100+ datasets found
  1. Leading causes of death worldwide in 2019

    • statista.com
    Updated Jun 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Leading causes of death worldwide in 2019 [Dataset]. https://www.statista.com/statistics/288839/leading-causes-of-death-worldwide/
    Explore at:
    Dataset updated
    Jun 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2019
    Area covered
    Worldwide
    Description

    In 2019, the leading causes of death globally included ischemic heart disease, stroke and chronic obstructive pulmonary disease (COPD). There were **** million deaths from ischemic heart disease at that time and about **** million deaths caused by stroke. In recent history, increases in life expectancy, increases in population and better standards of living have changed the leading causes of death over time. Non-Communicable Disease Deaths The number of deaths due to non-communicable diseases has remained relatively stable in recent years. A large majority of non-communicable or chronic disease deaths globally are caused by cardiovascular diseases, followed by cancer. Various lifestyle choices cause or exacerbate many of these chronic diseases. Drinking, smoking and lack of exercise can contribute to higher rates of non-communicable diseases and early death. It is estimated that the relative risk of death before the age of 65 was ** times greater among those that smoked and never quit. Infectious Disease Deaths Trends indicate that the number of deaths due to infectious diseases have decreased in recent years. However, infectious diseases still disproportionately impact low- and middle-income countries. In 2021, tuberculosis, malaria and HIV/AIDS were still among the leading causes of death in low-income countries. However, the leading causes of death in upper income countries are almost exclusively non-communicable, chronic conditions.

  2. Top ten causes of global deaths 2019

    • statista.com
    Updated Jun 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Top ten causes of global deaths 2019 [Dataset]. https://www.statista.com/statistics/311925/top-ten-causes-of-death-worldwide/
    Explore at:
    Dataset updated
    Jun 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2019
    Area covered
    Worldwide
    Description

    In 2019, the leading causes of death worldwide were ischemic heart disease, stroke, and chronic obstructive pulmonary disease (COPD). That year, ischemic heart disease and stroke accounted for a combined ** percent of all deaths worldwide. Although the leading causes of death worldwide vary by region and country, heart disease is a consistent leading cause of death regardless of income, development, size, or location. Heart disease In 2019, around **** million people worldwide died from ischemic heart disease. In comparison, around **** million people died from lung cancer that year, while *** million died from diabetes. The countries with the highest rates of death due to heart attack and other ischemic heart diseases are Lithuania, Russia, and Slovakia. Although some risk factors for heart disease, such as age and genetics, are unmodifiable, the likelihood of developing heart disease can be greatly reduced through a healthy lifestyle. The biggest modifiable risk factors for heart disease include smoking, an unhealthy diet, being overweight, and a lack of exercise. In 2019, it was estimated that around *** million deaths worldwide due to ischemic heart disease could be attributed to smoking. The leading causes of death in the United States Just as it is the leading cause of death worldwide, heart disease is also the leading cause of death in the United States. In 2023, heart disease accounted for ** percent of all deaths in the United States. Cancer was the second leading cause of death in the U.S. that year, followed by accidents. As of 2023, the odds that a person in the United States will die from heart disease is * in *. However, rates of death due to heart disease have actually declined in the U.S. over the past couple decades. From 2000 to 2022, there was a *** percent decline in heart disease deaths. On the other hand, deaths from Alzheimer’s disease saw an increase of *** percent over this period. Alzheimer’s disease is currently the sixth leading cause of death in the United States, accounting for **** deaths per 100,000 population in 2023.

  3. T

    World Coronavirus COVID-19 Deaths

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 9, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). World Coronavirus COVID-19 Deaths [Dataset]. https://tradingeconomics.com/world/coronavirus-deaths
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset updated
    Mar 9, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 4, 2020 - May 17, 2023
    Area covered
    World
    Description

    The World Health Organization reported 6932591 Coronavirus Deaths since the epidemic began. In addition, countries reported 766440796 Coronavirus Cases. This dataset provides - World Coronavirus Deaths- actual values, historical data, forecast, chart, statistics, economic calendar and news.

