Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in the United States was last recorded at 4.50 percent. This dataset provides the latest reported value for - United States Fed Funds Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Fixed 30-year mortgage rates in the United States averaged 6.84 percent in the week ending June 13 of 2025. This dataset provides the latest reported value for - United States MBA 30-Yr Mortgage Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
30 Year Mortgage Rate in the United States decreased to 6.81 percent in June 19 from 6.84 percent in the previous week. This dataset includes a chart with historical data for the United States 30 Year Mortgage Rate.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Norway was last recorded at 4.25 percent. This dataset provides the latest reported value for - Norway Interest Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By Jonathan Ortiz [source]
This College Completion dataset provides an invaluable insight into the success and progress of college students in the United States. It contains graduation rates, race and other data to offer a comprehensive view of college completion in America. The data is sourced from two primary sources – the National Center for Education Statistics (NCES)’ Integrated Postsecondary Education System (IPEDS) and Voluntary System of Accountability’s Student Success and Progress rate.
At four-year institutions, the graduation figures come from IPEDS for first-time, full-time degree seeking students at the undergraduate level, who entered college six years earlier at four-year institutions or three years earlier at two-year institutions. Furthermore, colleges report how many students completed their program within 100 percent and 150 percent of normal time which corresponds with graduation within four years or six year respectively. Students reported as being of two or more races are included in totals but not shown separately
When analyzing race and ethnicity data NCES have classified student demographics since 2009 into seven categories; White non-Hispanic; Black non Hispanic; American Indian/ Alaskan native ; Asian/ Pacific Islander ; Unknown race or ethnicity ; Non resident with two new categorize Native Hawaiian or Other Pacific Islander combined with Asian plus students belonging to several races. Also worth noting is that different classifications for graduate data stemming from 2008 could be due to variations in time frame examined & groupings used by particular colleges – those who can’t be identified from National Student Clearinghouse records won’t be subjected to penalty by these locations .
When it comes down to efficiency measures parameters like “Awards per 100 Full Time Undergraduate Students which includes all undergraduate completions reported by a particular institution including associate degrees & certificates less than 4 year programme will assist us here while we also take into consideration measures like expenditure categories , Pell grant percentage , endowment values , average student aid amounts & full time faculty members contributing outstandingly towards instructional research / public service initiatives .
When trying to quantify outcomes back up Median Estimated SAT score metric helps us when it is derived either on 25th percentile basis / 75th percentile basis with all these factors further qualified by identifying required criteria meeting 90% threshold when incoming students are considered for relevance . Last but not least , Average Student Aid equalizes amount granted by institution dividing same over total sum received against what was allotted that particular year .
All this analysis gives an opportunity get a holistic overview about performance , potential deficits &
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset contains data on student success, graduation rates, race and gender demographics, an efficiency measure to compare colleges across states and more. It is a great source of information to help you better understand college completion and student success in the United States.
In this guide we’ll explain how to use the data so that you can find out the best colleges for students with certain characteristics or focus on your target completion rate. We’ll also provide some useful tips for getting the most out of this dataset when seeking guidance on which institutions offer the highest graduation rates or have a good reputation for success in terms of completing programs within normal timeframes.
Before getting into specifics about interpreting this dataset, it is important that you understand that each row represents information about a particular institution – such as its state affiliation, level (two-year vs four-year), control (public vs private), name and website. Each column contains various demographic information such as rate of awarding degrees compared to other institutions in its sector; race/ethnicity Makeup; full-time faculty percentage; median SAT score among first-time students; awards/grants comparison versus national average/state average - all applicable depending on institution location — and more!
When using this dataset, our suggestion is that you begin by forming a hypothesis or research question concerning student completion at a given school based upon observable characteristics like financ...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Sweden was last recorded at 2 percent. This dataset provides the latest reported value for - Sweden Interest Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Weekly updated dataset of Santander mortgage offerings, including interest rates, APRC, fees, and LTV for each product.
This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Bank Lending Rate in the United States remained unchanged at 7.50 percent in May. This dataset provides - United States Average Monthly Prime Lending Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Personal Saving Rate (PSAVERT) from Jan 1959 to Apr 2025 about savings, personal, rate, and USA.
