The USDA Agricultural Research Service (ARS) recently established SCINet , which consists of a shared high performance computing resource, Ceres, and the dedicated high-speed Internet2 network used to access Ceres. Current and potential SCINet users are using and generating very large datasets so SCINet needs to be provisioned with adequate data storage for their active computing. It is not designed to hold data beyond active research phases. At the same time, the National Agricultural Library has been developing the Ag Data Commons, a research data catalog and repository designed for public data release and professional data curation. Ag Data Commons needs to anticipate the size and nature of data it will be tasked with handling. The ARS Web-enabled Databases Working Group, organized under the SCINet initiative, conducted a study to establish baseline data storage needs and practices, and to make projections that could inform future infrastructure design, purchases, and policies. The SCINet Web-enabled Databases Working Group helped develop the survey which is the basis for an internal report. While the report was for internal use, the survey and resulting data may be generally useful and are being released publicly. From October 24 to November 8, 2016 we administered a 17-question survey (Appendix A) by emailing a Survey Monkey link to all ARS Research Leaders, intending to cover data storage needs of all 1,675 SY (Category 1 and Category 4) scientists. We designed the survey to accommodate either individual researcher responses or group responses. Research Leaders could decide, based on their unit's practices or their management preferences, whether to delegate response to a data management expert in their unit, to all members of their unit, or to themselves collate responses from their unit before reporting in the survey. Larger storage ranges cover vastly different amounts of data so the implications here could be significant depending on whether the true amount is at the lower or higher end of the range. Therefore, we requested more detail from "Big Data users," those 47 respondents who indicated they had more than 10 to 100 TB or over 100 TB total current data (Q5). All other respondents are called "Small Data users." Because not all of these follow-up requests were successful, we used actual follow-up responses to estimate likely responses for those who did not respond. We defined active data as data that would be used within the next six months. All other data would be considered inactive, or archival. To calculate per person storage needs we used the high end of the reported range divided by 1 for an individual response, or by G, the number of individuals in a group response. For Big Data users we used the actual reported values or estimated likely values. Resources in this dataset:Resource Title: Appendix A: ARS data storage survey questions. File Name: Appendix A.pdfResource Description: The full list of questions asked with the possible responses. The survey was not administered using this PDF but the PDF was generated directly from the administered survey using the Print option under Design Survey. Asterisked questions were required. A list of Research Units and their associated codes was provided in a drop down not shown here. Resource Software Recommended: Adobe Acrobat,url: https://get.adobe.com/reader/ Resource Title: CSV of Responses from ARS Researcher Data Storage Survey. File Name: Machine-readable survey response data.csvResource Description: CSV file includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed. This information is that same data as in the Excel spreadsheet (also provided).Resource Title: Responses from ARS Researcher Data Storage Survey. File Name: Data Storage Survey Data for public release.xlsxResource Description: MS Excel worksheet that Includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel
Excel spreadsheets by species (4 letter code is abbreviation for genus and species used in study, year 2010 or 2011 is year data collected, SH indicates data for Science Hub, date is date of file preparation). The data in a file are described in a read me file which is the first worksheet in each file. Each row in a species spreadsheet is for one plot (plant). The data themselves are in the data worksheet. One file includes a read me description of the column in the date set for chemical analysis. In this file one row is an herbicide treatment and sample for chemical analysis (if taken). This dataset is associated with the following publication: Olszyk , D., T. Pfleeger, T. Shiroyama, M. Blakely-Smith, E. Lee , and M. Plocher. Plant reproduction is altered by simulated herbicide drift toconstructed plant communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY. Society of Environmental Toxicology and Chemistry, Pensacola, FL, USA, 36(10): 2799-2813, (2017).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Excel population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Excel. The dataset can be utilized to understand the population distribution of Excel by age. For example, using this dataset, we can identify the largest age group in Excel.