  4. Adult Mortality Rate (2019-2021)

    • kaggle.com
    Updated Jun 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mikhail (2024). Adult Mortality Rate (2019-2021) [Dataset]. https://www.kaggle.com/datasets/mikhail1681/adult-mortality-rate-2019-2021
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 12, 2024
    Dataset provided by
    Kaggle
    Authors
    Mikhail
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    Dear Kaggler! This dataset consists of a main CSV file: Adult mortality rate (2019-2021).csv. This file has been processed, cleaned and prepared for your use. The dataset contains information on mortality rates in different countries of the world and some factors that may affect this rate for 2019-2023.

    The data contains the following columns:

    Countries: Country of study.

    Continent: Continent location of the country.

    Average_Pop(thousands people): Average population of the country under study for 2019-2021 in thousands.

    Average_GDP(M$): Average GDP of the country under study for 2019-2021 in millions of dollars.

    Average_GDP_per_capita: Average GDP per capita of the country under study for 2019-2021 in dollars.

    Average_HEXP($): Health Expenditure Per Capita in the country under study in dollars.

    Development_level: Level of development of the state under study (calculated by GDP per capita of the country). Please note that in this dataset we calculate this indicator only by calculating GDP per capita! Despite the fact that the United Nations (UN) does not have an unambiguous classification of countries into developed, developing and backward based on only one indicator, such as the amount of GDP per capita. It uses a wider range of economic, social and quality indicators to determine the level of development of countries.

    AMR_female(per_1000_female_adults): Average mortality of adult women in the country under study (per 1000 adult women per year) for 2019-2023.

    AMR_male(per_1000_male_adults): Average mortality of adult men in the country under study (per 1000 adult men per year) for 2019-2023.

    Average_CDR: Average crude mortality rate for 2019–2021 in the country under study.

    The dataset also contains additional files: Draft_AMR.csv, Draft_CDR.csv, Draft_Expenses.csv, Draft_GDP.csv, Draft_Population.csv. In fact, the main dataset consists of parts of these files. If you are interested in working more deeply on data cleaning and preparation, you can of course use these files. You can also use these files to create your own dataset. And be careful! Additional files may contain a different number of rows and columns with different names and data types. And of course these files are not cleaned. You will see not only the NaN values, but also other symbols in their place.

    Enjoy your training, my dear Kaggler!

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16192307%2Fc9a98b25b85b43718e5b8109712ba36a%2FDepositphotos_68536025_s-2019.jpg?generation=1711099905559419&alt=media" alt="">

  5. Distribution of causes of death worldwide in 2019

    • statista.com
    Updated Sep 6, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Distribution of causes of death worldwide in 2019 [Dataset]. https://www.statista.com/statistics/1076497/share-of-deaths-worldwide-by-cause/
    Explore at:
    Dataset updated
    Sep 6, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2019
    Area covered
    Worldwide
    Description

    In 2019, around 32.8 percent of all deaths globally were caused by cardiovascular diseases and almost 18 percent were caused by cancer. This statistic shows the distribution of causes of death worldwide in 2019.

  6. COVID-19 deaths worldwide as of May 2, 2023, by country and territory

    • statista.com
    Updated May 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). COVID-19 deaths worldwide as of May 2, 2023, by country and territory [Dataset]. https://www.statista.com/statistics/1093256/novel-coronavirus-2019ncov-deaths-worldwide-by-country/
    Explore at:
    Dataset updated
    May 22, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    May 2, 2023
    Area covered
    Worldwide
    Description

    As of May 2, 2023, the outbreak of the coronavirus disease (COVID-19) had spread to almost every country in the world, and more than 6.86 million people had died after contracting the respiratory virus. Over 1.16 million of these deaths occurred in the United States.

    Waves of infections Almost every country and territory worldwide have been affected by the COVID-19 disease. At the end of 2021 the virus was once again circulating at very high rates, even in countries with relatively high vaccination rates such as the United States and Germany. As rates of new infections increased, some countries in Europe, like Germany and Austria, tightened restrictions once again, specifically targeting those who were not yet vaccinated. However, by spring 2022, rates of new infections had decreased in many countries and restrictions were once again lifted.

