Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data contains 2022 world population data publised by the UN DESA for six most populous countries of the world. File also contains the analysis of decomposition of demographic indicators on population growth.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a hybrid gridded dataset of demographic data for the world, given as 5-year population bands at a 0.5 degree grid resolution.
This dataset combines the NASA SEDAC Gridded Population of the World version 4 (GPWv4) with the ISIMIP Histsoc gridded population data and the United Nations World Population Program (WPP) demographic modelling data.
Demographic fractions are given for the time period covered by the UN WPP model (1950-2050) while demographic totals are given for the time period covered by the combination of GPWv4 and Histsoc (1950-2020)
Method - demographic fractions
Demographic breakdown of country population by grid cell is calculated by combining the GPWv4 demographic data given for 2010 with the yearly country breakdowns from the UN WPP. This combines the spatial distribution of demographics from GPWv4 with the temporal trends from the UN WPP. This makes it possible to calculate exposure trends from 1980 to the present day.
To combine the UN WPP demographics with the GPWv4 demographics, we calculate for each country the proportional change in fraction of demographic in each age band relative to 2010 as:
\(\delta_{year,\ country,age}^{\text{wpp}} = f_{year,\ country,age}^{\text{wpp}}/f_{2010,country,age}^{\text{wpp}}\)
Where:
- \(\delta_{year,\ country,age}^{\text{wpp}}\) is the ratio of change in demographic for a given age and and country from the UN WPP dataset.
- \(f_{year,\ country,age}^{\text{wpp}}\) is the fraction of population in the UN WPP dataset for a given age band, country, and year.
- \(f_{2010,country,age}^{\text{wpp}}\) is the fraction of population in the UN WPP dataset for a given age band, country for the year 2020.
The gridded demographic fraction is then calculated relative to the 2010 demographic data given by GPWv4.
For each subset of cells corresponding to a given country c, the fraction of population in a given age band is calculated as:
\(f_{year,c,age}^{\text{gpw}} = \delta_{year,\ country,age}^{\text{wpp}}*f_{2010,c,\text{age}}^{\text{gpw}}\)
Where:
- \(f_{year,c,age}^{\text{gpw}}\) is the fraction of the population in a given age band for given year, for the grid cell c.
- \(f_{2010,c,age}^{\text{gpw}}\) is the fraction of the population in a given age band for 2010, for the grid cell c.
The matching between grid cells and country codes is performed using the GPWv4 gridded country code lookup data and country name lookup table. The final dataset is assembled by combining the cells from all countries into a single gridded time series. This time series covers the whole period from 1950-2050, corresponding to the data available in the UN WPP model.
Method - demographic totals
Total population data from 1950 to 1999 is drawn from ISIMIP Histsoc, while data from 2000-2020 is drawn from GPWv4. These two gridded time series are simply joined at the cut-over date to give a single dataset covering 1950-2020.
The total population per age band per cell is calculated by multiplying the population fractions by the population totals per grid cell.
Note that as the total population data only covers until 2020, the time span covered by the demographic population totals data is 1950-2020 (not 1950-2050).
Disclaimer
This dataset is a hybrid of different datasets with independent methodologies. No guarantees are made about the spatial or temporal consistency across dataset boundaries. The dataset may contain outlier points (e.g single cells with demographic fractions >1). This dataset is produced on a 'best effort' basis and has been found to be broadly consistent with other approaches, but may contain inconsistencies which not been identified.
The Gridded Population of the World, Version 4 (GPWv4): Land and Water Area, Revision 11 consists of two rasters that measure surface areas of land and water in square kilometers per pixel. The Land Area raster provides estimates of the land area, excluding permanent ice and water, within each pixel, and was used to calculate the population density rasters. The Water Area raster provides estimates of the water area (permanent ice and water) within each pixel. The sum of land area and water area of a pixel equals the total surface area of that pixel. The data files were produced as global rasters at 30 arc-second (~1 km at the equator) resolution. To enable faster global processing, and in support of research commUnities, the 30 arc-second data were aggregated to 2.5 arc-minute, 15 arc-minute, 30 arc-minute and 1 degree resolutions.
The Data Sheet lists all geopolitical entities with populations of 150,000 or more and all members of the UN. These include sovereign states, dependencies, overseas departments, and some territories whose status or boundaries may be undetermined or in dispute. Regional population totals are independently rounded and include small countries or areas not shown. Regional and world rates and percentages are weighted averages of countries for which data are available; regional averages are shown when data or estimates are available for at least three-quarters of the region's population. Variables include population, birth and death rate, rate of natural increase, population "doubling time", estimated population for 2010 and 2025, infant mortality rate, total fertility rate, population under age 15/over age 65, life expectancy at birth, urban population, contraceptive use, per capita GNP, and government view of current birth rate. NOTE: This file is a compilation of demographic data from various sources. The data values are the same as those published in PRB's World Data Sheet, but this file also contains some underlying population figures used to calculate the rates and percentages.
