100+ datasets found
  1. n

    Coronavirus (Covid-19) Data in the United States

    • nytimes.com
    • openicpsr.org
    • +4more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
    Explore at:
    Dataset provided by
    New York Times
    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  2. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    • kaggle.com
    csv, zip
    Updated Dec 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Dec 3, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  3. COVID-19 cases in Latin America 2025, by country

    • statista.com
    Updated Jun 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). COVID-19 cases in Latin America 2025, by country [Dataset]. https://www.statista.com/statistics/1101643/latin-america-caribbean-coronavirus-cases/
    Explore at:
    Dataset updated
    Jun 5, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Latin America, Americas
    Description

    Brazil is the Latin American country affected the most by the COVID-19 pandemic. As of May 2025, the country had reported around 38 million cases. It was followed by Argentina, with approximately ten million confirmed cases of COVID-19. In total, the region had registered more than 83 million diagnosed patients, as well as a growing number of fatal COVID-19 cases. The research marathon Normally, the development of vaccines takes years of research and testing until options are available to the general public. However, with an alarming and threatening situation as that of the COVID-19 pandemic, scientists quickly got on board in a vaccine marathon to develop a safe and effective way to prevent and control the spread of the virus in record time. Over two years after the first cases were reported, the world had around 1,521 drugs and vaccines targeting the COVID-19 disease. As of June 2022, a total of 39 candidates were already launched and countries all over the world had started negotiations and acquisition of the vaccine, along with immunization campaigns. COVID vaccination rates in Latin America As immunization against the spread of the disease continues to progress, regional disparities in vaccination coverage persist. While Brazil, Argentina, and Mexico were among the Latin American nations with the most COVID-19 cases, those that administered the highest number of COVID-19 doses per 100 population are Cuba, Chile, and Peru. Leading the vaccination coverage in the region is the Caribbean nation, with more than 406 COVID-19 vaccines administered per every 100 inhabitants as of January 5, 2024.For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.

  4. COVID-19 cases and deaths per million in 210 countries as of July 13, 2022

    • statista.com
    Updated Jul 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). COVID-19 cases and deaths per million in 210 countries as of July 13, 2022 [Dataset]. https://www.statista.com/statistics/1104709/coronavirus-deaths-worldwide-per-million-inhabitants/
    Explore at:
    Dataset updated
    Jul 13, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

    The difficulties of death figures

    This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.

    Where are these numbers coming from?

    The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

  5. H

    World COVID-19 Daily Cases with Basemap

    • dataverse.harvard.edu
    • dataone.org
    Updated Feb 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spatial Data Lab (2024). World COVID-19 Daily Cases with Basemap [Dataset]. http://doi.org/10.7910/DVN/L20LOT
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 20, 2024
    Dataset provided by
    Harvard Dataverse
    Authors
    Spatial Data Lab
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    World
    Dataset funded by
    NSF
    Description

    Updated to May 13, 2021. World COVID-19 daily cases with basemap, starting from January 22, 2020.

  6. COVID-19 Trends in Each Country

    • coronavirus-response-israel-systematics.hub.arcgis.com
    • coronavirus-disasterresponse.hub.arcgis.com
    • +2more
    Updated Mar 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). COVID-19 Trends in Each Country [Dataset]. https://coronavirus-response-israel-systematics.hub.arcgis.com/maps/a16bb8b137ba4d8bbe645301b80e5740
    Explore at:
    Dataset updated
    Mar 28, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Earth
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.DOI: https://doi.org/10.6084/m9.figshare.125529863/7/2022 - Adjusted the rate of active cases calculation in the U.S. to reflect the rates of serious and severe cases due nearly completely dominant Omicron variant.6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.6/22/2020 - Added Executive Summary and Subsequent Outbreaks sectionsRevisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Correction on 6/1/2020Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Revisions added on 4/30/2020 are highlighted.Revisions added on 4/23/2020 are highlighted.Executive SummaryCOVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties. The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.Reasons for undertaking this work in March of 2020:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths. On 3/17/2022, the U.S. calculation was adjusted to: Active Cases = 100% of new cases in past 14 days + 6% from past 15-25 days + 3% from past 26-49 days - total deaths. Sources: https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm https://covid.cdc.gov/covid-data-tracker/#variant-proportions If a new variant arrives and appears to cause higher rates of serious cases, we will roll back this adjustment. We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source