Key observations
The largest age group in Excel, AL was for the group of age 45 to 49 years years with a population of 74 (15.64%), according to the ACS 2018-2022 5-Year Estimates. At the same time, the smallest age group in Excel, AL was the 85 years and over years with a population of 2 (0.42%). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Excel Population by Age. You can refer the same here
The excelforms extension for CKAN provides a mechanism for users to input data into Table Designer tables using Excel-based forms, enhancing data entry efficiency. This extension focuses on streamlining the process of adding data rows to tables within CKAN's Table Designer. A key component of the functionality is the ability to import multiple rows in a single operation, which significant reduces overhead associated with entering multiple data points. Key Features: Excel-Based Forms: Users can enter data using familiar Excel spreadsheets, leveraging their existing skills and software. Table Designer Integration: Designed to work seamlessly with CKAN's Table Designer, extending its functionality to include Excel-based data entry. Multiple Row Import: Supports importing multiple rows of data at once, improving data entry efficiency, especially when dealing with large datasets. Data mapping: Simplifies the process of aligning excel column headers to their corresponding data fields in tables. Improved Data Entry Speed: Provides an alternative to manual data entry, resulting in faster population and easier updates. Technical Integration: The excelforms extension integrates with CKAN by introducing new functionalities and workflows around the Table Designer plugin. The installation instructions specify that this plugin to be added before the tabledesigner plugin. Benefits & Impact: By enabling Excel-based data entry, the excelforms extension improves the user experience for those familiar with spreadsheet software. The ability to import multiple rows simultaneously significantly reduces the time and effort required to populate tables, particularly when dealing with large amounts of data. The impact is better data accessibility through the streamlining of data population workflows.
CSVs with more than 1 million rows can be viewed using add-ons to existing software, such as the Microsoft PowerPivot add-on for Excel, to handle larger data sets. The Microsoft PowerPivot add-on for Excel is available using the link in the 'Related Links' section below. Once PowerPivot has been installed, to load the large files, please follow the instructions below. Note that it may take at least 20 to 30 minutes to load one monthly file. Start Excel as normal
The Large Truck* Crash Causation Study (LTCCS) is based on a three-year data collection project conducted by the Federal Motor Carrier Safety Administration (FMCSA) and the National Highway Traffic Safety Administration (NHTSA) of the U.S. Department of Transportation (DOT). LTCCS is the first-ever national study to attempt to determine the critical events and associated factors that contribute to serious large truck crashes allowing DOT and others to implement effective countermeasures to reduce the occurrence and severity of these crashes.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Intellectual Property Government Open Data (IPGOD) includes over 100 years of registry data on all intellectual property (IP) rights administered by IP Australia. It also has derived information about the applicants who filed these IP rights, to allow for research and analysis at the regional, business and individual level. This is the 2019 release of IPGOD.
IPGOD is large, with millions of data points across up to 40 tables, making them too large to open with Microsoft Excel. Furthermore, analysis often requires information from separate tables which would need specialised software for merging. We recommend that advanced users interact with the IPGOD data using the right tools with enough memory and compute power. This includes a wide range of programming and statistical software such as Tableau, Power BI, Stata, SAS, R, Python, and Scalar.
IP Australia is also providing free trials to a cloud-based analytics platform with the capabilities to enable working with large intellectual property datasets, such as the IPGOD, through the web browser, without any installation of software. IP Data Platform
The following pages can help you gain the understanding of the intellectual property administration and processes in Australia to help your analysis on the dataset.
Due to the changes in our systems, some tables have been affected.