    What are the symptoms of the virus? It can take up to 14 days for symptoms of the illness to start being noticed. The most commonly reported symptoms are a fever and a dry cough, leading to shortness of breath. The early symptoms are similar to other common viruses such as the common cold and flu. These illnesses spread more during cold months, but there is no conclusive evidence to suggest that temperature impacts the spread of the SARS-CoV-2 virus. Medical advice should be sought if you are experiencing any of these symptoms.

  7. Death Profiles by County

    • data.chhs.ca.gov
    • healthdata.gov
    • +3more
    csv, zip
    Updated Oct 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Death Profiles by County [Dataset]. https://data.chhs.ca.gov/dataset/death-profiles-by-county
    Explore at:
    zip, csv(28125832), csv(60023260), csv(15127221), csv(60201673), csv(75015194), csv(5095), csv(52019564), csv(73906266), csv(74351424), csv(1128641), csv(24235858), csv(74497014), csv(74043128), csv(26976161), csv(74689382), csv(51592721), csv(60676655), csv(11738570), csv(60517511)Available download formats
    Dataset updated
    Oct 2, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    This dataset contains counts of deaths for California counties based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.

    The final data tables include both deaths that occurred in each California county regardless of the place of residence (by occurrence) and deaths to residents of each California county (by residence), whereas the provisional data table only includes deaths that occurred in each county regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.

    The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

  8. A

    Algeria DZ: Number of Deaths Ages 20-24 Years

    • ceicdata.com
    Updated Sep 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2024). Algeria DZ: Number of Deaths Ages 20-24 Years [Dataset]. https://www.ceicdata.com/en/algeria/health-statistics/dz-number-of-deaths-ages-2024-years
    Explore at:
    Dataset updated
    Sep 15, 2024
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2008 - Dec 1, 2019
    Area covered
    Algeria
    Description

    Algeria DZ: Number of Deaths Ages 20-24 Years data was reported at 2,017.000 Person in 2019. This records a decrease from the previous number of 2,148.000 Person for 2018. Algeria DZ: Number of Deaths Ages 20-24 Years data is updated yearly, averaging 2,899.500 Person from Dec 1990 (Median) to 2019, with 30 observations. The data reached an all-time high of 4,526.000 Person in 1998 and a record low of 2,017.000 Person in 2019. Algeria DZ: Number of Deaths Ages 20-24 Years data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Algeria – Table DZ.World Bank.WDI: Health Statistics. Number of deaths of youths ages 20-24 years; ; Estimates developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.; Sum; Aggregate data for LIC, UMC, LMC, HIC are computed based on the groupings for the World Bank fiscal year in which the data was released by the UN Inter-agency Group for Child Mortality Estimation.

  9. G

    Germany DE: Number of Deaths Ages 15-19 Years

    • ceicdata.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Germany DE: Number of Deaths Ages 15-19 Years [Dataset]. https://www.ceicdata.com/en/germany/health-statistics/de-number-of-deaths-ages-1519-years
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2008 - Dec 1, 2019
    Area covered
    Germany
    Description

    Germany DE: Number of Deaths Ages 15-19 Years data was reported at 923.000 Person in 2019. This records a decrease from the previous number of 942.000 Person for 2018. Germany DE: Number of Deaths Ages 15-19 Years data is updated yearly, averaging 1,632.000 Person from Dec 1990 (Median) to 2019, with 30 observations. The data reached an all-time high of 2,544.000 Person in 1990 and a record low of 923.000 Person in 2019. Germany DE: Number of Deaths Ages 15-19 Years data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Germany – Table DE.World Bank.WDI: Health Statistics. Number of deaths of adolescents ages 15-19 years; ; Estimates developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.; Sum; Aggregate data for LIC, UMC, LMC, HIC are computed based on the groupings for the World Bank fiscal year in which the data was released by the UN Inter-agency Group for Child Mortality Estimation.

  10. G

    Germany DE: Cause of Death: by Injury: % of Total

    • ceicdata.com
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Germany DE: Cause of Death: by Injury: % of Total [Dataset]. https://www.ceicdata.com/en/germany/social-health-statistics/de-cause-of-death-by-injury--of-total
    Explore at:
    Dataset updated
    Jan 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2000 - Dec 1, 2019
    Area covered
    Germany
    Description

    Germany DE: Cause of Death: by Injury: % of Total data was reported at 4.642 % in 2019. This records an increase from the previous number of 3.947 % for 2015. Germany DE: Cause of Death: by Injury: % of Total data is updated yearly, averaging 4.032 % from Dec 2000 (Median) to 2019, with 4 observations. The data reached an all-time high of 4.642 % in 2019 and a record low of 3.868 % in 2010. Germany DE: Cause of Death: by Injury: % of Total data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Germany – Table DE.World Bank.WDI: Social: Health Statistics. Cause of death refers to the share of all deaths for all ages by underlying causes. Injuries include unintentional and intentional injuries.;Derived based on the data from Global Health Estimates 2020: Deaths by Cause, Age, Sex, by Country and by Region, 2000-2019. Geneva, World Health Organization; 2020. Link: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death;Weighted average;

  11. COVID-19 cases and deaths per million in 210 countries as of July 13, 2022

    • statista.com
    Updated Nov 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). COVID-19 cases and deaths per million in 210 countries as of July 13, 2022 [Dataset]. https://www.statista.com/statistics/1104709/coronavirus-deaths-worldwide-per-million-inhabitants/
    Explore at:
    Dataset updated
    Nov 25, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

    The difficulties of death figures

    This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.

    Where are these numbers coming from?

    The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

  12. g

    Coronavirus COVID-19 Global Cases by the Center for Systems Science and...

    • github.com
    • systems.jhu.edu
    • +1more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE), Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU) [Dataset]. https://github.com/CSSEGISandData/COVID-19
    Explore at:
    Dataset provided by
    Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE)
    Area covered
    Global
    Description

    2019 Novel Coronavirus COVID-19 (2019-nCoV) Visual Dashboard and Map:
    https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6

    • Confirmed Cases by Country/Region/Sovereignty
    • Confirmed Cases by Province/State/Dependency
    • Deaths
    • Recovered

    Downloadable data:
    https://github.com/CSSEGISandData/COVID-19

    Additional Information about the Visual Dashboard:
    https://systems.jhu.edu/research/public-health/ncov

  13. Leading causes of death, total population, by age group

    • www150.statcan.gc.ca
    • open.canada.ca
    Updated Feb 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Leading causes of death, total population, by age group [Dataset]. http://doi.org/10.25318/1310039401-eng
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.

  14. C

    Canada CA: Cause of Death: by Communicable Diseases & Maternal, Prenatal &...

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Canada CA: Cause of Death: by Communicable Diseases & Maternal, Prenatal & Nutrition Conditions: % of Total [Dataset]. https://www.ceicdata.com/en/canada/social-health-statistics/ca-cause-of-death-by-communicable-diseases--maternal-prenatal--nutrition-conditions--of-total
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2000 - Dec 1, 2019
    Area covered
    Canada
    Description

    Canada CA: Cause of Death: by Communicable Diseases & Maternal, Prenatal & Nutrition Conditions: % of Total data was reported at 4.772 % in 2019. This records a decrease from the previous number of 5.585 % for 2015. Canada CA: Cause of Death: by Communicable Diseases & Maternal, Prenatal & Nutrition Conditions: % of Total data is updated yearly, averaging 4.994 % from Dec 2000 (Median) to 2019, with 4 observations. The data reached an all-time high of 5.585 % in 2015 and a record low of 4.549 % in 2000. Canada CA: Cause of Death: by Communicable Diseases & Maternal, Prenatal & Nutrition Conditions: % of Total data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Canada – Table CA.World Bank.WDI: Social: Health Statistics. Cause of death refers to the share of all deaths for all ages by underlying causes. Communicable diseases and maternal, prenatal and nutrition conditions include infectious and parasitic diseases, respiratory infections, and nutritional deficiencies such as underweight and stunting.;Derived based on the data from Global Health Estimates 2020: Deaths by Cause, Age, Sex, by Country and by Region, 2000-2019. Geneva, World Health Organization; 2020. Link: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death;Weighted average;

  15. Life table data for "Bounce backs amid continued losses: Life expectancy...

    • zenodo.org
    • data.niaid.nih.gov
    csv
    Updated Jul 20, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jonas Schöley; Jonas Schöley; José Manuel Aburto; José Manuel Aburto; Ilya Kashnitsky; Ilya Kashnitsky; Maxi S. Kniffka; Maxi S. Kniffka; Luyin Zhang; Luyin Zhang; Hannaliis Jaadla; Hannaliis Jaadla; Jennifer B. Dowd; Jennifer B. Dowd; Ridhi Kashyap; Ridhi Kashyap (2022). Life table data for "Bounce backs amid continued losses: Life expectancy changes since COVID-19" [Dataset]. http://doi.org/10.5281/zenodo.6861866
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jul 20, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Jonas Schöley; Jonas Schöley; José Manuel Aburto; José Manuel Aburto; Ilya Kashnitsky; Ilya Kashnitsky; Maxi S. Kniffka; Maxi S. Kniffka; Luyin Zhang; Luyin Zhang; Hannaliis Jaadla; Hannaliis Jaadla; Jennifer B. Dowd; Jennifer B. Dowd; Ridhi Kashyap; Ridhi Kashyap
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Life table data for "Bounce backs amid continued losses: Life expectancy changes since COVID-19"

    cc-by Jonas Schöley, José Manuel Aburto, Ilya Kashnitsky, Maxi S. Kniffka, Luyin Zhang, Hannaliis Jaadla, Jennifer B. Dowd, and Ridhi Kashyap. "Bounce backs amid continued losses: Life expectancy changes since COVID-19".

    These are CSV files of life tables over the years 2015 through 2021 across 29 countries analyzed in the paper "Bounce backs amid continued losses: Life expectancy changes since COVID-19".

    40-lifetables.csv

    Life table statistics 2015 through 2021 by sex, region and quarter with uncertainty quantiles based on Poisson replication of death counts. Actual life tables and expected life tables (under the assumption of pre-COVID mortality trend continuation) are provided.

    30-lt_input.csv

    Life table input data.

    • `id`: unique row identifier
    • `region_iso`: iso3166-2 region codes
    • `sex`: Male, Female, Total
    • `year`: iso year
    • `age_start`: start of age group
    • `age_width`: width of age group, Inf for age_start 100, otherwise 1
    • `nweeks_year`: number of weeks in that year, 52 or 53
    • `death_total`: number of deaths by any cause
    • `population_py`: person-years of exposure (adjusted for leap-weeks and missing weeks in input data on all cause deaths)
    • `death_total_nweeksmiss`: number of weeks in the raw input data with at least one missing death count for this region-sex-year stratum. missings are counted when the week is implicitly missing from the input data or if any NAs are encounted in this week or if age groups are implicitly missing for this week in the input data (e.g. 40-45, 50-55)
    • `death_total_minnageraw`: the minimum number of age-groups in the raw input data within this region-sex-year stratum
    • `death_total_maxnageraw`: the maximum number of age-groups in the raw input data within this region-sex-year stratum
    • `death_total_minopenageraw`: the minimum age at the start of the open age group in the raw input data within this region-sex-year stratum
    • `death_total_maxopenageraw`: the maximum age at the start of the open age group in the raw input data within this region-sex-year stratum
    • `death_total_source`: source of the all-cause death data
    • `death_total_prop_q1`: observed proportion of deaths in first quarter of year

    • `death_total_prop_q2`: observed proportion of deaths in second quarter of year

    • `death_total_prop_q3`: observed proportion of deaths in third quarter of year

    • `death_total_prop_q4`: observed proportion of deaths in fourth quarter of year

    • `death_expected_prop_q1`: expected proportion of deaths in first quarter of year

    • `death_expected_prop_q2`: expected proportion of deaths in second quarter of year

    • `death_expected_prop_q3`: expected proportion of deaths in third quarter of year

    • `death_expected_prop_q4`: expected proportion of deaths in fourth quarter of year

    • `population_midyear`: midyear population (July 1st)
    • `population_source`: source of the population count/exposure data
    • `death_covid`: number of deaths due to covid
    • `death_covid_date`: number of deaths due to covid as of
    • `death_covid_nageraw`: the number of age groups in the covid input data
    • `ex_wpp_estimate`: life expectancy estimates from the World Population prospects for a five year period, merged at the midpoint year
    • `ex_hmd_estimate`: life expectancy estimates from the Human Mortality Database
    • `nmx_hmd_estimate`: death rate estimates from the Human Mortality Database
    • `nmx_cntfc`: Lee-Carter death rate projections based on trend in the years 2015 through 2019

    Deaths

    • source:
    • STMF:
      • harmonized to single ages via pclm
      • pclm iterates over country, sex, year, and within-year age grouping pattern and converts irregular age groupings, which may vary by country, year and week into a regular age grouping of 0:110
      • smoothing parameters estimated via BIC grid search seperately for every pclm iteration
      • last age group set to [110,111)
      • ages 100:110+ are then summed into 100+ to be consistent with mid-year population information
      • deaths in unknown weeks are considered; deaths in unknown ages are not considered
    • ONS:
      • data already in single ages
      • ages 100:105+ are summed into 100+ to be consistent with mid-year population information
      • PCLM smoothing applied to for consistency reasons
    • CDC:
      • The CDC data comes in single ages 0:100 for the US. For 2020 we only have the STMF data in a much coarser age grouping, i.e. (0, 1, 5, 15, 25, 35, 45, 55, 65, 75, 85+). In order to calculate life-tables in a manner consistent with 2020, we summarise the pre 2020 US death counts into the 2020 age grouping and then apply the pclm ungrouping into single year ages, mirroring the approach to the 2020 data

    Population

    • source:
      • for years 2000 to 2019: World Population Prospects 2019 single year-age population estimates 1950-2019
      • for year 2020: World Population Prospects 2019 single year-age population projections 2020-2100
    • mid-year population
      • mid-year population translated into exposures:
        • if a region reports annual deaths using the Gregorian calendar definition of a year (365 or 366 days long) set exposures equal to mid year population estimates
        • if a region reports annual deaths using the iso-week-year definition of a year (364 or 371 days long), and if there is a leap-week in that year, set exposures equal to 371/364\*mid_year_population to account for the longer reporting period. in years without leap-weeks set exposures equal to mid year population estimates. further multiply by fraction of observed weeks on all weeks in a year.

    COVID deaths

    • source: COVerAGE-DB (https://osf.io/mpwjq/)
    • the data base reports cumulative numbers of COVID deaths over days of a year, we extract the most up to date yearly total

    External life expectancy estimates

  16. Global suicide mortality rates (2000-2019) and bibliographic data

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Jun 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Erinija Pranckeviciene; Erinija Pranckeviciene (2024). Global suicide mortality rates (2000-2019) and bibliographic data [Dataset]. http://doi.org/10.5281/zenodo.12267302
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 22, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Erinija Pranckeviciene; Erinija Pranckeviciene
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jun 22, 2024
    Description

    The dataset contains World Bank Suicide mortality rate WDI (world development indicator) (2000-2019) world-wide data in original and processed form. In addition to the statistical data this dataset also contains bibliographic records of articles published on the topic of suicide in relation to individual countries during (2000-2019) in original and processed form.

    The data consists of six archives:

    1. World development indicator suicide mortality rate SH.STA.SUIC.P5. This archive contains suicide mortality rate of 159 countries during the period of 2000-2019 per 100,000 population including males and females as of November, 2023.
    2. Web of science records country and suicide. This archive contains bibliographic records organized by country on the topic of suicide related to that country published during 2000-2019 as of November, 2023.
    3. Suicide mortality rate statistics and keywords. This archive contains processed data of 1 and 2 archives in three files. The 'Countries suicide rates and WOS records' contains organized temporal suicide mortality rate data for each country and each year for males and females including counts of articles on suicide related in that country. The 'words and countries matrix' file contains information about how many times author and paper keywords from suicide related publications were seen in articles associated with each country. This data is organized as matrix in which rows are keywords, columns are countries and cells are counts of the keyword. The 'words and countries pairs' file contains same information only organized as keyword country pairs.
    4. Suicide mortality rate clusters countries keywords titles. This archive contains bibliographic data organized by country clusters. These clusters group countries with similar suicide mortality rate dynamics in males and females shown in two included figures. Each folder of the cluster contains a section with bibliographic records; a section with keywords associated with each country; and a section in which each publication associated with the country has a separate filecontaining its title and keywords.
    5. Suicide keywords embedding data. This archive contains word embedding vectors and metadata learned by recurrent neural network trained to classify countries from suicide related keywords of articles associated with those countries. Folder 'trained with keywords' contains embeddings learned in classifying countries in which training samples are keyword strings of publications. Folder 'trained with titles' contains embeddings learned in classifying countries in which training samples are strings containing titles of publication plus keywords.
    6. Suicide keywords association rule mining. This archive contains files of subsets of keywords frequently mentioned together in suicide related publications. Folder 'Mining in clusters' has frequent keyword itemsets in country clusters. Folder 'Mining in individual countries' has frequent keyword itemsets in countries. Examples of keyword networks connecting clusters and networks connecting countries in individual clusters are included which helps to identify specific and shared keywords by country clusters and by countries in the individual clusters.

    These datasets support a data availability statements for upcoming articles.

  17. Statewide Death Profiles

    • data.chhs.ca.gov
    • data.ca.gov
    • +3more
    csv, zip
    Updated Oct 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Statewide Death Profiles [Dataset]. https://data.chhs.ca.gov/dataset/statewide-death-profiles
    Explore at:
    csv(164006), csv(200270), csv(2026589), csv(5401561), csv(463460), csv(5034), csv(16301), csv(4689434), csv(419332), zip, csv(429224)Available download formats
    Dataset updated
    Oct 2, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    This dataset contains counts of deaths for California as a whole based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.

    The final data tables include both deaths that occurred in California regardless of the place of residence (by occurrence) and deaths to California residents (by residence), whereas the provisional data table only includes deaths that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.

    The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

  18. M

    Mexico MX: Number of Deaths Ages 20-24 Years

    • ceicdata.com
    Updated Dec 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2024). Mexico MX: Number of Deaths Ages 20-24 Years [Dataset]. https://www.ceicdata.com/en/mexico/health-statistics/mx-number-of-deaths-ages-2024-years
    Explore at:
    Dataset updated
    Dec 15, 2024
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2008 - Dec 1, 2019
    Area covered
    Mexico
    Description

    Mexico MX: Number of Deaths Ages 20-24 Years data was reported at 15,746.000 Person in 2019. This records an increase from the previous number of 15,132.000 Person for 2018. Mexico MX: Number of Deaths Ages 20-24 Years data is updated yearly, averaging 11,229.500 Person from Dec 1990 (Median) to 2019, with 30 observations. The data reached an all-time high of 15,746.000 Person in 2019 and a record low of 9,650.000 Person in 2005. Mexico MX: Number of Deaths Ages 20-24 Years data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Mexico – Table MX.World Bank.WDI: Health Statistics. Number of deaths of youths ages 20-24 years; ; Estimates developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.; Sum; Aggregate data for LIC, UMC, LMC, HIC are computed based on the groupings for the World Bank fiscal year in which the data was released by the UN Inter-agency Group for Child Mortality Estimation.

  19. I

    Iran IR: Number of Deaths Ages 20-24 Years

    • ceicdata.com
    Updated Mar 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2024). Iran IR: Number of Deaths Ages 20-24 Years [Dataset]. https://www.ceicdata.com/en/iran/health-statistics/ir-number-of-deaths-ages-2024-years
    Explore at:
    Dataset updated
    Mar 15, 2024
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2008 - Dec 1, 2019
    Area covered
    Iran
    Description

    Iran IR: Number of Deaths Ages 20-24 Years data was reported at 6,136.000 Person in 2019. This records a decrease from the previous number of 6,390.000 Person for 2018. Iran IR: Number of Deaths Ages 20-24 Years data is updated yearly, averaging 9,191.500 Person from Dec 1990 (Median) to 2019, with 30 observations. The data reached an all-time high of 13,846.000 Person in 2008 and a record low of 6,136.000 Person in 2019. Iran IR: Number of Deaths Ages 20-24 Years data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Iran – Table IR.World Bank.WDI: Health Statistics. Number of deaths of youths ages 20-24 years; ; Estimates developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.; Sum; Aggregate data for LIC, UMC, LMC, HIC are computed based on the groupings for the World Bank fiscal year in which the data was released by the UN Inter-agency Group for Child Mortality Estimation.

  20. World: annual birth rate, death rate, and rate of natural population change...

    • statista.com
    Updated Jul 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). World: annual birth rate, death rate, and rate of natural population change 1950-2100 [Dataset]. https://www.statista.com/statistics/805069/death-rate-worldwide/
    Explore at:
    Dataset updated
    Jul 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The COVID-19 pandemic increased the global death rate, reaching *** in 2021, but had little to no significant impact on birth rates, causing population growth to dip slightly. On a global level, population growth is determined by the difference between the birth and death rates, known as the rate of natural change. On a national or regional level, migration also affects population change. Ongoing trends Since the middle of the 20th century, the global birth rate has been well above the global death rate; however, the gap between these figures has grown closer in recent years. The death rate is projected to overtake the birth rate in the 2080s, which means that the world's population will then go into decline. In the future, death rates will increase due to ageing populations across the world and a plateau in life expectancy. Why does this change? There are many reasons for the decline in death and birth rates in recent decades. Falling death rates have been driven by a reduction in infant and child mortality, as well as increased life expectancy. Falling birth rates were also driven by the reduction in child mortality, whereby mothers would have fewer children as survival rates rose - other factors include the drop in child marriage, improved contraception access and efficacy, and women choosing to have children later in life.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Leading causes of death worldwide in 2019 [Dataset]. https://www.statista.com/statistics/288839/leading-causes-of-death-worldwide/
Organization logo

Leading causes of death worldwide in 2019

Explore at:
57 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 24, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2019
Area covered
Worldwide
Description

In 2019, the leading causes of death globally included ischemic heart disease, stroke and chronic obstructive pulmonary disease (COPD). There were **** million deaths from ischemic heart disease at that time and about **** million deaths caused by stroke. In recent history, increases in life expectancy, increases in population and better standards of living have changed the leading causes of death over time. Non-Communicable Disease Deaths The number of deaths due to non-communicable diseases has remained relatively stable in recent years. A large majority of non-communicable or chronic disease deaths globally are caused by cardiovascular diseases, followed by cancer. Various lifestyle choices cause or exacerbate many of these chronic diseases. Drinking, smoking and lack of exercise can contribute to higher rates of non-communicable diseases and early death. It is estimated that the relative risk of death before the age of 65 was ** times greater among those that smoked and never quit. Infectious Disease Deaths Trends indicate that the number of deaths due to infectious diseases have decreased in recent years. However, infectious diseases still disproportionately impact low- and middle-income countries. In 2021, tuberculosis, malaria and HIV/AIDS were still among the leading causes of death in low-income countries. However, the leading causes of death in upper income countries are almost exclusively non-communicable, chronic conditions.

Search
Clear search
Close search
Google apps
Main menu