  7. T

    World Coronavirus COVID-19 Cases

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 9, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). World Coronavirus COVID-19 Cases [Dataset]. https://tradingeconomics.com/world/coronavirus-cases
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset updated
    Mar 9, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 4, 2020 - May 17, 2023
    Area covered
    World
    Description

    The World Health Organization reported 766440796 Coronavirus Cases since the epidemic began. In addition, countries reported 6932591 Coronavirus Deaths. This dataset provides - World Coronavirus Cases- actual values, historical data, forecast, chart, statistics, economic calendar and news.

  8. Novel Covid-19 Dataset

    • kaggle.com
    Updated Sep 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GHOST5612 (2025). Novel Covid-19 Dataset [Dataset]. https://www.kaggle.com/datasets/ghost5612/novel-covid-19-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 18, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    GHOST5612
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Context:

    From World Health Organization - On 31 December 2019, WHO was alerted to several cases of pneumonia in Wuhan City, Hubei Province of China. The virus did not match any other known virus. This raised concern because when a virus is new, we do not know how it affects people.

    So daily level information on the affected people can give some interesting insights when it is made available to the broader data science community.

    Johns Hopkins University has made an excellent dashboard using the affected cases data. Data is extracted from the google sheets associated and made available here.

    Edited:

    Now data is available as csv files in the Johns Hopkins Github repository. Please refer to the github repository for the Terms of Use details. Uploading it here for using it in Kaggle kernels and getting insights from the broader DS community.

    Content

    2019 Novel Coronavirus (2019-nCoV) is a virus (more specifically, a coronavirus) identified as the cause of an outbreak of respiratory illness first detected in Wuhan, China. Early on, many of the patients in the outbreak in Wuhan, China reportedly had some link to a large seafood and animal market, suggesting animal-to-person spread. However, a growing number of patients reportedly have not had exposure to animal markets, indicating person-to-person spread is occurring. At this time, it’s unclear how easily or sustainably this virus is spreading between people - CDC

    This dataset has daily level information on the number of affected cases, deaths and recovery from 2019 novel coronavirus. Please note that this is a time series data and so the number of cases on any given day is the cumulative number.

    The data is available from 22 Jan, 2020.

    Here’s a polished version suitable for a professional Kaggle dataset description:

    Dataset Description

    This dataset contains time-series and case-level records of the COVID-19 pandemic. The primary file is covid_19_data.csv, with supporting files for earlier records and individual-level line list data.

    Files and Columns

    1. covid_19_data.csv (Main File)

    This is the primary dataset and contains aggregated COVID-19 statistics by location and date.

    • Sno – Serial number of the record
    • ObservationDate – Date of the observation (MM/DD/YYYY)
    • Province/State – Province or state of the observation (may be missing for some entries)
    • Country/Region – Country of the observation
    • Last Update – Timestamp (UTC) when the record was last updated (not standardized, requires cleaning before use)
    • Confirmed – Cumulative number of confirmed cases on that date
    • Deaths – Cumulative number of deaths on that date
    • Recovered – Cumulative number of recoveries on that date

    2. 2019_ncov_data.csv (Legacy File)

    This file contains earlier COVID-19 records. It is no longer updated and is provided only for historical reference. For current analysis, please use covid_19_data.csv.

    3. COVID_open_line_list_data.csv

    This file provides individual-level case information, obtained from an open data source. It includes patient demographics, travel history, and case outcomes.

    4. COVID19_line_list_data.csv

    Another individual-level case dataset, also obtained from public sources, with detailed patient-level information useful for micro-level epidemiological analysis.

    ✅ Use covid_19_data.csv for up-to-date aggregated global trends.

    ✅ Use the line list datasets for detailed, individual-level case analysis.