Data quality has been improved across all tables.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Raw data outputs 1-18 Raw data output 1. Differentially expressed genes in AML CSCs compared with GTCs as well as in TCGA AML cancer samples compared with normal ones. This data was generated based on the results of AML microarray and TCGA data analysis. Raw data output 2. Commonly and uniquely differentially expressed genes in AML CSC/GTC microarray and TCGA bulk RNA-seq datasets. This data was generated based on the results of AML microarray and TCGA data analysis. Raw data output 3. Common differentially expressed genes between training and test set samples the microarray dataset. This data was generated based on the results of AML microarray data analysis. Raw data output 4. Detailed information on the samples of the breast cancer microarray dataset (GSE52327) used in this study. Raw data output 5. Differentially expressed genes in breast CSCs compared with GTCs as well as in TCGA BRCA cancer samples compared with normal ones. Raw data output 6. Commonly and uniquely differentially expressed genes in breast cancer CSC/GTC microarray and TCGA BRCA bulk RNA-seq datasets. This data was generated based on the results of breast cancer microarray and TCGA BRCA data analysis. CSC, and GTC are abbreviations of cancer stem cell, and general tumor cell, respectively. Raw data output 7. Differential and common co-expression and protein-protein interaction of genes between CSC and GTC samples. This data was generated based on the results of AML microarray and STRING database-based protein-protein interaction data analysis. CSC, and GTC are abbreviations of cancer stem cell, and general tumor cell, respectively. Raw data output 8. Differentially expressed genes between AML dormant and active CSCs. This data was generated based on the results of AML scRNA-seq data analysis. Raw data output 9. Uniquely expressed genes in dormant or active AML CSCs. This data was generated based on the results of AML scRNA-seq data analysis. Raw data output 10. Intersections between the targeting transcription factors of AML key CSC genes and differentially expressed genes between AML CSCs vs GTCs and between dormant and active AML CSCs or the uniquely expressed genes in either class of CSCs. Raw data output 11. Targeting desirableness score of AML key CSC genes and their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 12. CSC-specific targeting desirableness score of AML key CSC genes and their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 13. The protein-protein interactions between AML key CSC genes with themselves and their targeting transcription factors. This data was generated based on the results of AML microarray and STRING database-based protein-protein interaction data analysis. Raw data output 14. The previously confirmed associations of genes having the highest targeting desirableness and CSC-specific targeting desirableness scores with AML or other cancers’ (stem) cells as well as hematopoietic stem cells. These data were generated based on a PubMed database-based literature mining. Raw data output 15. Drug score of available drugs and bioactive small molecules targeting AML key CSC genes and/or their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 16. CSC-specific drug score of available drugs and bioactive small molecules targeting AML key CSC genes and/or their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 17. Candidate drugs for experimental validation. These drugs were selected based on their respective (CSC-specific) drug scores. CSC is the abbreviation of cancer stem cell. Raw data output 18. Detailed information on the samples of the AML microarray dataset GSE30375 used in this study.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Excel household income by gender. The dataset can be utilized to understand the gender-based income distribution of Excel income.
The dataset will have the following datasets when applicable
Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Explore our comprehensive data analysis and visual representations for a deeper understanding of Excel income distribution by gender. You can refer the same here
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global big data technology market size was valued at approximately $162 billion in 2023 and is projected to reach around $471 billion by 2032, growing at a Compound Annual Growth Rate (CAGR) of 12.6% during the forecast period. The growth of this market is primarily driven by the increasing demand for data analytics and insights to enhance business operations, coupled with advancements in AI and machine learning technologies.
One of the principal growth factors of the big data technology market is the rapid digital transformation across various industries. Businesses are increasingly recognizing the value of data-driven decision-making processes, leading to the widespread adoption of big data analytics. Additionally, the proliferation of smart devices and the Internet of Things (IoT) has led to an exponential increase in data generation, necessitating robust big data solutions to analyze and extract meaningful insights. Organizations are leveraging big data to streamline operations, improve customer engagement, and gain a competitive edge.
Another significant growth driver is the advent of advanced technologies like artificial intelligence (AI) and machine learning (ML). These technologies are being integrated into big data platforms to enhance predictive analytics and real-time decision-making capabilities. AI and ML algorithms excel at identifying patterns within large datasets, which can be invaluable for predictive maintenance in manufacturing, fraud detection in banking, and personalized marketing in retail. The combination of big data with AI and ML is enabling organizations to unlock new revenue streams, optimize resource utilization, and improve operational efficiency.