The Gridded Population of the World, Version 4 (GPWv4): Land and Water Area, Revision 10 consists of two rasters that measure surface areas of land and water in square kilometers per pixel. The Land Area raster provides estimates of the land area, excluding permanent ice and water, within each pixel, and was used to calculate the population density rasters. The Water Area raster provides estimates of the water area (permanent ice and water) within each pixel. The sum of land area and water area of a pixel equals the total surface area of that pixel. The data files were produced as global rasters at 30 arc-second (~1 km at the equator) resolution. To enable faster global processing, and in support of research communities, the 30 arc-second data were aggregated to 2.5 arc-minute, 15 arc-minute, 30 arc-minute and 1 degree resolutions.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global pocket calculators market size is projected to grow significantly, with an estimated CAGR of 6.2% from 2024 to 2032. In 2023, the market was valued at approximately $3.5 billion, and by 2032, it is expected to reach around $6.4 billion. This robust growth can be attributed to the continuous demand for calculators in education and business sectors, technological advancements in calculator functions, and the increasing prevalence of digital learning environments. The integration of advanced features and connectivity options in calculators is further expected to bolster market expansion during the forecast period.
One of the primary growth factors driving the pocket calculators market is the enduring necessity for dedicated calculation devices in educational settings. Despite the proliferation of multifunctional devices like smartphones and tablets, pocket calculators remain indispensable in schools and universities due to their specialized functionalities and ease of use in examination settings. Calculators designed specifically for educational use, such as scientific and graphing calculators, are integral to curricula in mathematics and science courses worldwide. The emphasis on STEM education globally continues to create a substantial demand for calculators, as they provide students with essential tools for learning complex mathematical concepts.
Another significant factor contributing to market growth is the advancements in calculator technology. Modern calculators now come with enhanced features such as programmable functions, connectivity with other devices, and cloud storage capabilities. These innovations have expanded the applications of calculators beyond traditional arithmetic functions to complex problem-solving tools used in various professional fields such as finance and engineering. The integration of graphing capabilities and data analysis functions has widened the appeal of calculators among professionals who require robust computational power on-the-go, further driving the market growth.
The rise of digital learning and remote education platforms has also positively impacted the demand for pocket calculators. As educational institutions adopt digital tools to facilitate learning, the need for reliable, non-disruptive devices like calculators has increased. This trend is prominent in regions with advanced technological infrastructures, where digital literacy is a priority. In addition, the convenience and affordability of pocket calculators make them a preferred choice for students and educators alike. The market is expected to benefit from ongoing investments in educational technology, which frequently incorporate calculators as integral tools for effective learning experiences.
Regionally, Asia Pacific is anticipated to witness the highest growth in the pocket calculators market. The region's rapid economic development, coupled with an expanding middle-class population, supports the growing demand for educational tools. Countries like China, India, and Japan are significant contributors to this growth, driven by large student populations and increasing investments in education. North America and Europe are also substantial markets due to their established education systems and consistent demand for educational aids. In contrast, the markets in Latin America and the Middle East & Africa are expected to experience moderate growth, influenced by their evolving educational landscapes and economic conditions.
When dissecting the pocket calculators market by product type, it becomes evident that scientific calculators hold a significant share due to their extensive application in educational environments. Scientific calculators are indispensable tools for students and professionals dealing with subjects that require complex calculations such as physics, chemistry, and engineering. Their ability to perform a wide range of functions, including trigonometric, logarithmic, and exponential operations, makes them crucial in academic settings. The demand for scientific calculators is particularly high in regions with a strong emphasis on STEM education, and this segment is anticipated to continue its dominance over the forecast period.
Graphing calculators represent another vital segment within the pocket calculators market, catering to advanced educational and professional needs. These calculators are equipped with the capability to plot graphs and solve simultaneous equations, making them essential in higher-level mathematics and engineering courses. Their extensive functionality is p
The authors combine data from 84 Demographic and Health Surveys from 46 countries to analyze trends and socioeconomic differences in adult mortality, calculating mortality based on the sibling mortality reports collected from female respondents aged 15-49.
The analysis yields four main findings. First, adult mortality is different from child mortality: while under-5 mortality shows a definite improving trend over time, adult mortality does not, especially in Sub-Saharan Africa. The second main finding is the increase in adult mortality in Sub-Saharan African countries. The increase is dramatic among those most affected by the HIV/AIDS pandemic. Mortality rates in the highest HIV-prevalence countries of southern Africa exceed those in countries that experienced episodes of civil war. Third, even in Sub-Saharan countries where HIV-prevalence is not as high, mortality rates appear to be at best stagnating, and even increasing in several cases. Finally, the main socioeconomic dimension along which mortality appears to differ in the aggregate is gender. Adult mortality rates in Sub-Saharan Africa have risen substantially higher for men than for women?especially so in the high HIV-prevalence countries. On the whole, the data do not show large gaps by urban/rural residence or by school attainment.
This paper is a product of the Human Development and Public Services Team, Development Research Group. It is part of a larger effort by the World Bank to provide open access to its research and make a contribution to development policy discussions around the world. Policy Research Working Papers are also posted on the Web at http://econ.worldbank.org.
We derive estimates of adult mortality from an analysis of Demographic and Health Survey (DHS) data from 46 countries, 33 of which are from Sub-Saharan Africa and 13 of which are from countries in other regions (Annex Table). Several of the countries have been surveyed more than once and we base our estimates on the total of 84 surveys that have been carried out (59 in Sub-Saharan Africa, 25 elsewhere).
The countries covered by DHS in Sub-Saharan Africa represent almost 90 percent of the region's population. Outside of Sub-Saharan Africa the DHS surveys we use cover a far smaller share of the population-even if this is restricted to countries whose GDP per capita never exceeds $10,000: overall about 14 percent of the population is covered by these countries, although this increases to 29 percent if China and India are excluded (countries for which we cannot calculate adult mortality using the DHS). It is therefore important to keep in mind that the sample of non-Sub-Saharan African countries we have cannot be thought of as "representative" of the rest of the world, or even the rest of the developing world.
Country
Sample survey data [ssd]
Face-to-face [f2f]
In the course of carrying out this study, the authors created two databases of adult mortality estimates based on the original DHS datasets, both of which are publicly available for analysts who wish to carry out their own analysis of the data.
The naming conventions for the adult mortality-related are as follows. Variables are named:
GGG_MC_AAAA
GGG refers to the population subgroup. The values it can take, and the corresponding definitions are in the following table:
All - All Fem - Female Mal - Male Rur - Rural Urb - Urban Rurm - Rural/Male Urbm - Urban/Male Rurf - Rural/Female Urbf - Urban/Female Noed - No education Pri - Some or completed primary only Sec - At least some secondary education Noedm - No education/Male Prim - Some or completed primary only/Male Secm - At least some secondary education/Male Noedf - No education/Female Prif - Some or completed primary only/Female Secf - At least some secondary education/Female Rch - Rural as child Uch - Urban as child Rchm - Rural as child/Male Uchm - Urban as child/Male Rchf - Rural as child/Female Uchf - Urban as child/Female Edltp - Less than primary schooling Edpom - Primary or more schooling Edltpm - Less than primary schooling/Male Edpomm - Primary or more schooling/Male Edltpf - Less than primary schooling/Female Edpomf - Primary or more schooling/Female Edltpu - Less than primary schooling/Urban Edpomu - Primary or more schooling/Urban Edltpr - Less than primary schooling/Rural Edpomr - Primary or more schooling/Rural Edltpmu - Less than primary schooling/Male/Urban Edpommu - Primary or more schooling/Male/Urban Edltpmr - Less than primary schooling/Male/Rural Edpommr - Primary or more schooling/Male/Rural Edltpfu - Less than primary schooling/Female/Urban Edpomfu - Primary or more schooling/Female/Urban Edltpfr - Less than primary schooling/Female/Rural Edpomfr - Primary or more schooling/Female/Rural
M refers to whether the variable is the number of observations used to calculate the estimate (in which case M takes on the value "n") or whether it is a mortality estimate (in which case M takes on the value "m").
C refers to whether the variable is for the unadjusted mortality rate calculation (in which case C takes on the value "u") or whether it adjusts for the number of surviving female siblings (in which case C takes on the value "a").
AAAA refers to the age group that the mortality estimate is calculated for. It takes on the values: 1554 - Ages 15-54 1524 - Ages 15-24 2534 - Ages 25-34 3544 - Ages 35-44 4554 - Ages 45-54
Other variables that are in the databases are:
period - Period for which mortality rate is calculated (takes on the values 1975-79, 1980-84 … 2000-04) svycountry - Name of country for DHS countries ccode3 - Country code u5mr - Under-5 mortality (from World Development Indicators) cname - Country name gdppc - GDP per capita (constant 2000 US$) (from World Development Indicators) gdppcppp - GDP per capita PPP (constant 2005 intl $) (from World Development Indicators) pop - Population (from World Development Indicators) hivprev2001 - HIV prevalence in 2001 (from UNAIDS 2010) region - Region
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Italy IT: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data was reported at -2.130 % in 2015. Italy IT: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data is updated yearly, averaging -2.130 % from Dec 2015 (Median) to 2015, with 1 observations. Italy IT: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Italy – Table IT.World Bank: Poverty. The growth rate in the welfare aggregate of the bottom 40% is computed as the annualized average growth rate in per capita real consumption or income of the bottom 40% of the population in the income distribution in a country from household surveys over a roughly 5-year period. Mean per capita real consumption or income is measured at 2011 Purchasing Power Parity (PPP) using the PovcalNet (http://iresearch.worldbank.org/PovcalNet). For some countries means are not reported due to grouped and/or confidential data. The annualized growth rate is computed as (Mean in final year/Mean in initial year)^(1/(Final year - Initial year)) - 1. The reference year is the year in which the underlying household survey data was collected. In cases for which the data collection period bridged two calendar years, the first year in which data were collected is reported. The initial year refers to the nearest survey collected 5 years before the most recent survey available, only surveys collected between 3 and 7 years before the most recent survey are considered. The final year refers to the most recent survey available between 2011 and 2015. Growth rates for Iraq are based on survey means of 2005 PPP$. The coverage and quality of the 2011 PPP price data for Iraq and most other North African and Middle Eastern countries were hindered by the exceptional period of instability they faced at the time of the 2011 exercise of the International Comparison Program. See PovcalNet for detailed explanations.; ; World Bank, Global Database of Shared Prosperity (GDSP) circa 2010-2015 (http://www.worldbank.org/en/topic/poverty/brief/global-database-of-shared-prosperity).; ; The comparability of welfare aggregates (consumption or income) for the chosen years T0 and T1 is assessed for every country. If comparability across the two surveys is a major concern for a country, the selection criteria are re-applied to select the next best survey year(s). Annualized growth rates are calculated between the survey years, using a compound growth formula. The survey years defining the period for which growth rates are calculated and the type of welfare aggregate used to calculate the growth rates are noted in the footnotes.
The JPFHS is part of the worldwide Demographic and Health Surveys (DHS) program, which is designed to collect data on fertility, family planning, and maternal and child health.
The 1990 Jordan Population and Family Health Survey (JPFHS) was carried out as part of the Demographic and Health Survey (DHS) program. The Demographic and Health Surveys is assisting governments and private agencies in the implementation of household surveys in developing countries.
The JPFIS was designed to provide information on levels and trends of fertility, infant and child mortality, and family planning. The survey also gathered information on breastfeeding, matemal and child health cam, the nutritional status of children under five, as well as the characteristics of households and household members.
The main objectives of the project include: a) Providing decision makers with a data base and analyses useful for informed policy choices, b) Expanding the international population and health data base, c) Advancing survey methodology, and d) Developing skills and resources necessary to conduct high quality demographic and health surveys in the participating countries.
National
Sample survey data
The sample for the JPFHS survey was selected to be representative of the major geographical regions, as well as the nation as a whole. The survey adopted a stratified, multi-stage sampling design. In each governorate, localities were classified into 9 strata according to the estimated population size in 1989. The sampling design also allowed for the survey results to be presented according to major cities (Amman, Irbid and Zarqa), other urban localities, and the rural areas. Localities with fewer than 5,000 people were considered rural.
For this survey, 349 sample units were drawn, containing 10,708 housing units for the individual interview. Since the survey used a separate household questionnaire, the Department of Statistics doubled the household sample size and added a few questions on labor force, while keeping the original individual sample intact. This yielded 21,172 housing units. During fieldwork for the household interview, it was found that 4,359 household units were ineligible either because the dwelling was vacant or destroyed, the household was absent during the team visit, or some other reason. There were 16,296 completed household interviews out of 16,813 eligible households, producing a response rate of 96.9 percent.
The completed household interviews yielded 7,246 women eligible for the individual interview, of which 6,461 were successfully interviewed, producing a response rate of 89.2 percent.
Note: See detailed description of sample design in APPENDIX A of the survey report.
Face-to-face
The 1990 JPFIS utilized two questionnaires, one for the household interview and the other for individual women. Both questionnaires were developed first in English and then translated into Arabic. The household questionnaire was used to list all members of the sample households, including usual residents as well as visitors. For each member of the household, basic demographic and socioeconomic characteristics were recorded and women eligible for the individual interview were identified. To be eligible for individual interview, a woman had to be a usual member of the household (part of the de jure population), ever-married, and between 15 and 49 years of age. The household questionnaire was expanded from the standard DHS-II model questionnaire to facilitate the estimation of adult mortality using the orphanhood and widowhood techniques. In addition, the questionnaire obtained information on polygamy, economic activity of persons 15 years of age and over, family type, type of insurance covering the household members, country of work in the summer of 1990 which coincided with the Gulf crisis, and basic data for the calculation of the crude birth rate and the crude death rate. Additional questions were asked about deceased women if they were ever-married and age 15-49, in order to obtain information for the calculation of materoal mortality indices.
The individual questionnaire is a modified version of the standard DHS-II model "A" questionnaire. Experience gained from previous surveys, in particular the 1983 Jordan Fertility and Family Health Survey, and the questionnaire developed by the Pan Arab Project for Child Development (PAPCHILD), were useful in the discussions on the content of the JPFHS questionnaire. A major change from the DHS-II model questionnaire was the rearrangement of the sections so that the marriage section came before reproduction; this allowed the interview to flow more smoothly. Questions on children's cause of death based on verbal autopsy were added to the section on health, which, due to its size, was split into two parts. The first part focused on antenatal care and breastfeeding; the second part examined measures for prevention of childhood diseases and information on the morbidity and mortality of children loom since January 1985. As questions on sexual relations were considered too sensitive, they were replaced by questions about the husband's presence in the household during the specified time period; this served as a proxy for recent sexual activity.
The JPFHS individual questionnaire consists of nine sections: - Respondent's background and household characteristics - Marriage - Reproduction - Contraception - Breastfeeding and health - Immunization, morbidity, and child mortality - Fertility preferences - Husband's background, residence, and woman's work - Height and weight of children
For the individual interview, the number of eligible women found in the selected households and the number of women successfully interviewed are presented. The data indicate a high response rate for the household interview (96.9 percent), and a lower rate for the individual interview (89.2 percent). Women in large cities have a slightly lower response rate (88.6 percent) than those in other areas. Most of the non-response for the individual interview was due to the absence of respondents and the postponement of interviews which were incomplete.
Note: See summarized response rates by place of residence in Table 1.1 of the survey report.
The results from sample surveys are affected by two types of errors, non-sampling error and sampling error. Nonsampling error is due to mistakes made in carrying out field activities, such as failure to locate and interview the correct household, errors in the way the questions are asked, misunderstanding on the part of either the interviewer or the respondent, data entry errors, etc. Although efforts were made during the design and implementation of the JPFHS to minimize this type of error, non-sampling errors are impossible to avoid and difficult to evaluate statistically
Sampling errors, on the other hand, can be measured statistically. The sample of women selected in the JPFHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each one would have yielded results that differed somewhat from the actual sample selected. The sampling error is a measure of the variability between all possible samples; although it is not known exactly, it can be estimated from the survey results.
Sampling error is usually measured in terms of standard error of a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which one can reasonably assured that, apart from nonsampling errors, the true value of the variable for the whole population falls. For example, for any given statistic calculated from a sample survey, the value of that same statistic as measured in 95 percent of all possible samples with the same design (and expected size) will fall within a range of plus or minus two times the standard error of that statistic.
If the sample of women had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the JPFI-IS sample design depended on stratification, stages and clusters. Consequently, it was necessary to utilize more complex formulas. The computer package CLUSTERS, developed by the International Statistical Institute for the World Fertility Survey, was used to assist in computing the sampling errors with the proper statistical methodology.
Note: See detailed estimate of sampling error calculation in APPENDIX B of the survey report.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Completeness of reporting - Births by calendar year since birth - Reporting of age at death in days - Reporting of age at death in months
Note: See detailed tables in APPENDIX C of the report which is presented in this documentation.
Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
License information was derived automatically
PerCapita_CO2_Footprint_InDioceses_FULLBurhans, Molly A., Cheney, David M., Gerlt, R.. . “PerCapita_CO2_Footprint_InDioceses_FULL”. Scale not given. Version 1.0. MO and CT, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2019.MethodologyThis is the first global Carbon footprint of the Catholic population. We will continue to improve and develop these data with our research partners over the coming years. While it is helpful, it should also be viewed and used as a "beta" prototype that we and our research partners will build from and improve. The years of carbon data are (2010) and (2015 - SHOWN). The year of Catholic data is 2018. The year of population data is 2016. Care should be taken during future developments to harmonize the years used for catholic, population, and CO2 data.1. Zonal Statistics: Esri Population Data and Dioceses --> Population per dioceses, non Vatican based numbers2. Zonal Statistics: FFDAS and Dioceses and Population dataset --> Mean CO2 per Diocese3. Field Calculation: Population per Diocese and Mean CO2 per diocese --> CO2 per Capita4. Field Calculation: CO2 per Capita * Catholic Population --> Catholic Carbon FootprintAssumption: PerCapita CO2Deriving per-capita CO2 from mean CO2 in a geography assumes that people's footprint accounts for their personal lifestyle and involvement in local business and industries that are contribute CO2. Catholic CO2Assumes that Catholics and non-Catholic have similar CO2 footprints from their lifestyles.Derived from:A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of resultshttp://ffdas.rc.nau.edu/About.htmlRayner et al., JGR, 2010 - The is the first FFDAS paper describing the version 1.0 methods and results published in the Journal of Geophysical Research.Asefi et al., 2014 - This is the paper describing the methods and results of the FFDAS version 2.0 published in the Journal of Geophysical Research.Readme version 2.2 - A simple readme file to assist in using the 10 km x 10 km, hourly gridded Vulcan version 2.2 results.Liu et al., 2017 - A paper exploring the carbon cycle response to the 2015-2016 El Nino through the use of carbon cycle data assimilation with FFDAS as the boundary condition for FFCO2."S. Asefi‐Najafabady P. J. Rayner K. R. Gurney A. McRobert Y. Song K. Coltin J. Huang C. Elvidge K. BaughFirst published: 10 September 2014 https://doi.org/10.1002/2013JD021296 Cited by: 30Link to FFDAS data retrieval and visualization: http://hpcg.purdue.edu/FFDAS/index.phpAbstractHigh‐resolution, global quantification of fossil fuel CO2 emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high‐resolution fossil fuel CO2 emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long‐term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long‐term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter‐term variations reveals the impact of the 2008–2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO2 emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO2 emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set."Global Diocesan Boundaries:Burhans, M., Bell, J., Burhans, D., Carmichael, R., Cheney, D., Deaton, M., Emge, T. Gerlt, B., Grayson, J., Herries, J., Keegan, H., Skinner, A., Smith, M., Sousa, C., Trubetskoy, S. “Diocesean Boundaries of the Catholic Church” [Feature Layer]. Scale not given. Version 1.2. Redlands, CA, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2016.Using: ArcGIS. 10.4. Version 10.0. Redlands, CA: Environmental Systems Research Institute, Inc., 2016.Boundary ProvenanceStatistics and Leadership DataCheney, D.M. “Catholic Hierarchy of the World” [Database]. Date Updated: August 2019. Catholic Hierarchy. Using: Paradox. Retrieved from Original Source.Catholic HierarchyAnnuario Pontificio per l’Anno .. Città del Vaticano :Tipografia Poliglotta Vaticana, Multiple Years.The data for these maps was extracted from the gold standard of Church data, the Annuario Pontificio, published yearly by the Vatican. The collection and data development of the Vatican Statistics Office are unknown. GoodLands is not responsible for errors within this data. We encourage people to document and report errant information to us at data@good-lands.org or directly to the Vatican.Additional information about regular changes in bishops and sees comes from a variety of public diocesan and news announcements.GoodLands’ polygon data layers, version 2.0 for global ecclesiastical boundaries of the Roman Catholic Church:Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, due to this being the first developed dataset of global ecclesiastical boundaries curated from many sources it may have a higher margin of error than established geopolitical administrative boundary maps. Boundaries need to be verified with appropriate Ecclesiastical Leadership. The current information is subject to change without notice. No parties involved with the creation of this data are liable for indirect, special or incidental damage resulting from, arising out of or in connection with the use of the information. We referenced 1960 sources to build our global datasets of ecclesiastical jurisdictions. Often, they were isolated images of dioceses, historical documents and information about parishes that were cross checked. These sources can be viewed here:https://docs.google.com/spreadsheets/d/11ANlH1S_aYJOyz4TtG0HHgz0OLxnOvXLHMt4FVOS85Q/edit#gid=0To learn more or contact us please visit: https://good-lands.org/Esri Gridded Population Data 2016DescriptionThis layer is a global estimate of human population for 2016. Esri created this estimate by modeling a footprint of where people live as a dasymetric settlement likelihood surface, and then assigned 2016 population estimates stored on polygons of the finest level of geography available onto the settlement surface. Where people live means where their homes are, as in where people sleep most of the time, and this is opposed to where they work. Another way to think of this estimate is a night-time estimate, as opposed to a day-time estimate.Knowledge of population distribution helps us understand how humans affect the natural world and how natural events such as storms and earthquakes, and other phenomena affect humans. This layer represents the footprint of where people live, and how many people live there.Dataset SummaryEach cell in this layer has an integer value with the estimated number of people likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Population Density Estimate 2016: this layer is represented as population density in units of persons per square kilometer.World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: http://doi.org/10.5334/dsj-2018-020.What can you do with this layer?This layer is unsuitable for mapping or cartographic use, and thus it does not include a convenient legend. Instead, this layer is useful for analysis, particularly for estimating counts of people living within watersheds, coastal areas, and other areas that do not have standard boundaries. Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the count of population within those zones. https://www.esri.com/arcgis-blog/products/arcgis-living-atlas/data-management/2016-world-population-estimate-services-are-now-available/
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data was reported at 1.310 % in 2016. United States US: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data is updated yearly, averaging 1.310 % from Dec 2016 (Median) to 2016, with 1 observations. United States US: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Poverty. The growth rate in the welfare aggregate of the bottom 40% is computed as the annualized average growth rate in per capita real consumption or income of the bottom 40% of the population in the income distribution in a country from household surveys over a roughly 5-year period. Mean per capita real consumption or income is measured at 2011 Purchasing Power Parity (PPP) using the PovcalNet (http://iresearch.worldbank.org/PovcalNet). For some countries means are not reported due to grouped and/or confidential data. The annualized growth rate is computed as (Mean in final year/Mean in initial year)^(1/(Final year - Initial year)) - 1. The reference year is the year in which the underlying household survey data was collected. In cases for which the data collection period bridged two calendar years, the first year in which data were collected is reported. The initial year refers to the nearest survey collected 5 years before the most recent survey available, only surveys collected between 3 and 7 years before the most recent survey are considered. The final year refers to the most recent survey available between 2011 and 2015. Growth rates for Iraq are based on survey means of 2005 PPP$. The coverage and quality of the 2011 PPP price data for Iraq and most other North African and Middle Eastern countries were hindered by the exceptional period of instability they faced at the time of the 2011 exercise of the International Comparison Program. See PovcalNet for detailed explanations.; ; World Bank, Global Database of Shared Prosperity (GDSP) circa 2010-2015 (http://www.worldbank.org/en/topic/poverty/brief/global-database-of-shared-prosperity).; ; The comparability of welfare aggregates (consumption or income) for the chosen years T0 and T1 is assessed for every country. If comparability across the two surveys is a major concern for a country, the selection criteria are re-applied to select the next best survey year(s). Annualized growth rates are calculated between the survey years, using a compound growth formula. The survey years defining the period for which growth rates are calculated and the type of welfare aggregate used to calculate the growth rates are noted in the footnotes.
https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order
The Online Recipe Nutrition Calculator market has emerged as a pivotal component in the food and wellness industry, providing consumers and businesses with powerful tools to assess the nutritional value of their meals. As the global population becomes increasingly health-conscious, understanding the nutritional cont
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Slovakia SK: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data was reported at -0.620 % in 2015. Slovakia SK: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data is updated yearly, averaging -0.620 % from Dec 2015 (Median) to 2015, with 1 observations. Slovakia SK: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Slovakia – Table SK.World Bank.WDI: Poverty. The growth rate in the welfare aggregate of the bottom 40% is computed as the annualized average growth rate in per capita real consumption or income of the bottom 40% of the population in the income distribution in a country from household surveys over a roughly 5-year period. Mean per capita real consumption or income is measured at 2011 Purchasing Power Parity (PPP) using the PovcalNet (http://iresearch.worldbank.org/PovcalNet). For some countries means are not reported due to grouped and/or confidential data. The annualized growth rate is computed as (Mean in final year/Mean in initial year)^(1/(Final year - Initial year)) - 1. The reference year is the year in which the underlying household survey data was collected. In cases for which the data collection period bridged two calendar years, the first year in which data were collected is reported. The initial year refers to the nearest survey collected 5 years before the most recent survey available, only surveys collected between 3 and 7 years before the most recent survey are considered. The final year refers to the most recent survey available between 2011 and 2015. Growth rates for Iraq are based on survey means of 2005 PPP$. The coverage and quality of the 2011 PPP price data for Iraq and most other North African and Middle Eastern countries were hindered by the exceptional period of instability they faced at the time of the 2011 exercise of the International Comparison Program. See PovcalNet for detailed explanations.; ; World Bank, Global Database of Shared Prosperity (GDSP) circa 2010-2015 (http://www.worldbank.org/en/topic/poverty/brief/global-database-of-shared-prosperity).; ; The comparability of welfare aggregates (consumption or income) for the chosen years T0 and T1 is assessed for every country. If comparability across the two surveys is a major concern for a country, the selection criteria are re-applied to select the next best survey year(s). Annualized growth rates are calculated between the survey years, using a compound growth formula. The survey years defining the period for which growth rates are calculated and the type of welfare aggregate used to calculate the growth rates are noted in the footnotes.
COVID-19 rate of death, or the known deaths divided by confirmed cases, was over ten percent in Yemen, the only country that has 1,000 or more cases. This according to a calculation that combines coronavirus stats on both deaths and registered cases for 221 different countries. Note that death rates are not the same as the chance of dying from an infection or the number of deaths based on an at-risk population. By April 26, 2022, the virus had infected over 510.2 million people worldwide, and led to a loss of 6.2 million. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. Note that Statista aims to also provide domestic source material for a more complete picture, and not to just look at one particular source. Examples are these statistics on the confirmed coronavirus cases in Russia or the COVID-19 cases in Italy, both of which are from domestic sources. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
A word on the flaws of numbers like this
People are right to ask whether these numbers are at all representative or not for several reasons. First, countries worldwide decide differently on who gets tested for the virus, meaning that comparing case numbers or death rates could to some extent be misleading. Germany, for example, started testing relatively early once the country’s first case was confirmed in Bavaria in January 2020, whereas Italy tests for the coronavirus postmortem. Second, not all people go to see (or can see, due to testing capacity) a doctor when they have mild symptoms. Countries like Norway and the Netherlands, for example, recommend people with non-severe symptoms to just stay at home. This means not all cases are known all the time, which could significantly alter the death rate as it is presented here. Third and finally, numbers like this change very frequently depending on how the pandemic spreads or the national healthcare capacity. It is therefore recommended to look at other (freely accessible) content that dives more into specifics, such as the coronavirus testing capacity in India or the number of hospital beds in the UK. Only with additional pieces of information can you get the full picture, something that this statistic in its current state simply cannot provide.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A long-term study of a common bottlenose dolphin (Tursiops truncatus) population inhabiting the Gulf of Guayaquil, Ecuador (2°33′ S, 79°20′W), has been carried out for almost 30 years. Similarly, as in other parts of the world, this population is structured socially and spatially in well-defined subunits or communities. Two of these communities, referred to as Posorja and El Morro, have been studied with major intensity in the last 10 years in the western inner estuary, among others to calculate population parameters that allow assessing their viability in time. Calculated parameters include annual abundance, age and sex composition, annual crude birth rate, calf survival, calf production interval, and average annual mortality/emigration. With these parameters and others derived from other better-studied populations, the trend of both subunits was modeled using the software Vortex. Results show that even under an optimistic scenery both communities will be extinct in the short (Posorja) and mid-term (El Morro), if current stressors continue. Most population parameters calculated in both communities show similar values as in populations elsewhere, but a very low calf survival in Posorja and high mortality/emigration ratios in adults, and probably in juveniles in both communities, contribute to this trend. Population deterioration seems to be the result of different human-induced threats such as fisheries, maritime traffic and others still not well assessed, as well as stochastic demographic events. We recommend taking actions in the short term to halt population decline addressing the major causes of mortality affecting these dolphin communities.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Indexes, description and calculate method of the primary health care.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
SDG-Accessibility in percentage and total amount of individuals with access to public transport according to each transport type in ROI 1 for (a) formal and (b) semiformal transport. The analysis is conducted using population data from three distinct datasets: 1) cadaster, 2) remote sensing: fine-scaled regional approach, and 3) remote sensing: global approach.
As of 2024, South Africa's population increased, counting approximately 63 million inhabitants. Of these, roughly 27.5 million were aged 0-24, while 654,000 people were 80 years or older. Gauteng and Cape Town are the most populated South Africa’s yearly population growth has been fluctuating since 2013, with the growth rate dropping below the world average in 2024. The majority of people lived in the borders of Gauteng, the smallest of the nine provinces in terms of land area. The number of people residing there amounted to 16.6 million in 2023. Although the Western Cape was the third-largest province, the city of Cape Town had the highest number of inhabitants in the country, at 3.4 million. An underemployed younger population South Africa has a large population under 14, who will be looking for job opportunities in the future. However, the country's labor market has had difficulty integrating these youngsters. Specifically, as of the fourth quarter of 2024, the unemployment rate reached close to 60 percent and 384 percent among people aged 15-24 and 25–34 years, respectively. In the same period, some 27 percent of the individuals between 15 and 24 years were economically active, while the labor force participation rate was higher among people aged 25 to 34, at 74.3 percent.
In 2024, the average life expectancy in the world was 71 years for men and 76 years for women. The lowest life expectancies were found in Africa, while Oceania and Europe had the highest. What is life expectancy?Life expectancy is defined as a statistical measure of how long a person may live, based on demographic factors such as gender, current age, and most importantly the year of their birth. The most commonly used measure of life expectancy is life expectancy at birth or at age zero. The calculation is based on the assumption that mortality rates at each age were to remain constant in the future. Life expectancy has changed drastically over time, especially during the past 200 years. In the early 20th century, the average life expectancy at birth in the developed world stood at 31 years. It has grown to an average of 70 and 75 years for males and females respectively, and is expected to keep on growing with advances in medical treatment and living standards continuing. Highest and lowest life expectancy worldwide Life expectancy still varies greatly between different regions and countries of the world. The biggest impact on life expectancy is the quality of public health, medical care, and diet. As of 2022, the countries with the highest life expectancy were Japan, Liechtenstein, Switzerland, and Australia, all at 84–83 years. Most of the countries with the lowest life expectancy are mostly African countries. The ranking was led by the Chad, Nigeria, and Lesotho with 53–54 years.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data contains 2022 world population data publised by the UN DESA for six most populous countries of the world. File also contains the analysis of decomposition of demographic indicators on population growth.