Facebook
TwitterWind energy sources accounted for more than eight percent of electricity generation worldwide in 2024, up from a 7.8 percent share a year earlier. This was over double the share compared to 2015 values, the year Paris Agreement was adopted.
Facebook
TwitterIn 2024, Sweden and Finland ranked as the largest wind producers per capita worldwide, each with over 3,600 kilowatt hours produced that year. Denmark and Norway followed with a production of roughly 2,400 and 2,600 kilowatt hours per person, respectively.
Facebook
TwitterThe tables show a variety of renewable electricity data for the devolved administrations and the regions of England.
The totals tie in with the UK level data presented in the Digest of UK Energy Statistics.
The key data shown include the number, installed capacity and actual generation by various renewable technologies. Additional information on load factors and the association with economic activity is also shown.
If you have questions about the data, please email: renewablesstatistics@energysecurity.gov.uk
Facebook
TwitterThe size and efficiency of wind turbines have increased greatly over the past years. In 2024, the average power rating of an offshore wind turbine was 26 megawatts, up from 9.5 megawatts in 2020. This figure is expected to increase in the next years, reaching some 35 megawatts in 2030.
Facebook
TwitterIn this dataset the anther's analysis is based on data from NREL about Solar & Wind energy generation by operation areas.
NASA Prediction of Worldwide Energy Resources
COA = central operating area.
EOA = eastern operating area.
SOA = southern operating area.
WOA = western operating area. Source: NRELSource Link
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table expresses the use of renewable energy as gross final consumption of energy. Figures are presented in an absolute way, as well as related to the total energy use in the Netherlands. The total gross final energy consumption in the Netherlands (the denominator used to calculate the percentage of renewable energy per ‘Energy sources and techniques’) can be found in the table as ‘Total, including non-renewables’ and Energy application ‘Total’. The gross final energy consumption for the energy applications ‘Electricity’ and ‘Heat’ are also available. With these figures the percentages of the different energy sources and applications can be calculated; these values are not available in this table. The gross final energy consumption for ‘Transport’ is not available because of the complexity to calculate this. More information on this can be found in the yearly publication ‘Hernieuwbare energie in Nederland’.
Renewable energy is energy from wind, hydro power, the sun, the earth, heat from outdoor air and biomass. This is energy from natural processes that is replenished constantly.
The figures are broken down into energy source/technique and into energy application (electricity, heat and transport).
This table focuses on the share of renewable energy according to the EU Renewable Energy Directive. Under this directive, countries can apply an administrative transfer by purchasing renewable energy from countries that have consumed more renewable energy than the agreed target. For 2020, the Netherlands has implemented such a transfer by purchasing renewable energy from Denmark. This transfer has been made visible in this table as a separate energy source/technique and two totals are included; a total with statistical transfer and a total without statistical transfer.
Figures for 2020 and before were calculated based on RED I; in accordance with Eurostat these figures will not be modified anymore. Inconsistencies with other tables undergoing updates may occur.
Data available from: 1990
Status of the figures: This table contains definite figures up to and including 2022, figures for 2023 are revised provisional figures and figures for 2024 are provisional.
Changes as of July 2025: Compiling figures on solar electricity took more time than scheduled. Consequently, not all StatLine tables on energy contain the most recent 2024 data on production for solar electricity. This table contains the outdated data from June 2025. The most recent figures are 5 percent higher for 2024 solar electricity production. These figures are in these two tables (in Dutch): - StatLine - Zonnestroom; vermogen en vermogensklasse, bedrijven en woningen, regio - StatLine - Hernieuwbare energie; zonnestroom, windenergie, RES-regio Next update is scheduled in November 2025. From that moment all figures will be fully consistent again. We apologize for the inconvenience.
Changes as of june 2025: Figures for 2024 have been added.
Changes as of January 2025
Renewable cooling has been added as Energy source and technique from 2021 onwards, in accordance with RED II. Figures for 2020 and earlier follow RED I definitions, renewable cooling isn’t a part of these definitions.
The energy application “Heat” has been renamed to “Heating and cooling”, in accordance with RED II definitions.
RED II is the current Renewable Energy Directive which entered into force in 2021
Changes as of November 15th 2024 Figures for 2021-2023 have been adjusted. 2022 is now definitive, 2023 stays revised provisional. Because of new insights for windmills regarding own electricity use and capacity, figures on 2021 have been revised.
Changes as of March 2024: Figures of the total energy applications of biogas, co-digestion of manure and other biogas have been restored for 2021 and 2022. The final energy consumption of non-compliant biogas (according to RED II) was wrongly included in the total final consumption of these types of biogas. Figures of total biogas, total biomass and total renewable energy were not influenced by this and therefore not adjusted.