Moreover, regulatory requirements and data privacy concerns are pushing organizations to adopt big data technologies. Governments worldwide are implementing stringent data protection regulations, like the General Data Protection Regulation (GDPR) in Europe and the California Consumer Privacy Act (CCPA) in the United States. These regulations necessitate robust data management and analytics solutions to ensure compliance and avoid hefty fines. As a result, organizations are investing heavily in big data platforms that offer secure and compliant data handling capabilities.
As organizations continue to navigate the complexities of data management, the role of Big Data Professional Services becomes increasingly critical. These services offer specialized expertise in implementing and managing big data solutions, ensuring that businesses can effectively harness the power of their data. Professional services encompass a range of offerings, including consulting, system integration, and managed services, tailored to meet the unique needs of each organization. By leveraging the knowledge and experience of big data professionals, companies can optimize their data strategies, streamline operations, and achieve their business objectives more efficiently. The demand for these services is driven by the growing complexity of big data ecosystems and the need for seamless integration with existing IT infrastructure.
Regionally, North America holds a dominant position in the big data technology market, primarily due to the early adoption of advanced technologies and the presence of key market players. The Asia Pacific region is expected to witness the highest growth rate during the forecast period, driven by increasing digitalization, the rapid growth of industries such as e-commerce and telecommunications, and supportive government initiatives aimed at fostering technological innovation.
The big data technology market is segmented into software, hardware, and services. The software segment encompasses data management software, analytics software, and data visualization tools, among others. This segment is expected to witness substantial growth due to the increasing demand for data analytics solutions that can handle vast amounts of data. Advanced analytics software, in particular, is gaining traction as organizations seek to gain deeper insights and make data-driven decisions. Companies are increasingly adopting sophisticated data visualization tools to present complex data in an easily understandable format, thereby enhancing decision-making processes.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Excel township household income by gender. The dataset can be utilized to understand the gender-based income distribution of Excel township income.
The dataset will have the following datasets when applicable
Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Explore our comprehensive data analysis and visual representations for a deeper understanding of Excel township income distribution by gender. You can refer the same here
All general (non-research, non-ownership related) payments from the 2019 program year [January 1 – December 31, 2019]
NOTE: This is a very large file and, depending on your network characteristics and software, may take a long time to download or fail to download. Additionally, the number of rows in the file may be larger than the maximum rows your version of Microsoft Excel supports. If you can't download the file, we recommend engaging your IT support staff. If you are able to download the file but are unable to open it in MS Excel or get a message that the data has been truncated, we recommend trying alternative programs such as MS Access, Universal Viewer, Editpad or any other software your organization has available for large datasets.
Once PowerPivot has been installed, to load the large files, please follow the instructions below: Start Excel as normal Click on the PowerPivot tab Click on the PowerPivot Window icon (top left) In the PowerPivot Window, click on the "From Other Sources" icon In the Table Import Wizard e.g. scroll to the bottom and select Text File Browse to the file you want to open and choose the file extension you require e.g. CSV Please read the below notes to ensure correct understanding of the data. Microsoft PowerPivot add-on for Excel can be used to handle larger data sets. The Microsoft PowerPivot add-on for Excel is available using the link in the 'Related Links' section - https://www.microsoft.com/en-us/download/details.aspx?id=43348 Once PowerPivot has been installed, to load the large files, please follow the instructions below: 1. Start Excel as normal 2. Click on the PowerPivot tab 3. Click on the PowerPivot Window icon (top left) 4. In the PowerPivot Window, click on the "From Other Sources" icon 5. In the Table Import Wizard e.g. scroll to the bottom and select Text File 6. Browse to the file you want to open and choose the file extension you require e.g. CSV Please read the below notes to ensure correct understanding of the data. Fewer than 5 Items