reasons for this, but most residents believe that foreigners investing in the market cause the high housing prices. Victoria housing market The capital of British Columbia is Victoria, where housing prices are also very high. The price of a single family home in Victoria's most expensive suburb, Oak Bay was *** million Canadian dollars in 2024.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The data in this dataset is collected from FRED.
I decided to create this dataset while reading the research paper Factors Affecting House Prices in Cyprus: 1988-2008 by Panos Pashardes & Christos S. Savva. This research paper is extremely informative and covers a lot of details regarding the macroeconomics involved in real estate market. So I would recommend you all to go through it once.
This dataset will be updated over a period of time and include the following: - Macroeconomic factors with quarterly, monthly frequencies. - Microeconomic factors such as house type, age, location, size (BR, BA, carpet area/built-up area), facilities, view, disability functions, region, house prices, etc.
I recommend you all to check the file in this dataset with the title Housing_Macroeconomic_Factors_US (2).csv, it includes both the supply and demand factors associated with the housing market.
House_Price_Index: House price change according to the index base period set (you can check the date at which this value is 100).Stock_Price_Index: Stock price change according to the index base period set (you can check the date at which this value is 100).Consumer_Price_Index: The Consumer Price Index measures the overall change in consumer prices based on a representative basket of goods and services over time.Population: Population of USA (unit: thousands).Unemployment_Rate: Unemployment rate of USA (unit: percentage).Real_GDP: GDP with adjusted inflation (Annual version unit: billions of chain 2012 dollars in, Monthly version unit: Annualised change). Mortgage_Rate: Interest charged on mortgages (unit: percentage).Real_Disposable_Income (Real Disposable Personal Income): Money left from salary after all the taxes are paid (unit: billions of chain 2012 dollars).Inflation: Decline in purchasing power over time (unit: percentage). [Forgot to remove this column in Annual version since CPI is one of the measures used to determine inflation].Thanks! If you like this dataset, I'll appreciate it if you give this dataset a vote! Discussions, suggestions & doubts are always welcome. Happy Learning!!
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Housing Starts in the United States decreased to 1307 Thousand units in August from 1429 Thousand units in July of 2025. This dataset provides the latest reported value for - United States Housing Starts - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The establishment of Xiong’an New Area is an important decision for China to remove non-capital functions. The paper takes the “Xiong’an New Area” policy as a quasi-natural experiment and uses the Synthetic control method and the Difference-in-Difference method to study the influence of establishing Xiongan New Area on the quantity and price of new and second-hand housing markets in Beijing. The study finds that after the establishment of Xiongan New Area, the overall quantity of new houses in Beijing fall, while that of second-hand houses rise. The new housing price rises steadily, the second-hand housing price has an obvious downward trend. On whole, the "Xiong’an New Area" policy has a great influence on the second-hand housing quantity, the new housing price and the second-hand housing price index in Beijing. Based on the empirical results, in order to promote the rational development of Beijing's real estate market through the "Xiong’an New Area" policy, and to achieve the national policy goal of "no speculation on housing" and "housing for housing", we need to strengthen the planning and construction of the area.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about House Prices Growth
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
30 Year Mortgage Rate in the United States decreased to 6.23 percent in November 26 from 6.26 percent in the previous week. This dataset includes a chart with historical data for the United States 30 Year Mortgage Rate.
Facebook
Twitterhttp://www.gnu.org/licenses/agpl-3.0.htmlhttp://www.gnu.org/licenses/agpl-3.0.html
The dataset consists of lists of unique objects of popular portals for the sale of real estate in Russia. More than 540 thousand objects. The dataset contains 540000 real estate objects in Russia.
The Russian real estate market has a relatively short history. In the Soviet era, all properties were state-owned; people only had the right to use them with apartments allocated based on one's place of work. As a result, options for moving were fairly limited. However, after the fall of the Soviet Union, the Russian real estate market emerged and Muscovites could privatize and subsequently sell and buy properties for the first time. Today, Russian real estate is booming. It offers many exciting opportunities and high returns for lifestyle and investment. The real estate market has been in a growth phase for several years, which means that you can still find properties at very attractive prices, but with good chances of increasing their value in the future.
The dataset has 13 fields. - date - date of publication of the announcement; - time - the time when the ad was published; - geo_lat - Latitude - geo_lon - Longitude - region - Region of Russia. There are 85 subjects in the country in total. - building_type - Facade type. 0 - Other. 1 - Panel. 2 - Monolithic. 3 - Brick. 4 - Blocky. 5 - Wooden - object_type - Apartment type. 1 - Secondary real estate market; 2 - New building; - level - Apartment floor - levels - Number of storeys - rooms - the number of living rooms. If the value is "-1", then it means "studio apartment" - area - the total area of the apartment - kitchen_area - Kitchen area - price - Price. in rubles
The dataset may contain erroneous data due to input errors on services, as well as outliers, and so on.
Using this dataset, we offer Kagglers algorithms that use a wide range of functions to predict real estate prices. Competitors will rely on a vast dataset that includes housing data and macroeconomic models. An accurate forecasting model provides more confidence to its clients in a volatile economy.
Facebook
TwitterThe original Ames data that is being used for the competition House Prices: Advanced Regression Techniques and predicting sales price is edited and engineered to suit a beginner for applying a model without worrying too much about missing data while focusing on the features.
The train data has the shape 1460x80 and test data has the shape 1458x79 with feature 'SalePrice' to be predicted for the test set. The train data has different types of features, categorical and numerical.
A detailed info about the data can be obtained from the Data Description file among other data files.
a. Handling Missing Values: Some variables such as 'PoolQC', 'MiscFeature', 'Alley' have over 90% missing values. However from the data description, it is implied that the missing value indicates the absence of such features in a particular house. Well, most of the missing data implies the feature does not exist for the particular house on further inspection of the dataset and data description.
Similarly, features which are missing such as 'GarageType', 'GarageYrBuilt', 'BsmtExposure', etc indicated no garage in that house but also corresponding attributes such as 'GarageCars', 'GarageArea','BsmtCond' etc are set to 0.
A house on a street might have similar front lawn area to the houses in the same neighborhood, hence the missing values can be median of the values in a neighborhood.
Missing values in features such as 'SaleType', 'KitchenCond', etc have been imputed with the mode of the feature.
b. Dropping Variables: 'Utilities' attribute should be dropped from the data frame because almost all the houses have all public Utilities (E,G,W,& S) available.
c. Further exploration: The feature 'Electrical' has one missing value. The first intuition would be to drop the row. But on further inspection, the missing value is from a house built in 2006. After the 1970's all the houses have Standard Circuit Breakers & Romex 'SkBrkr' installed. So, the value can be inferred from this observation.
d. Transformation: There were some variables which are really categorical but were represented numerically such as 'MSSubClass', 'OverallCond' and 'YearSold'/'MonthSold' as they are discrete in nature. These have also been transformed to categorical variables.
e. X Normalizing the 'SalePrice' Variable: During EDA it was discovered that the Sale price of homes is right skewed. However on normalizing the skewness decreases and the (linear) models fit better. The feature is left for the user to normalize.
Finally the train and test sets were split and sale price appended to train set.
The Ames Housing dataset was compiled by Dean De Cock for use in data science education. It's an incredible alternative for data scientists looking for a modernized and expanded version of the often cited Boston Housing dataset.
The data after the transformation done by me can easily be fitted on to a model after label encoding and normalizing features to reduce skewness. The main variable to be predicted is 'SalePrice' for the TestData csv file.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Housing Index in the United States decreased to 435.40 points in September from 435.60 points in August of 2025. This dataset provides the latest reported value for - United States House Price Index MoM Change - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterHouse price index is based on average new house price value at loan approval stage and therefore has not been adjusted for changes in the mix of houses and apartments sold. Interest rates is based on building societies mortgage loans, published by Central Statistics Office up to 2007. From 2008 interest rates is average rate of all 'mortgage lenders' reporting to the Central Bank. From 2014 it is based on the floating rate for new customers as published by the Central Bank (Retail interest rates - Table B2.1). The reason for the drop between 2013 and 2014 is due to the difference in methodology - the 2014 data is the weighted average rate on new loan agreements. Further information can be found here: http://www.centralbank.ie/polstats/stats/cmab/Documents/Retail_Interest_Rate_Statistics_Explanatory_Notes.pdf Earnings is based on the average weekly earnings of adult workers in manufacturing industries, published by the Central Statistics Office. This series has been updated since 1996 using a new methodology and therefore it is not directly comparable with those for earlier years. House Construction Cost Index is based on the 1st day of the third month of each quarter. Consumer Price index is based on the Consumer Price Index, published by the Central Statistics Office. The most current data is published on these sheets. Previously published data may be subject to revision. Any change from the originally published data will be highlighted by a comment on the cell in question. These comments will be maintained for at least a year after the date of the value change.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Nahb Housing Market Index in the United States increased to 38 points in November from 37 points in October of 2025. This dataset provides the latest reported value for - United States Nahb Housing Market Index - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.