When will new figures be published? Provisional figures on the gross final consumption of renewable energy in broad outlines for the previous year are published each year in June. Revised provisional figures for the previous year appear each year in June.
In November all figures on the consumption of renewable energy in the previous year will be published. These figures remain revised provisional, definite figures appear in November two years after the reporting year. Most important (expected) changes between revised provisional figures in November and definite figures a year later are the figures on solar photovoltaic energy. The figures on the share of total energy consumption in the Netherlands could also still be changed by the availability of adjusted figures on total energy consumption.
Facebook
TwitterIn 2024, roughly ***** trillion British thermal units of energy derived from wind were consumed in the United States, up from ***** trillion British thermal units consumed in the previous year. In the period under consideration, wind energy consumption presented a trend of growth.
Facebook
TwitterEnquiries concerning these statistics should be sent by email to: renewablesstatistics@energysecurity.gov.uk
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The data in this repository consists of 4 files. This includes a readme file [readme.txt], a file summarizing the wind speed [All_Windspeed_Data.csv], a file for the resulting power outputs [All_Power_Data.csv],and a zip-file including detailed data for each wind farm [Data_Per_Wind_Farm.zip]. Each file can be downloaded seperatly or colectivly by clicking the "Download all"-Button.The structure of this repository is as follows:├── readme.txt (this file)├── All_Power_Data.csv (Power time series of wind farms)├── All_Windspeed_Data.csv (Windspeed time series of wind farms)├── Data_Per_Wind_Farm (folder including csv-files for each wind farm) ├── Baie_de_Saint_Brieuc ├── Baltic_Eagle ├── Beatrice ├── Borkum_Riffgrund ├── Borssele_(Phase_1,2) ├── Borssele_(Phase_3,4) ├── Dieppe_et_Le_Treport ├── Dogger_Bank_(Phase_A,B) ├── East_Anglia_One ├── Gemini ├── Gode_Wind ├── Greater_Gabbard ├── Gwynt_y_Mor ├── Hautes_Falaises ├── Hohe_See ├── Hollandse_Kust_Noord ├── Hollandse_Kust_Zuid ├── Horns_Rev ├── Hornsea_(Project_1) ├── Hornsea_(Project_2) ├── Iles_dYeu_et_de_Noirmoutir ├── Kriegers_Flak ├── London_Array ├── Moray_Firth ├── Race_Bank ├── Seagreen ├── Seamade ├── Triton_Knoll ├── WalneyIn the 29 files included in the zip-file [Data_Per_Wind_Farm.zip], we report detailed data for each wind farm. Therein, each column includs one variable while each row represents one point in time. Namely, the columns contain:- time- u-component of wind 100m above ground- v-component of wind 100m above ground- forecasted surface roughness (fsr)- scaled windspeed at hub heigts (heigt given in parentheses - multiple time series possible)- Wind direction in degrees- Power of wind turbines (type given in parentheses - multiple time series possible)- Turn_off (0: turbine turned off because of strong winds, 1: turbines active)- Power (resulting power output of wind farm over all turbine types).Starting from January 1, 1980, 00:00 am UTC in the first row, the data set ranges up to December 31, 2019, 11:00 pm in the last of 350640 rows.Similar to the detailed files per wind farm, each row in the two csv files [All_Power_Data.csv , All_Windspeed_Data.csv] reporting wind speed at hub height and total power represent one point in time for the same period.In the [All_Power_Data.csv] each row gives the sythetic resulting power outout in MW of one wind farm. I.e., the dataset includes 29 columns one for each wind farm. In the [All_Windspeed_Data.csv] each row gives the calculated windspeed im 100m above ground in m/s at the position of each wind farm. I.e., the dataset includes 29 columns one for each wind farm. Data generated using Copernicus Climate Change Service information [1980-2019] and containing modified Copernicus Climate Change Service information [1980-2019].
Facebook
TwitterThis dataset is a series of wind turbine data collected for the Wind for Schools project. The U.S. Department of Energy funded the Wind for Schools project, which helped develop a future wind energy workforce by encouraging students at higher education institutions to join Wind Application Centers and serve as project consultants for small wind turbine installations at rural elementary and secondary schools. The data are collected from the school wind turbine installations. The Wind for Schools OpenEI data project was archived at the end of July 2024. The data that was collected up that point is provided here as the resource "Wind For Schools Dataset".
Facebook
TwitterThe SUMR-D CART2 turbine data are recorded by the CART2 wind turbine's supervisory control and data acquisition (SCADA) system for the Advanced Research Projects Agency–Energy (ARPA-E) SUMR-D project located at the National Renewable Energy Laboratory (NREL) Flatirons Campus. For the project, the CART2 wind turbine was outfitted with a highly flexible rotor specifically designed and constructed for the project. More details about the project can be found here: https://sumrwind.com/. The data include power, loads, and meteorological information from the turbine during startup, operation, and shutdown, and when it was parked and idle.