Please be aware that I have decided not to release the exact number of items, where the total number of items falls below 5, for certain drugs/patient combinations. Where suppression has been applied a * is shown in place of the number of items, please read this as 1-4 items. Suppressions have been applied where items are lower than 5, for items and NIC and for quantity when quantity and items are both lower than 5 for the following drugs and identified genders as per the sensitive drug list; When the BNF Paragraph Code is 60401 (Female Sex Hormones & Their Modulators) and the gender identified on the prescription is Male When the BNF Paragraph Code is 60402 (Male Sex Hormones And Antagonists) and the gender identified on the prescription is Female When the BNF Paragraph Code is 70201 (Preparations For Vaginal/Vulval Changes) and the gender identified on the prescription is Male When the BNF Paragraph Code is 70202 (Vaginal And Vulval Infections) and the gender identified on the prescription is Male When the BNF Paragraph Code is 70301 (Combined Hormonal Contraceptives/Systems) and the gender identified on the prescription is Male When the BNF Paragraph Code is 70302 (Progestogen-only Contraceptives) and the gender identified on the prescription is Male When the BNF Paragraph Code is 80302 (Progestogens) and the gender identified on the prescription is Male When the BNF Paragraph Code is 70405 (Drugs For Erectile Dysfunction) and the gender identified on the prescription is Female When the BNF Paragraph Code is 70406 (Drugs For Premature Ejaculation) and the gender identified on the prescription is Female This is because the patients could be identified, when combined with other information that may be in the public domain or reasonably available. This information falls under the exemption in section 40 subsections 2 and 3A (a) of the Freedom of Information Act. This is because it would breach the first data protection principle as: a. it is not fair to disclose patients personal details to the world and is likely to cause damage or distress. b. these details are not of sufficient interest to the public to warrant an intrusion into the privacy of the patients. Please click the below web link to see the exemption in full.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Heterogenous Big dataset is presented in this proposed work: electrocardiogram (ECG) signal, blood pressure signal, oxygen saturation (SpO2) signal, and the text input. This work is an extension version for our relevant formulating of dataset that presented in [1] and a trustworthy and relevant medical dataset library (PhysioNet [2]) was used to acquire these signals. The dataset includes medical features from heterogenous sources (sensory data and non-sensory). Firstly, ECG sensor’s signals which contains QRS width, ST elevation, peak numbers, and cycle interval. Secondly: SpO2 level from SpO2 sensor’s signals. Third, blood pressure sensors’ signals which contain high (systolic) and low (diastolic) values and finally text input which consider non-sensory data. The text inputs were formulated based on doctors diagnosing procedures for heart chronic diseases. Python software environment was used, and the simulated big data is presented along with analyses.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Excel. The dataset can be utilized to gain insights into gender-based income distribution within the Excel population, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income brackets:
Variables / Data Columns
Employment type classifications include:
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Excel median household income by race. You can refer the same here
https://borealisdata.ca/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.5683/SP3/TUQXW4https://borealisdata.ca/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.5683/SP3/TUQXW4
The annual Retail store data CD-ROM is an easy-to-use tool for quickly discovering retail trade patterns and trends. The current product presents results from the 1999 and 2000 Annual Retail Store and Annual Retail Chain surveys. This product contains numerous cross-classified data tables using the North American Industry Classification System (NAICS). The data tables provide access to a wide range of financial variables, such as revenues, expenses, inventory, sales per square footage (chain stores only) and the number of stores. Most data tables contain detailed information on industry (as low as 5-digit NAICS codes), geography (Canada, provinces and territories) and store type (chains, independents, franchises). The electronic product also contains survey metadata, questionnaires, information on industry codes and definitions, and the list of retail chain store respondents.