    Country level datasets:

    If you are interested in knowing country level data, please refer to the following Kaggle datasets:

    India - https://www.kaggle.com/sudalairajkumar/covid19-in-india

    South Korea - https://www.kaggle.com/kimjihoo/coronavirusdataset

    Italy - https://www.kaggle.com/sudalairajkumar/covid19-in-italy

    Brazil - https://www.kaggle.com/unanimad/corona-virus-brazil

    USA - https://www.kaggle.com/sudalairajkumar/covid19-in-usa

    Switzerland - https://www.kaggle.com/daenuprobst/covid19-cases-switzerland

    Indonesia - https://www.kaggle.com/ardisragen/indonesia-coronavirus-cases

    Acknowledgements :

    Johns Hopkins University for making the data available for educational and academic research purposes

    MoBS lab - https://www.mobs-lab.org/2019ncov.html

    World Health Organization (WHO): https://www.who.int/

    DXY.cn. Pneumonia. 2020. http://3g.dxy.cn/newh5/view/pneumonia.

    BNO News: https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/

    National Health Commission of the People’s Republic of China (NHC): http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml

    China CDC (CCDC): http://weekly.chinacdc.cn/news/TrackingtheEpidemic.htm

    Hong Kong Department of Health: https://www.chp.gov.hk/en/features/102465.html

    Macau Government: https://www.ssm.gov.mo/portal/

    Taiwan CDC: https://sites.google....

  9. g

    Coronavirus COVID-19 Global Cases by the Center for Systems Science and...

    • github.com
    • systems.jhu.edu
    • +1more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE), Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU) [Dataset]. https://github.com/CSSEGISandData/COVID-19
    Explore at:
    Dataset provided by
    Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE)
    Area covered
    Global
    Description

    2019 Novel Coronavirus COVID-19 (2019-nCoV) Visual Dashboard and Map:
    https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6

    • Confirmed Cases by Country/Region/Sovereignty
    • Confirmed Cases by Province/State/Dependency
    • Deaths
    • Recovered

    Downloadable data:
    https://github.com/CSSEGISandData/COVID-19

    Additional Information about the Visual Dashboard:
    https://systems.jhu.edu/research/public-health/ncov

  10. a

    COVID-19 Trends in Each Country-Copy

    • hub.arcgis.com
    Updated Jun 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United Nations Population Fund (2020). COVID-19 Trends in Each Country-Copy [Dataset]. https://hub.arcgis.com/maps/1c4a4134d2de4e8cb3b4e4814ba6cb81
    Explore at:
    Dataset updated
    Jun 4, 2020
    Dataset authored and provided by
    United Nations Population Fund
    Area covered
    Description

    COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.Revisions added on 4/23/2020 are highlighted.Revisions added on 4/30/2020 are highlighted.Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Correction on 6/1/2020Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Reasons for undertaking this work:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-30 days + 5% from past 31-56 days - total deaths.We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source used as basis:Stephen A. Lauer, MS, PhD *; Kyra H. Grantz, BA *; Qifang Bi, MHS; Forrest K. Jones, MPH; Qulu Zheng, MHS; Hannah R. Meredith, PhD; Andrew S. Azman, PhD; Nicholas G. Reich, PhD; Justin Lessler, PhD. 2020. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine DOI: 10.7326/M20-0504.New Cases per Day (NCD) = Measures the daily spread of COVID-19. This is the basis for all rates. Back-casting revisions: In the Johns Hopkins’ data, the structure is to provide the cumulative number of cases per day, which presumes an ever-increasing sequence of numbers, e.g., 0,0,1,1,2,5,7,7,7, etc. However, revisions do occur and would look like, 0,0,1,1,2,5,7,7,6. To accommodate this, we revised the lists to eliminate decreases, which make this list look like, 0,0,1,1,2,5,6,6,6.Reporting Interval: In the early weeks, Johns Hopkins' data provided reporting every day regardless of change. In late April, this changed allowing for days to be skipped if no new data was available. The day was still included, but the value of total cases was set to Null. The processing therefore was updated to include tracking of the spacing between intervals with valid values.100 News Cases in a day as a spike threshold: Empirically, this is based on COVID-19’s rate of spread, or r0 of ~2.5, which indicates each case will infect between two and three other people. There is a point at which each administrative area’s capacity will not have the resources to trace and account for all contacts of each patient. Thus, this is an indicator of uncontrolled or epidemic trend. Spiking activity in combination with the rate of new cases is the basis for determining whether an area has a spreading or epidemic trend (see below). Source used as basis:World Health Organization (WHO). 16-24 Feb 2020. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Obtained online.Mean of Recent Tail of NCD = Empirical, and a COVID-19-specific basis for establishing a recent trend. The recent mean of NCD is taken from the most recent fourteen days. A minimum of 21 days of cases is required for analysis but cannot be considered reliable. Thus, a preference of 42 days of cases ensures much higher reliability. This analysis is not explanatory and thus, merely represents a likely trend. The tail is analyzed for the following:Most recent 2 days: In terms of likelihood, this does not mean much, but can indicate a reason for hope and a basis to share positive change that is not yet a trend. There are two worthwhile indicators:Last 2 days count of new cases is less than any in either the past five or 14 days. Past 2 days has only one or fewer new cases – this is an extremely positive outcome if the rate of testing has continued at the same rate as the previous 5 days or 14 days. Most recent 5 days: In terms of likelihood, this is more meaningful, as it does represent at short-term trend. There are five worthwhile indicators:Past five days is greater than past 2 days and past 14 days indicates the potential of the past 2 days being an aberration. Past five days is greater than past 14 days and less than past 2 days indicates slight positive trend, but likely still within peak trend time frame.Past five days is less than the past 14 days. This means a downward trend. This would be an