The total amount of data created, captured, copied, and consumed globally is forecast to increase rapidly, reaching 149 zettabytes in 2024. Over the next five years up to 2028, global data creation is projected to grow to more than 394 zettabytes. In 2020, the amount of data created and replicated reached a new high. The growth was higher than previously expected, caused by the increased demand due to the COVID-19 pandemic, as more people worked and learned from home and used home entertainment options more often. Storage capacity also growing Only a small percentage of this newly created data is kept though, as just two percent of the data produced and consumed in 2020 was saved and retained into 2021. In line with the strong growth of the data volume, the installed base of storage capacity is forecast to increase, growing at a compound annual growth rate of 19.2 percent over the forecast period from 2020 to 2025. In 2020, the installed base of storage capacity reached 6.7 zettabytes.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘ Zillow Housing Aspirations Report’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/zillow-housing-aspirations-reporte on 13 February 2022.
--- Dataset description provided by original source is as follows ---
Additional Data Products
Product: Zillow Housing Aspirations Report
Date: April 2017
Definitions
Home Types and Housing Stock
- All Homes: Zillow defines all homes as single-family, condominium and co-operative homes with a county record. Unless specified, all series cover this segment of the housing stock.
- Condo/Co-op: Condominium and co-operative homes.
- Multifamily 5+ units: Units in buildings with 5 or more housing units, that are not a condominiums or co-ops.
- Duplex/Triplex: Housing units in buildings with 2 or 3 housing units.
Additional Data Products
- Zillow Home Value Forecast (ZHVF): The ZHVF is the one-year forecast of the ZHVI. Our forecast methodology is methodology post.
- Zillow creates our negative equity data using our own data in conjunction with data received through our partnership with TransUnion, a leading credit bureau. We match estimated home values against actual outstanding home-related debt amounts provided by TransUnion. To read more about how we calculate our negative equity metrics, please see our here.
- Cash Buyers: The share of homes in a given area purchased without financing/in cash. To read about how we calculate our cash buyer data, please see our research brief.
- Mortgage Affordability, Rental Affordability, Price-to-Income Ratio, Historical ZHVI, Historical ZHVI and Houshold Income are calculated as a part of Zillow’s quarterly Affordability Indices. To calculate mortgage affordability, we first calculate the mortgage payment for the median-valued home in a metropolitan area by using the metro-level Zillow Home Value Index for a given quarter and the 30-year fixed mortgage interest rate during that time period, provided by the Freddie Mac Primary Mortgage Market Survey (based on a 20 percent down payment). Then, we consider what portion of the monthly median household income (U.S. Census) goes toward this monthly mortgage payment. Median household income is available with a lag. For quarters where median income is not available from the U.S. Census Bureau, we calculate future quarters of median household income by estimating it using the Bureau of Labor Statistics’ Employment Cost Index. The affordability forecast is calculated similarly to the current affordability index but uses the one year Zillow Home Value Forecast instead of the current Zillow Home Value Index and a specified interest rate in lieu of PMMS. It also assumes a 20 percent down payment. We calculate rent affordability similarly to mortgage affordability; however we use the Zillow Rent Index, which tracks the monthly median rent in particular geographical regions, to capture rental prices. Rents are chained back in time by using U.S. Census Bureau American Community Survey data from 2006 to the start of the Zillow Rent Index, and Decennial Census for all other years.
- The mortgage rate series is the average mortgage rate quoted on Zillow Mortgages for a 30-year, fixed-rate mortgage in 15-minute increments during business hours, 6:00 AM to 5:00 PM Pacific. It does not include quotes for jumbo loans, FHA loans, VA loans, loans with mortgage insurance or quotes to consumers with credit scores below 720. Federal holidays are excluded. The jumbo mortgage rate series is the average jumbo mortgage rate quoted on Zillow Mortgages for a 30-year, fixed-rate, jumbo mortgage in one-hour increments during business hours, 6:00 AM to 5:00 PM Pacific Time. It does not include quotes to consumers with credit scores below 720. Traditional federal holidays and hours with insufficient sample sizes are excluded.
About Zillow Data (and Terms of Use Information)
- Zillow is in the process of transitioning some data sources with the goal of producing published data that is more comprehensive, reliable, accurate and timely. As this new data is incorporated, the publication of select metrics may be delayed or temporarily suspended. We look forward to resuming our usual publication schedule for all of our established datasets as soon as possible, and we apologize for any inconvenience. Thank you for your patience and understanding.
- All data accessed and downloaded from this page is free for public use by consumers, media, analysts, academics etc., consistent with our published Terms of Use. Proper and clear attribution of all data to Zillow is required.
- For other data requests or inquiries for Zillow Real Estate Research, contact us here.
- All files are time series unless noted otherwise.
- To download all Zillow metrics for specific levels of geography, click here.
- To download a crosswalk between Zillow regions and federally defined regions for counties and metro areas, click here.
- Unless otherwise noted, all series cover single-family residences, condominiums and co-op homes only.
Source: https://www.zillow.com/research/data/
This dataset was created by Zillow Data and contains around 200 samples along with Unnamed: 1, Unnamed: 0, technical information and other features such as: - Unnamed: 1 - Unnamed: 0 - and more.
- Analyze Unnamed: 1 in relation to Unnamed: 0
- Study the influence of Unnamed: 1 on Unnamed: 0
- More datasets
If you use this dataset in your research, please credit Zillow Data
--- Original source retains full ownership of the source dataset ---
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
By Department of Energy [source]
The Building Energy Data Book (2011) is an invaluable resource for gaining insight into the current state of energy consumption in the buildings sector. This dataset provides comprehensive data on residential, commercial and industrial building energy consumption, construction techniques, building technologies and characteristics. With this resource, you can get an in-depth understanding of how energy is used in various types of buildings - from single family homes to large office complexes - as well as its impact on the environment. The BTO within the U.S Department of Energy's Office of Energy Efficiency and Renewable Energy developed this dataset to provide a wealth of knowledge for researchers, policy makers, engineers and even everyday observers who are interested in learning more about our built environment and its energy usage patterns
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset provides comprehensive information regarding energy consumption in the buildings sector of the United States. It contains a number of key variables which can be used to analyze and explore the relations between energy consumption and building characteristics, technologies, and construction. The data is provided in both CSV format as well as tabular format which can make it helpful for those who prefer to use programs like Excel or other statistical modeling software.
In order to get started with this dataset we've developed a guide outlining how to effectively use it for your research or project needs.
Understand what's included: Before you start analyzing the data, you should read through the provided documentation so that you fully understand what is included in the datasets. You'll want to be aware of any potential limitations or requirements associated with each type of data point so that your results are valid and reliable when drawing conclusions from them.
Clean up any outliers: You may need to take some time upfront investigating suspicious outliers within your dataset before using it in any further analyses — otherwise, they can skew results down the road if not dealt with first-hand! Furthermore, they could also make complex statistical modeling more difficult as well since they artificially inflate values depending on their magnitude within each example data point (i.e., one outlier could affect an entire model’s prior distributions). Missing values should also be accounted for too since these may not always appear obvious at first glance when reviewing a table or graphical representation - but accurate statistics must still be obtained either way no matter how messy things seem!
Exploratory data analysis: After cleaning up your dataset you'll want to do some basic exploring by visualizing different types of summaries like boxplots, histograms and scatter plots etc.. This will give you an initial case into what trends might exist within certain demographic/geographic/etc.. regions & variables which can then help inform future predictive models when needed! Additionally this step will highlight any clear discontinuous changes over time due over-generalization (if applicable), making sure predictors themselves don’t become part noise instead contributing meaningful signals towards overall effect predictions accuracy etc…
Analyze key metrics & observations: Once exploratory analyses have been carried out on rawsamples post-processing steps are next such as analyzing metrics such ascorrelations amongst explanatory functions; performing significance testing regression models; imputing missing/outlier values and much more depending upon specific project needs at hand… Additionally – interpretation efforts based
- Creating an energy efficiency rating system for buildings - Using the dataset, an organization can develop a metric to rate the energy efficiency of commercial and residential buildings in a standardized way.
- Developing targeted campaigns to raise awareness about energy conservation - Analyzing data from this dataset can help organizations identify areas of high energy consumption and create targeted campaigns and incentives to encourage people to conserve energy in those areas.
- Estimating costs associated with upgrading building technologies - By evaluating various trends in building technologies and their associated costs, decision-makers can determine the most cost-effective option when it comes time to upgrade their structures' energy efficiency...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Mexico was last recorded at 8.50 percent. This dataset provides - Mexico Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Interest Rates, Discount Rate for United States (INTDSRUSM193N) from Jan 1950 to Aug 2021 about discount, interest rate, interest, rate, and USA.
This dataset includes the count and rate per 100,000 Virginia residents of injury deaths among Virginia residents, only whether or not they died in state. City/county is based on the place of residence at time of death. Deaths are counted from vital records death certificate data. Data set includes injury death counts and rates for years 2018 through the most recent data year available. When data set is downloaded, the years will be sorted in ascending order, meaning that the earliest year will be at the top. To see data for the most recent year, please scroll down to the bottom of the data set.
This dataset includes the count and rate per 100,000 Virginia residents for drug overdose deaths among Virginia residents by year, drug class, age group, and sex of the decedent. Data set includes drug overdose death counts and rates for years 2018 through the most recent data year available. When data set is downloaded, the years will be sorted in ascending order, meaning that the earliest year will be at the top. To see data for the most recent year, please scroll down to the bottom of the data set.
New Dataset: https://data.virginia.gov/dataset/vdh-pud-overdose-deaths-by-demographics
The Draft Budget 2025 Explorer provides insight into how the budget is created, what elements make up the budget, user-friendly interactive charts, graphs and tables to enhance financial literacy and transparency, an update on service reviews as well as highlights from over 100 lines of services that are advancing Council’s strategic priorities. The draft budget is broken down by Committee, department and service areas as described in the Table of City Services and Standing Committee reporting structure. With direction from Council, the budget is drafted and tabled for review by each Standing Committee and adopted by Council. Aside from the draft budget considered by Committees, there are four external boards who debate their budget separately. These budgets are represented in the overviews but are not broken down by committee or included in the rates, fees and charges reports. For more information on these budgets please visit the agenda for the budget tabling meeting. • Committee of Adjustment • Ottawa Police Services • Ottawa Public Health • Ottawa Public Library For complete details on the budget visit the Budget, finance and corporate planning page.Date Created: November 19th, 2024Update Frequency: As required.Accuracy, Completeness, and Known Issues: If at any point in time the figures found in this tool differ from the draft budget books or presentations at Committee, the draft budget books will be considered the accurate data.Attributes: 1_Operating_overview_expenditure1_Operating_overview_revenueAll City programs and services are funded through the City’s operating budget, which supports the dependable delivery of services that residents rely on every day.2_Capital_program_by_committee2_Capital_program_by_funding_src2_Capital_program_by_service_categoryCity infrastructure and assets are funded through the capital budget. Most of that funding goes to maintaining and fixing existing infrastructure as described in the Comprehensive Asset Management analysis. As funding allows, the City continues to fund growth, build new infrastructure and invest in the future. 3_Reserve_fund_DiscretionaryreservesReserve funds are monies set aside to fund capital expenditures, similar to having personal savings accounts for future needs. They are also used to manage unexpected expenses and to support the City’s finances for the long-term.4_Rates_fees_and_chargesRates are utility charges dependant on usage for water consumption and sewer surcharges that are found on residents' water bills. Fees are charged to users of many City services to cover part or all of the costs of providing the service. Examples of where fees are applied include transit fares, recreation program fees, planning applications and childcare fees. Development charges are one-time fees levied by municipalities on new residential and non-residential properties to help pay for a portion of the growth-related capital infrastructure requirements.5_Exp_brkd_by_committee_OPERATING5_Exp_brkd_by_committee_CAPITALThe draft budget is broken down by Committee, department and service areas as described in the Table of City Services and Standing Committee reporting structure. Each Committee is responsible for a specific portion of the operating and capital budget. Each Committee hears from Community delegations and debates the items assigned to them. Councillors can ask for amendments to each section of the budget and then all sections of the budget are brought back to Council for final a vote on adoption.6_ How_the_city_of_ottawa_compares?See how the City’s taxation compares to other major Canadian cities from 2012-2024.Data Steward: Suzanne Schnob – Financial Services ManagerData Steward Email: fcsdposting@ottawa.caDepartment or Agency: Finance and Corporate Services DepartmentBranch/Unit: Financial Strategies, Planning and Client Services
This dataset includes the count and rate per 100,000 Virginia residents for injury hospitalizations among Virginia residents hospitalized in Virginia-licensed hospitals by year and by health district of the patient. City/county localities are assigned using the patient's hospital location at time of discharge. Data are inpatient hospitalizations from Virginia Health Information and maintained, analyzed, and aggregated by the Virginia Department of Health. Data set includes injury hospitalization counts and rates for years 2018 through the most recent data year available. When data set is downloaded, the years will be sorted in ascending order, meaning that the earliest year will be at the top. To see data for the most recent year, please scroll down to the bottom of the data set.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Pakistan was last recorded at 11 percent. This dataset provides - Pakistan Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in the United States was last recorded at 4.50 percent. This dataset provides the latest reported value for - United States Fed Funds Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.