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Spreadsheets targeted at the analysis of GHS safety fingerprints.AbstractOver a 20-year period, the UN developed the Globally Harmonized System (GHS) to address international variation in chemical safety information standards. By 2014, the GHS became widely accepted internationally and has become the cornerstone of OSHA’s Hazard Communication Standard. Despite this progress, today we observe that there are inconsistent results when different sources apply the GHS to specific chemicals, in terms of the GHS pictograms, hazard statements, precautionary statements, and signal words assigned to those chemicals. In order to assess the magnitude of this problem, this research uses an extension of the “chemical fingerprints” used in 2D chemical structure similarity analysis to GHS classifications. By generating a chemical safety fingerprint, the consistency of the GHS information for specific chemicals can be assessed. The problem is the sources for GHS information can differ. For example, the SDS for sodium hydroxide pellets found on Fisher Scientific’s website displays two pictograms, while the GHS information for sodium hydroxide pellets on Sigma Aldrich’s website has only one pictogram. A chemical information tool, which identifies such discrepancies within a specific chemical inventory, can assist in maintaining the quality of the safety information needed to support safe work in the laboratory. The tools for this analysis will be scaled to the size of a moderate large research lab or small chemistry department as a whole (between 1000 and 3000 chemical entities) so that labelling expectations within these universes can be established as consistently as possible.Most chemists are familiar with programs such as excel and google sheets which are spreadsheet programs that are used by many chemists daily. Though a monadal programming approach with these tools, the analysis of GHS information can be made possible for non-programmers. This monadal approach employs single spreadsheet functions to analyze the data collected rather than long programs, which can be difficult to debug and maintain. Another advantage of this approach is that the single monadal functions can be mixed and matched to meet new goals as information needs about the chemical inventory evolve over time. These monadal functions will be used to converts GHS information into binary strings of data called “bitstrings”. This approach is also used when comparing chemical structures. The binary approach make data analysis more manageable, as GHS information comes in a variety of formats such as pictures or alphanumeric strings which are difficult to compare on their face. Bitstrings generated using the GHS information can be compared using an operator such as the tanimoto coefficent to yield values from 0 for strings that have no similarity to 1 for strings that are the same. Once a particular set of information is analyzed the hope is the same techniques could be extended to more information. For example, if GHS hazard statements are analyzed through a spreadsheet approach the same techniques with minor modifications could be used to tackle more GHS information such as pictograms.Intellectual Merit. This research indicates that the use of the cheminformatic technique of structural fingerprints can be used to create safety fingerprints. Structural fingerprints are binary bit strings that are obtained from the non-numeric entity of 2D structure. This structural fingerprint allows comparison of 2D structure through the use of the tanimoto coefficient. The use of this structural fingerprint can be extended to safety fingerprints, which can be created by converting a non-numeric entity such as GHS information into a binary bit string and comparing data through the use of the tanimoto coefficient.Broader Impact. Extension of this research can be applied to many aspects of GHS information. This research focused on comparing GHS hazard statements, but could be further applied to other bits of GHS information such as pictograms and GHS precautionary statements. Another facet of this research is allowing the chemist who uses the data to be able to compare large dataset using spreadsheet programs such as excel and not need a large programming background. Development of this technique will also benefit the Chemical Health and Safety community and Chemical Information communities by better defining the quality of GHS information available and providing a scalable and transferable tool to manipulate this information to meet a variety of other organizational needs.
https://opendata.nhsbsa.net/dataset/foi-01204 April 2023 https://opendata.nhsbsa.net/dataset/foi-01240 May 2023 https://opendata.nhsbsa.net/dataset/foi-01310 June 2023 https://opendata.nhsbsa.net/dataset/foi-01378 July 2023 FOI-01424 - Datasets - Open Data Portal BETA (nhsbsa.net) August 2023 https://opendata.nhsbsa.net/dataset/foi-01502 September 2023 https://opendata.nhsbsa.net/dataset/foi-01550 October 2023 https://opendata.nhsbsa.net/dataset/foi-01668 November 2023 https://opendata.nhsbsa.net/dataset/foi-01669 December 2023 https://opendata.nhsbsa.net/dataset/foi-01756 Some data sets are over 1 million rows of data and it may be that you will need to use add-ons already existing on Microsoft Excel to enable you to view the data set in its entirety. Microsoft PowerPivot add-on for Excel can be used to handle larger data sets. The Microsoft PowerPivot add-on for Excel is available using the link in the 'Related Links' section below: https://www.microsoft.com/en-us/download/details.aspx?id=43348 Once PowerPivot has been installed, to load the large files, please follow the instructions below: 1. Start Excel as normal 2. Click on the PowerPivot tab 3. Click on the PowerPivot Window icon (top left) 4. In the PowerPivot Window, click on the "From Other Sources" icon 5. In the Table Import Wizard e.g. scroll to the bottom and select Text File 6. Browse to the file you want to open and choose the file extension you require e.g. CSV