Facebook
TwitterWind turbines have evolved in the last decades to improve their efficiency. In 2024, the average power rating of a land-based wind turbine was 15 megawatts, up from eight megawatts in 2020. This figure is expected to increase in the next years, reaching some 20 megawatts by 2030.
Facebook
TwitterCurious about the growth of wind energy? The extent to which the decline of coal is an American or international trend? Interested in using energy consumption as an alternate method of comparing national economies? This dataset has you covered.
The Energy Statistics Database contains comprehensive energy statistics on the production, trade, conversion and final consumption of primary and secondary; conventional and non-conventional; and new and renewable sources of energy.
This dataset was kindly published by the United Nations Statistics Division on the UNData site. You can find the original dataset here.
Per the UNData terms of use: all data and metadata provided on UNdata’s website are available free of charge and may be copied freely, duplicated and further distributed provided that UNdata is cited as the reference.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The DOE Planning Portal provides provisional Renewable Energy statistics based on NI planning applications. Tables are available for Renewable Energy applications and decisions by type, Local Government District and Parliamentary Constituency levels, as well as historical data going back to 2002/03.
Source agency: Environment (Northern Ireland)
Designation: Official Statistics not designated as National Statistics
Language: English
Alternative title: Renewable Energy Statistics
Facebook
TwitterAn overview of the trends identified for the previous quarter in the UK’s renewables sector, focusing on:
We publish this document on the last Thursday of each calendar quarter (March, June, September and December).
These tables focus on renewable electricity capacity and generation, and liquid biofuels consumption.
We publish these quarterly tables on the last Thursday of each calendar quarter (March, June, September and December). The data is a quarter in arrears.
This data relates to certificates and generation associated with the renewables obligation scheme.
We publish this monthly table on the second Thursday of each month.
Previous editions of Energy Trends are available on the Energy Trends collection page.
You can request previous editions of the tables by using the email below in Contact us.
If you have questions about these statistics, please email: renewablesstatistics@energysecurity.gov.uk
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Wind Energy Market Size 2025-2029
The wind energy market size is forecast to increase by USD 70.9 billion at a CAGR of 8.7% between 2024 and 2029.
The market is experiencing significant growth, driven by the increasing awareness of environmental pollution and the global push towards renewable energy sources. However, the market faces substantial hurdles, with high upfront costs and investments required to establish wind energy projects. Energy policy and climate policy are shaping the market, pushing for grid parity and energy efficiency. Turbine efficiency is a key focus, with advancements in yaw control, torque control, and blade pitch enhancing power curve performance.
These financial constraints necessitate strategic planning and innovative financing models for companies seeking to capitalize on this market's potential. Navigating these challenges will be crucial for stakeholders looking to succeed in the market. Land use and turbine installation are also essential considerations, with power transmission infrastructure playing a crucial role in integrating wind power into the grid. Research and development in sustainable energy have led to the integration of battery energy storage and hydrogen storage for improved energy storage capabilities.
What will be the Size of the Wind Energy Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free Sample
In the dynamic market, meteorological data plays a crucial role in optimizing wind atlas analysis for site assessment. Circular economy principles are increasingly applied, with blade recycling and material recycling reducing operational costs and promoting green technology. Sustainable investing and green finance are driving the adoption of renewable energy portfolios, including both bottom-fixed and floating wind turbines.
Wind shear and wake effect management are essential for maximizing energy output from wind farms. Offshore substations are becoming more common, enabling larger wind farms and greater grid integration. Research and development in areas like battery energy storage, control systems, and condition monitoring are also crucial to optimizing energy yield and power output.
How is this Wind Energy Industry segmented?
The wind energy industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Type
Onshore
Offshore
End-user
Industrial
Commercial
Residential
Component
Turbines
Support structures
Electrical infrastructure
Control systems
Others
Geography
North America
US
Canada
Mexico
Europe
Germany
UK
APAC
Australia
China
India
Japan
South Korea
Rest of World (ROW)
By Type Insights
The onshore segment is estimated to witness significant growth during the forecast period. Wind power has experienced significant advancements in the last decade, driving down production costs by half for new onshore projects. This economic shift has positioned wind power as the most cost-effective source of electricity generation globally. Sweden, for instance, has set ambitious targets to expand onshore wind energy, with wind temporarily surpassing traditional sources in December 2024. In this record-breaking year, wind energy generated 40.8 TWh, accounting for a quarter of the nation's electricity mix, up from 22% in 2023. During this period, wind covered 35% of Sweden's electricity demand, underscoring its growing importance. Technological innovations have played a pivotal role in this progress.
For example, blade manufacturing has evolved with the use of carbon fiber, enhancing durability and energy yield. Wind turbine design has advanced, with rotor dynamics and control systems optimized for increased power output and grid integration. Environmental regulations have also influenced the wind power industry, with a focus on climate change mitigation and carbon emissions reduction. Wind energy associations have advocated for renewable portfolio standards and condition monitoring, ensuring wind farms operate efficiently and adhere to environmental guidelines.
Offshore wind has emerged as a promising sector, with offshore installation and capacity factor improvements contributing to increased power output. Despite these advancements, challenges remain. Wind direction and wind speed variability, noise pollution, and public acceptance are critical concerns.
Download Free Sample Report
The Onshore segment was valued at USD 87.00 billion in 2019 and showed a gradual increase during the forecast period.
The Wind Energy Market is rapidly expanding as nations invest in sustainable power solutions.
Facebook
TwitterGlobal wind energy has expanded 5-fold since 2010 and is predicted to expand another 8–10-fold over the next 30 years. Wakes generated by wind turbines can alter downwind microclimates and potentially downwind vegetation. However, the design of past studies has made it difficult to isolate the impact of wake effects on vegetation from land cover change. We used hourly wind data to model wake and non-wake zones around 17 wind facilities across the U.S. and compared remotely-sensed vegetation greenness in wake and non-wake zones before and after construction. We located sampling sites only in the dominant vegetation type and in areas that were not disturbed before or after construction. We found evidence for wake effects on vegetation greenness at 10 of 17 facilities for portions of, or the entire growing season. Evidence included statistical significance in Before After Control Impact statistical models, differences >3% between expected and observed values of vegetation greenness, and consistent spatial patterns of anomalies in vegetation greenness relative to turbine locations and wind direction. Wakes induced both increases and decreases in vegetation greenness, which may be difficult to predict prior to construction. The magnitude of wake effects depended primarily on precipitation and to a lesser degree aridity. Wake effects did not show trends over time following construction, suggesting the changes impact vegetation greenness within a growing season, but do not accrue over years. Even small changes in vegetation greenness, similar to those found in this study, have been seen to affect higher trophic levels. Given the rapid global growth of wind energy, and the importance of vegetation condition for agriculture, grazing, wildlife, and carbon storage, understanding how wakes from wind turbines impact vegetation is essential to exploit or ameliorate these effects.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Sweden Energy Supply: Annual: Wind Power data was reported at 15.479 TWh in 2016. This records a decrease from the previous number of 16.323 TWh for 2015. Sweden Energy Supply: Annual: Wind Power data is updated yearly, averaging 0.048 TWh from Dec 1970 (Median) to 2016, with 47 observations. The data reached an all-time high of 16.323 TWh in 2015 and a record low of 0.000 TWh in 1989. Sweden Energy Supply: Annual: Wind Power data remains active status in CEIC and is reported by Swedish Energy Agency. The data is categorized under Global Database’s Sweden – Table SE.RB001: Energy Statistics.
Facebook
TwitterIn 2024, China was the leading country in the world based on wind energy consumption, accounting for a share of almost 40 percent of the global wind power consumed during that year. The United States followed as the second largest consumer with an 18.2 percent share, highlighting the significant gap between the two leading nations in wind energy utilization. Wind energy production worldwide Global wind energy production has seen remarkable growth, reaching approximately 2.5 petawatt hours in 2024. This significant increase represents a 7-fold expansion since 2010, highlighting the global adoption of wind power. Overall, the share of wind energy over the total electricity generation worldwide surpassed eight percent in 2024, doubling since the Paris Agreement was adopted in 2015. As governments worldwide implement supportive policies, the wind energy market is expected to continue its upward trajectory, playing a crucial role in the transition away from fossil fuels. Leading wind power producers While China and the United States are the leading wind power producers worldwide, other countries have registered a higher adoption of the technology relative to their country size. Denmark stands out as the global leader in wind energy penetration, with wind power accounting for almost 58 percent of its electricity mix in 2024. On a per capita basis, Sweden and Finland lead the pack, each producing over 3.8 and 3.6 megawatt hours of wind energy per inhabitant in 2024, respectively.
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Forecast: Wind Energy Consumption in Norway 2022 - 2026 Discover more data with ReportLinker!
Facebook
TwitterWind energy sources accounted for more than eight percent of electricity generation worldwide in 2024, up from a 7.8 percent share a year earlier. This was over double the share compared to 2015 values, the year Paris Agreement was adopted.