  11. T

    CORONAVIRUS CASES by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). CORONAVIRUS CASES by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/coronavirus-cases
    Explore at:
    excel, json, csv, xmlAvailable download formats
    Dataset updated
    Mar 4, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for CORONAVIRUS CASES reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  12. r

    covid19_jhu_csse_summary

    • redivis.com
    Updated Oct 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford Center for Population Health Sciences (2025). covid19_jhu_csse_summary [Dataset]. https://redivis.com/datasets/rxta-4v35cgyzf
    Explore at:
    Dataset updated
    Oct 8, 2025
    Dataset authored and provided by
    Stanford Center for Population Health Sciences
    Time period covered
    Jan 22, 2020 - Jul 12, 2020
    Description

    The table covid19_jhu_csse_summary is part of the dataset Coronavirus COVID-19 Global Cases, available at https://stanford.redivis.com/datasets/rxta-4v35cgyzf. It contains 390476 rows across 13 variables.

  13. COVID-19 Tracking Germany

    • kaggle.com
    zip
    Updated Feb 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Heads or Tails (2023). COVID-19 Tracking Germany [Dataset]. https://www.kaggle.com/datasets/headsortails/covid19-tracking-germany
    Explore at:
    zip(14492010 bytes)Available download formats
    Dataset updated
    Feb 7, 2023
    Authors
    Heads or Tails
    Area covered
    Germany
    Description

    Read the associated blogpost for a detailed description of how this dataset was prepared; plus extra code for producing animated maps.

    Context

    The 2019 Novel Coronavirus (COVID-19) continues to spread in countries around the world. This dataset provides daily updated number of reported cases & deaths in Germany on the federal state (Bundesland) and county (Landkreis/Stadtkreis) level. In April 2021 I added a dataset on vaccination progress. In addition, I provide geospatial shape files and general state-level population demographics to aid the analysis.

    Content

    The dataset consists of thre main csv files: covid_de.csv, demgraphics_de.csv, and covid_de_vaccines.csv. The geospatial shapes are included in the de_state.* files. See the column descriptions below for more detailed information.

    • covid_de.csv: COVID-19 cases and deaths which will be updated daily. The original data are being collected by Germany's Robert Koch Institute and can be download through the National Platform for Geographic Data (the latter site also hosts an interactive dashboard). I reshaped and translated the data (using R tidyverse tools) to make it better accessible. This blogpost explains how I prepared the data, and describes how to produces animated maps.

    • demographics_de.csv: General Demographic Data about Germany on the federal state level. Those have been downloaded from Germany's Federal Office for Statistics (Statistisches Bundesamt) through their Open Data platform GENESIS. The data reflect the (most recent available) estimates on 2018-12-31. You can find the corresponding table here.

    • covid_de_vaccines.csv: In April 2021 I added this file that contains the Covid-19 vaccination progress for Germany as a whole. It details daily doses, broken down cumulatively by manufacturer, as well as the cumulative number of people having received their first and full vaccination. The earliest data are from 2020-12-27.

    • de_state.*: Geospatial shape files for Germany's 16 federal states. Downloaded via Germany's Federal Agency for Cartography and Geodesy . Specifically, the shape file was obtained from this link.

    Column Description

    COVID-19 dataset covid_de.csv:

    • state: Name of the German federal state. Germany has 16 federal states. I removed converted special characters from the original data.

    • county: The name of the German Landkreis (LK) or Stadtkreis (SK), which correspond roughly to US counties.

    • age_group: The COVID-19 data is being reported for 6 age groups: 0-4, 5-14, 15-34, 35-59, 60-79, and above 80 years old. As a shortcut the last category I'm using "80-99", but there might well be persons above 99 years old in this dataset. This column has a few NA entries.

    • gender: Reported as male (M) or female (F). This column has a few NA entries.

    • date: The calendar date of when a case or death were reported. There might be delays that will be corrected by retroactively assigning cases to earlier dates.

    • cases: COVID-19 cases that have been confirmed through laboratory work. This and the following 2 columns are counts per day, not cumulative counts.

    • deaths: COVID-19 related deaths.

    • recovered: Recovered cases.

    Demographic dataset demographics_de.csv:

    • state, gender, age_group: same as above. The demographic data is available in higher age resolution, but I have binned it here to match the corresponding age groups in the covid_de.csv file.

    • population: Population counts for the respective categories. These numbers reflect the (most recent available) estimates on 2018-12-31.

    Vaccination progress dataset covid_de_vaccines.csv:

    • date: calendar date of vaccination

    • doses, doses_first, doses_second: Daily count of administered doses: total, 1st shot, 2nd shot.

    • pfizer_cumul, moderna_cumul, astrazeneca_cumul: Daily cumulative number of administered vaccinations by manufacturer.

    • persons_first_cumul, persons_full_cumul: Daily cumulative number of people having received their 1st shot and full vaccination, respectively.

    Acknowledgements

    All the data have been extracted from open data sources which are being gratefully acknowledged:

    • The [Robert ...
  14. COVID-19 cases worldwide as of May 2, 2023, by country or territory

    • statista.com
    • avatarcrewapp.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, COVID-19 cases worldwide as of May 2, 2023, by country or territory [Dataset]. https://www.statista.com/statistics/1043366/novel-coronavirus-2019ncov-cases-worldwide-by-country/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    As of May 2, 2023, the outbreak of the coronavirus disease (COVID-19) had been confirmed in almost every country in the world. The virus had infected over 687 million people worldwide, and the number of deaths had reached almost 6.87 million. The most severely affected countries include the U.S., India, and Brazil.

    COVID-19: background information COVID-19 is a novel coronavirus that had not previously been identified in humans. The first case was detected in the Hubei province of China at the end of December 2019. The virus is highly transmissible and coughing and sneezing are the most common forms of transmission, which is similar to the outbreak of the SARS coronavirus that began in 2002 and was thought to have spread via cough and sneeze droplets expelled into the air by infected persons.

    Naming the coronavirus disease Coronaviruses are a group of viruses that can be transmitted between animals and people, causing illnesses that may range from the common cold to more severe respiratory syndromes. In February 2020, the International Committee on Taxonomy of Viruses and the World Health Organization announced official names for both the virus and the disease it causes: SARS-CoV-2 and COVID-19, respectively. The name of the disease is derived from the words corona, virus, and disease, while the number 19 represents the year that it emerged.

  15. COVID-19 Global Case and Death Data

    • kaggle.com
    zip
    Updated Dec 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). COVID-19 Global Case and Death Data [Dataset]. https://www.kaggle.com/datasets/thedevastator/covid-19-global-case-and-death-data
    Explore at:
    zip(81724234 bytes)Available download formats
    Dataset updated
    Dec 4, 2023
    Authors
    The Devastator
    Description

    COVID-19 Global Case and Death Data

    Global COVID-19 Cases and Deaths Over Time

    By Coronavirus (COVID-19) Data Hub [source]

    About this dataset

    The COVID-19 Global Time Series Case and Death Data is a comprehensive collection of global COVID-19 case and death information recorded over time. This dataset includes data from various sources such as JHU CSSE COVID-19 Data and The New York Times.

    The dataset consists of several columns providing detailed information on different aspects of the COVID-19 situation. The COUNTRY_SHORT_NAME column represents the short name of the country where the data is recorded, while the Data_Source column indicates the source from which the data was obtained.

    Other important columns include Cases, which denotes the number of COVID-19 cases reported, and Difference, which indicates the difference in case numbers compared to the previous day. Additionally, there are columns such as CONTINENT_NAME, DATA_SOURCE_NAME, COUNTRY_ALPHA_3_CODE, COUNTRY_ALPHA_2_CODE that provide additional details about countries and continents.

    Furthermore, this dataset also includes information on deaths related to COVID-19. The column PEOPLE_DEATH_NEW_COUNT shows the number of new deaths reported on a specific date.

    To provide more context to the data, certain columns offer demographic details about locations. For instance, Population_Count provides population counts for different areas. Moreover,**FIPS** code is available for provincial/state regions for identification purposes.

    It is important to note that this dataset covers both confirmed cases (Case_Type: confirmed) as well as probable cases (Case_Type: probable). These classifications help differentiate between various types of COVID-19 infections.

    Overall, this dataset offers a comprehensive picture of global COVID-19 situations by providing accurate and up-to-date information on cases, deaths, demographic details like population count or FIPS code), source references (such as JHU CSSE or NY Times), geographical information (country names coded with ALPHA codes) , etcetera making it useful for researchers studying patterns and trends associated with this pandemic

    How to use the dataset

    • Understanding the Dataset Structure:

      • The dataset is available in two files: COVID-19 Activity.csv and COVID-19 Cases.csv.
      • Both files contain different columns that provide information about the COVID-19 cases and deaths.
      • Some important columns to look out for are: a. PEOPLE_POSITIVE_CASES_COUNT: The total number of confirmed positive COVID-19 cases. b. COUNTY_NAME: The name of the county where the data is recorded. c. PROVINCE_STATE_NAME: The name of the province or state where the data is recorded. d. REPORT_DATE: The date when the data was reported. e. CONTINENT_NAME: The name of the continent where the data is recorded. f. DATA_SOURCE_NAME: The name of the data source. g. PEOPLE_DEATH_NEW_COUNT: The number of new deaths reported on a specific date. h.COUNTRY_ALPHA_3_CODE :The three-letter alpha code represents country f.Lat,Long :latitude and longitude coordinates represent location i.Country_Region or COUNTRY_SHORT_NAME:The country or region where cases were reported.
    • Choosing Relevant Columns: It's important to determine which columns are relevant to your analysis or research question before proceeding with further analysis.

    • Exploring Data Patterns: Use various statistical techniques like summarizing statistics, creating visualizations (e.g., bar charts, line graphs), etc., to explore patterns in different variables over time or across regions/countries.

    • Filtering Data: You can filter your dataset based on specific criteria using column(s) such as COUNTRY_SHORT_NAME, CONTINENT_NAME, or PROVINCE_STATE_NAME to focus on specific countries, continents, or regions of interest.

    • Combining Data: You can combine data from different sources (e.g., COVID-19 cases and deaths) to perform advanced analysis or create insightful visualizations.

    • Analyzing Trends: Use the dataset to analyze and identify trends in COVID-19 cases and deaths over time. You can examine factors such as population count, testing count, hospitalization count, etc., to gain deeper insights into the impact of the virus.

    • Comparing Countries/Regions: Compare COVID-19

    Research Ideas

    • Trend Analysis: This dataset can be used to analyze and track the trends of COVID-19 cases and deaths over time. It provides comprehensive global data, allowing researchers and po...
  16. Total number of COVID-19 cases APAC April 2024, by country

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Total number of COVID-19 cases APAC April 2024, by country [Dataset]. https://www.statista.com/statistics/1104263/apac-covid-19-cases-by-country/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Asia, APAC
    Description

    The outbreak of the novel coronavirus in Wuhan, China, saw infection cases spread throughout the Asia-Pacific region. By April 13, 2024, India had faced over 45 million coronavirus cases. South Korea followed behind India as having had the second highest number of coronavirus cases in the Asia-Pacific region, with about 34.6 million cases. At the same time, Japan had almost 34 million cases. At the beginning of the outbreak, people in South Korea had been optimistic and predicted that the number of cases would start to stabilize. What is SARS CoV 2?Novel coronavirus, officially known as SARS CoV 2, is a disease which causes respiratory problems which can lead to difficulty breathing and pneumonia. The illness is similar to that of SARS which spread throughout China in 2003. After the outbreak of the coronavirus, various businesses and shops closed to prevent further spread of the disease. Impacts from flight cancellations and travel plans were felt across the Asia-Pacific region. Many people expressed feelings of anxiety as to how the virus would progress. Impact throughout Asia-PacificThe Coronavirus and its variants have affected the Asia-Pacific region in various ways. Out of all Asia-Pacific countries, India was highly affected by the pandemic and experienced more than 50 thousand deaths. However, the country also saw the highest number of recoveries within the APAC region, followed by South Korea and Japan.

  17. Number of active coronavirus cases in Italy as of January 2025, by status

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Number of active coronavirus cases in Italy as of January 2025, by status [Dataset]. https://www.statista.com/statistics/1104084/current-coronavirus-infections-in-italy-by-status/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 1, 2025
    Area covered
    Italy, Europe
    Description

    As of January 1, 2025, the number of active coronavirus (COVID-19) infections in Italy was approximately 218,000. Among these, 42 infected individuals were being treated in intensive care units. Another 1,332 individuals infected with the coronavirus were hospitalized with symptoms, while approximately 217,000 thousand were in isolation at home. The total number of coronavirus cases in Italy reached over 26.9 million (including active cases, individuals who recovered, and individuals who died) as of the same date. The region mostly hit by the spread of the virus was Lombardy, which counted almost 4.4 million cases.For a global overview, visit Statista's webpage exclusively dedicated to coronavirus, its development, and its impact.

  18. G

    Covid total cases around the world | TheGlobalEconomy.com

    • theglobaleconomy.com
    csv, excel, xml
    Updated Mar 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2023). Covid total cases around the world | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/covid_total_cases/
    Explore at:
    csv, excel, xmlAvailable download formats
    Dataset updated
    Mar 26, 2023
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    Trends in Covid total cases. The latest data for over 100 countries around the world.

  19. COVID-19 Cases by Country

    • console.cloud.google.com
    Updated Jul 23, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    https://console.cloud.google.com/marketplace/browse?filter=partner:European%20Centre%20for%20Disease%20Prevention%20and%20Control (2020). COVID-19 Cases by Country [Dataset]. https://console.cloud.google.com/marketplace/product/european-cdc/covid-19-global-cases
    Explore at:
    Dataset updated
    Jul 23, 2020
    Dataset provided by
    Googlehttp://google.com/
    Description

    This dataset is maintained by the European Centre for Disease Prevention and Control (ECDC) and reports on the geographic distribution of COVID-19 cases worldwide. This data includes COVID-19 reported cases and deaths broken out by country. This data can be visualized via ECDC’s Situation Dashboard . More information on ECDC’s response to COVID-19 is available here . This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery . This dataset is hosted in both the EU and US regions of BigQuery. See the links below for the appropriate dataset copy: US region EU region This dataset has significant public interest in light of the COVID-19 crisis. All bytes processed in queries against this dataset will be zeroed out, making this part of the query free. Data joined with the dataset will be billed at the normal rate to prevent abuse. After September 15, queries over these datasets will revert to the normal billing rate. Users of ECDC public-use data files must comply with data use restrictions to ensure that the information will be used solely for statistical analysis or reporting purposes.

  20. WHO COVID-19 Global Data Insights

    • kaggle.com
    zip
    Updated Sep 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohammad Reza Ghazi Manas (2023). WHO COVID-19 Global Data Insights [Dataset]. https://www.kaggle.com/datasets/mohammadrezagim/who-covid-19-global-data
    Explore at:
    zip(2309669 bytes)Available download formats
    Dataset updated
    Sep 30, 2023
    Authors
    Mohammad Reza Ghazi Manas
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    About Dataset: WHO COVID-19 Global Data

    This dataset provides comprehensive information on the global COVID-19 pandemic as reported to the World Health Organization (WHO). The dataset is available in comma-separated values (CSV) format and includes the following fields:

    Daily cases and deaths by date reported to WHO: WHO-COVID-19-global-data.csv

    • Date_reported (Date): The date of reporting to WHO.
    • Country_code (String): The ISO Alpha-2 country code.
    • Country (String): The name of the country, territory, or area.
    • WHO_region (String): The WHO regional office to which the country belongs. WHO Member States are grouped into six WHO regions, including AFRO (Regional Office for Africa), AMRO (Regional Office for the Americas), SEARO (Regional Office for South-East Asia), EURO (Regional Office for Europe), EMRO (Regional Office for the Eastern Mediterranean), and WPRO (Regional Office for the Western Pacific).
    • New_cases (Integer): The number of new confirmed cases reported on a given day. This is calculated by subtracting the previous cumulative case count from the current cumulative case count.
    • Cumulative_cases (Integer): The total cumulative confirmed cases reported to WHO up to the specified date.
    • New_deaths (Integer): The number of new confirmed deaths reported on a given day. Similar to new cases, this is calculated by subtracting the previous cumulative death count from the current cumulative death count.- Cumulative_deaths (Integer): The total cumulative confirmed deaths reported to WHO up to the specified date.

    In addition to the COVID-19 case and death data, this dataset also includes valuable information related to COVID-19 vaccinations. The vaccination data consists of the following fields:

    Vaccination Data Fields: vaccination-data.csv

    • COUNTRY (String): Country, territory, or area.
    • ISO3 (String): ISO Alpha-3 country code.
    • WHO_REGION (String): The WHO regional office to which the country belongs.
    • DATA_SOURCE (String): Indicates the data source, which can be either "REPORTING" (Data reported by Member States or sourced from official reports) or "OWID" (Data sourced from Our World in Data COVID-19 Vaccinations).
    • DATE_UPDATED (Date): Date of the last update.
    • TOTAL_VACCINATIONS (Integer): Cumulative total vaccine doses administered.
    • PERSONS_VACCINATED_1PLUS_DOSE (Decimal): Cumulative number of persons vaccinated with at least one dose.
    • TOTAL_VACCINATIONS_PER100 (Integer): Cumulative total vaccine doses administered per 100 population.
    • PERSONS_VACCINATED_1PLUS_DOSE_PER100 (Decimal): Cumulative persons vaccinated with at least one dose per 100 population.
    • PERSONS_LAST_DOSE (Integer): Cumulative number of persons vaccinated with a complete primary series.
    • PERSONS_LAST_DOSE_PER100 (Decimal): Cumulative number of persons vaccinated with a complete primary series per 100 population.
    • VACCINES_USED (String): Combined short name of the vaccine in the format "Company - Product name."
    • FIRST_VACCINE_DATE (Date): Date of the first vaccinations, equivalent to the start/launch date of the first vaccine administered in a country.
    • NUMBER_VACCINES_TYPES_USED (Integer): Number of vaccine types used per country, territory, or area.
    • PERSONS_BOOSTER_ADD_DOSE (Integer): Cumulative number of persons vaccinated with at least one booster or additional dose.
    • PERSONS_BOOSTER_ADD_DOSE_PER100 (Decimal): Cumulative number of persons vaccinated with at least one booster or additional dose per 100 population.

    In addition to the vaccination data, a separate dataset containing vaccination metadata is available, including information about vaccine names, product names, company names, authorization dates, start and end dates of vaccine rollout, and more.

    Vaccination metadata Fields: vaccination-metadata.csv

    • ISO3 (String): ISO Alpha-3 country code
    • VACCINE_NAME (String): Combined short name of vaccine: "Company - Product name" (see below)
    • PRODUCT_NAME (String): Name or label of vaccine product, or type of vaccine (if unnamed).
    • COMPANY_NAME (String): Marketing authorization holder of vaccine product.
    • FIRST_VACCINE_DATE (Date): Date of first vaccinations. Equivalent to start/launch date of the first vaccine administered in a country.
    • AUTHORIZATION_DATE (Date): Date vaccine product was authorized for use in the country, territory, area.
    • START_DATE (Date): Start/launch date of vaccination with vaccine type (excludes vaccinations during clinical trials).
    • END_DATE (Date): End date of vaccine rollout
    • COMMENT (String): Comments related to vaccine rollout
    • DATA_SOURCE (String): Indicates data source - REPORTING: Data reported by Member States, or sourced from official re...
Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html

Coronavirus (Covid-19) Data in the United States

Explore at:
Dataset provided by
New York Times
Description

The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

Search
Clear search
Close search
Google apps
Main menu