The Delta Neighborhood Physical Activity Study was an observational study designed to assess characteristics of neighborhood built environments associated with physical activity. It was an ancillary study to the Delta Healthy Sprouts Project and therefore included towns and neighborhoods in which Delta Healthy Sprouts participants resided. The 12 towns were located in the Lower Mississippi Delta region of Mississippi. Data were collected via electronic surveys between August 2016 and September 2017 using the Rural Active Living Assessment (RALA) tools and the Community Park Audit Tool (CPAT). Scale scores for the RALA Programs and Policies Assessment and the Town-Wide Assessment were computed using the scoring algorithms provided for these tools via SAS software programming. The Street Segment Assessment and CPAT do not have associated scoring algorithms and therefore no scores are provided for them. Because the towns were not randomly selected and the sample size is small, the data may not be generalizable to all rural towns in the Lower Mississippi Delta region of Mississippi. Dataset one contains data collected with the RALA Programs and Policies Assessment (PPA) tool. Dataset two contains data collected with the RALA Town-Wide Assessment (TWA) tool. Dataset three contains data collected with the RALA Street Segment Assessment (SSA) tool. Dataset four contains data collected with the Community Park Audit Tool (CPAT). [Note : title changed 9/4/2020 to reflect study name] Resources in this dataset:Resource Title: Dataset One RALA PPA Data Dictionary. File Name: RALA PPA Data Dictionary.csvResource Description: Data dictionary for dataset one collected using the RALA PPA tool.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Two RALA TWA Data Dictionary. File Name: RALA TWA Data Dictionary.csvResource Description: Data dictionary for dataset two collected using the RALA TWA tool.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Three RALA SSA Data Dictionary. File Name: RALA SSA Data Dictionary.csvResource Description: Data dictionary for dataset three collected using the RALA SSA tool.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Four CPAT Data Dictionary. File Name: CPAT Data Dictionary.csvResource Description: Data dictionary for dataset four collected using the CPAT.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset One RALA PPA. File Name: RALA PPA Data.csvResource Description: Data collected using the RALA PPA tool.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Two RALA TWA. File Name: RALA TWA Data.csvResource Description: Data collected using the RALA TWA tool.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Three RALA SSA. File Name: RALA SSA Data.csvResource Description: Data collected using the RALA SSA tool.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Four CPAT. File Name: CPAT Data.csvResource Description: Data collected using the CPAT.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Data Dictionary. File Name: DataDictionary_RALA_PPA_SSA_TWA_CPAT.csvResource Description: This is a combined data dictionary from each of the 4 dataset files in this set.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
** RD DATASET ** RD dataset was created by the images from the melanoma community on the internet (https://reddit.com/r/melanoma). Consecutive images were included using a python library (https://github.com/aliparlakci/bulk-downloader-for-reddit) from Jan 25, 2020, to July 30, 2021. The ground truth was voted by four dermatologists and one plastic surgeon while referring to the chief complaint and brief history. A total of 1,282 images (1,201 cases) were finally included. Because of the deleted cases by users, the links of 860 cases are valid in July 2021.
RD_RAW.xlsx The download links and ground truth of the RD dataset are included in this excel file. In addition, the raw data of the AI (Model Dermatology Build2021 - https://modelderm.com) and 32 laypersons were included.
v1_public.zip "v1_public.zip" includes the 1,282 lesional images (full-size). The 24 images that were excluded from the study are also available.
v1_private.zip is not available here. Wide field images are not available here. If the archive is needed for research purpose, please email to Dr. Han Seung Seog (whria78@gmail.com) or Dr Cristian Navarrete-Dechent (ctnavarr@gmail.com).
References - The Degradation of Performance of a State-of-the-art Skin Image Classifier When Applied to Patient-driven Internet Search - Scientific Report (in-press)
** Background normal test with the ISIC images ** ISIC dataset (https://www.isic-archive.com; Gallery -> 2018 JID Editorial images; 99 images; ISIC_0024262 and ISIC_0024261 are identical images and ISIC_0024262 was skipped) was used for the background normal test. We defined 10% area rectangle crop to “specialist-size crop”, and 5% area rectangle crop to “layperson-size crop” a) S-crops.zip: specialist-size crops Format: CROPNO_AGE(0~99)_GENDER(1=male,0=female)[m]_FILENAME.png b) L-crops.zip: layperson-size crops Format: CROPNO_AGE(0~99)_GENDER(1=male,0=female)[m]_FILENAME.png c) result_S.zip: Background normal test result using the specialist-size crops d) result_L.zip; Background normal test result using the layperson-size crops
Reference - Automated Dermatological Diagnosis: Hype or Reality? - https://doi.org/10.1016/j.jid.2018.04.040 - Multiclass Artificial Intelligence in Dermatology: Progress but Still Room for Improvement - https://doi.org/10.1016/j.jid.2020.06.040
The USDA Agricultural Research Service (ARS) recently established SCINet , which consists of a shared high performance computing resource, Ceres, and the dedicated high-speed Internet2 network used to access Ceres. Current and potential SCINet users are using and generating very large datasets so SCINet needs to be provisioned with adequate data storage for their active computing. It is not designed to hold data beyond active research phases. At the same time, the National Agricultural Library has been developing the Ag Data Commons, a research data catalog and repository designed for public data release and professional data curation. Ag Data Commons needs to anticipate the size and nature of data it will be tasked with handling. The ARS Web-enabled Databases Working Group, organized under the SCINet initiative, conducted a study to establish baseline data storage needs and practices, and to make projections that could inform future infrastructure design, purchases, and policies. The SCINet Web-enabled Databases Working Group helped develop the survey which is the basis for an internal report. While the report was for internal use, the survey and resulting data may be generally useful and are being released publicly. From October 24 to November 8, 2016 we administered a 17-question survey (Appendix A) by emailing a Survey Monkey link to all ARS Research Leaders, intending to cover data storage needs of all 1,675 SY (Category 1 and Category 4) scientists. We designed the survey to accommodate either individual researcher responses or group responses. Research Leaders could decide, based on their unit's practices or their management preferences, whether to delegate response to a data management expert in their unit, to all members of their unit, or to themselves collate responses from their unit before reporting in the survey. Larger storage ranges cover vastly different amounts of data so the implications here could be significant depending on whether the true amount is at the lower or higher end of the range. Therefore, we requested more detail from "Big Data users," those 47 respondents who indicated they had more than 10 to 100 TB or over 100 TB total current data (Q5). All other respondents are called "Small Data users." Because not all of these follow-up requests were successful, we used actual follow-up responses to estimate likely responses for those who did not respond. We defined active data as data that would be used within the next six months. All other data would be considered inactive, or archival. To calculate per person storage needs we used the high end of the reported range divided by 1 for an individual response, or by G, the number of individuals in a group response. For Big Data users we used the actual reported values or estimated likely values. Resources in this dataset:Resource Title: Appendix A: ARS data storage survey questions. File Name: Appendix A.pdfResource Description: The full list of questions asked with the possible responses. The survey was not administered using this PDF but the PDF was generated directly from the administered survey using the Print option under Design Survey. Asterisked questions were required. A list of Research Units and their associated codes was provided in a drop down not shown here. Resource Software Recommended: Adobe Acrobat,url: https://get.adobe.com/reader/ Resource Title: CSV of Responses from ARS Researcher Data Storage Survey. File Name: Machine-readable survey response data.csvResource Description: CSV file includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed. This information is that same data as in the Excel spreadsheet (also provided).Resource Title: Responses from ARS Researcher Data Storage Survey. File Name: Data Storage Survey Data for public release.xlsxResource Description: MS Excel worksheet that Includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel