ASTER is capable of collecting in-track stereo using nadir- and aft-looking near infrared cameras. Since 2001, these stereo pairs have been used to produce single-scene (60- x 60-kilomenter (km)) digital elevation models (DEM) having vertical (root-mean-squared-error) accuracies generally between 10- and 25-meters (m). The methodology used by Japan's Sensor Information Laboratory Corporation (SILC) to produce the ASTER GDEM involves automated processing of the entire ASTER Level-1A archive. Stereo-correlation is used to produce over one million individual scene-based ASTER DEMs, to which cloud masking is applied to remove cloudy pixels. All cloud-screened DEMS are stacked and residual bad values and outliers are removed. Selected data are averaged to create final pixel values, and residual anomalies are corrected before partitioning the data into 1 degree (°) x 1° tiles. The ASTER GDEM covers land surfaces between 83°N and 83°S and is comprised of 22,702 tiles. Tiles that contain at least 0.01% land area are included. The ASTER GDEM is distributed as Geographic Tagged Image File Format (GeoTIFF) files with geographic coordinates (latitude, longitude). The data are posted on a 1 arc-second (approximately 30–m at the equator) grid and referenced to the 1984 World Geodetic System (WGS84)/ 1996 Earth Gravitational Model (EGM96) geoid.
A global 1-km resolution land surface digital elevation model (DEM) derived from U.S. Geological Survey (USGS) 30 arc-second SRTM30 gridded DEM data created from the NASA Shuttle Radar Topography Mission (SRTM). GTOPO30 data are used for high latitudes where SRTM data are not available. For a grayscale hillshade image layer of this dataset, see "world_srtm30plus_dem1km_hillshade" in the distribution links listed in the metadata.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Layers include: various DEM derivatives computed using SAGA GIS at 250 m and using MERIT DEM (Yamazaki et al., 2017) as input. Antartica is not included. MERIT DEM was first reprojected to 6 global tiles based on the Equi7 grid system (Bauer-Marschallinger et al. 2014) and then these were used to derive all DEM derivatives. To access original DEM tiles please refer to MERIT DEM download page.
To access and visualize maps use: OpenLandMap.org
If you discover a bug, artifact or inconsistency in the maps, or if you have a question please use some of the following channels:
All files internally compressed using "COMPRESS=DEFLATE" creation option in GDAL. File naming convention:
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
This dataset corresponds to a reformatting of the SRTM30_PLUS digital elevation dataset from 33 NetCDF files into a single GeoTiff for use in GIS applications. No other modifications to the data were done. The rest of this metadata describes the original SRTM30_PLUS dataset itself.
This dataset is a 30-arc second resolution global topography/bathymetry grid (SRTM30_PLUS) developed from a wide variety of data sources. Land and ice topography comes from the SRTM30 and ICESat topography, respectively. Ocean bathymetry is based on a new satellite-gravity model where the gravity-to-topography ratio is calibrated using 298 million edited soundings. The main contribution of this dataset is the compilation and editing of the raw soundings, which come from NOAA, individual scientists, SIO, NGA, JAMSTEC, IFREMER, GEBCO, and NAVOCEANO.
The SRTM30_PLUS dataset developed by Scripps Institute Of Oceanography, University of California San Diego (UCSD).
Land data are based on the 1-km averages of topography derived from the USGS SRTM30 grided DEM data product created with data from the NASA Shuttle Radar Topography Mission. GTOPO30 data are used for high latitudes where SRTM data are not available.
Ocean data are based on the Smith and Sandwell global 1-minute grid between latitudes +/- 81 degrees. Higher resolution grids have been added from the LDEO Ridge Multibeam Synthesis Project, the JAMSTEC Data Site for Research Cruises, and the NGDC Coastal Relief Model. Arctic bathymetry is from the International Bathymetric Chart of the Oceans (IBCAO) [Jakobsson et al., 2003].
This data consists of 33 files of global topography in the same format as the SRTM30 products distributed by the USGS EROS data center. The grid resolution is 30 second which is roughly one kilometer. In addition the global data are also available in a single large file ready for GMT and as 33 NetCDF files. The eAtlas has also merged and formatted the data as a single GeoTiff file with overviews (1.6 GB).
The pixel-registered data are stored in 33 files with names corresponding to the upper left corner of the array shown below. The data are also merged into a single large (1.9 Gbyte, 2-byte integer) file as well as smaller 1-minute and 2-minute netcdf versions. Matching files of source identification number are available for determining the data source for every pixel.
This new version (v8.0) includes all of the multibeam bathymetry data collected by U.S. research vessels over the past three decades including 287 Scripps expeditions from research vessels Washington, Melville and Revelle. UCSD undergraduate student Alexis Shakas processed all the U.S. multibeam data and then worked with Google researchers on the global integration.
The data is available from UCSD FTP server as 33 NetCDF files and from the eAtlas as a merged GeoTiff.
If you are after high resolution bathymetry/elevation data for regional areas please check the related links.
Reference, sounding data: Becker, J. J., D. T. Sandwell, W. H. F. Smith, J. Braud, B. Binder, J. Depner, D. Fabre, J. Factor, S. Ingalls, S-H. Kim, R. Ladner, K. Marks, S. Nelson, A. Pharaoh, R. Trimmer, J. Von Rosenberg, G. Wallace, P. Weatherall., Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30_PLUS, Marine Geodesy, 32:4, 355-371, 2009. http://topex.ucsd.edu/sandwell/publications/124_MG_Becker.pdf
Reference, gravity data: Sandwell, D. T., and W. H. F. Smith, Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge Segmentation versus spreading rate, J. Geophys. Res., 114, B01411, doi:10.1029/2008JB006008, 2009. http://dx.doi.org/10.1029/2008JB006008
eAtlas Processing:
A set of Batch scripts were developed to perform the conversion of the data from NetCDF to GeoTiff and the generation of the hillshading. This processing was based on the GDAL command line tools. Full details of the processing can be found in the downloadable Scripts associated with this dataset.
Data Location:
This dataset is filed in the eAtlas enduring data repository at: data\NERP-TE\13.1_eAtlas\World_UCSD_SRTM30-plus
GTOPO30 is a global raster digital elevation model (DEM) providing terrain elevation data with a horizontal grid spacing of 30 arc seconds (approximately 1 kilometer). GTOPO30 was derived from several raster and vector sources of topographic information. For easier distribution, GTOPO30 has been divided into tiles [http://rda.ucar.edu/datasets/ds758.0/docs/tiles.gif]. Detailed information on the characteristics of GTOPO30 including the data distribution format, the data sources, production methods, accuracy, and hints for users, is found in the GTOPO30 README [http://rda.ucar.edu/datasets/ds758.0/docs/readme.txt] file. GTOPO30, completed in late 1996, was developed over a three year period through a collaborative effort led by staff at the U.S. Geological Survey's Center for Earth Resources Observation and Science (EROS). The following organizations participated by contributing funding or source data: the National Aeronautics and Space Administration (NASA), the United Nations Environment Program and Global Resource Information Database (UNEP and GRID), the U.S. Agency for International Development (USAID), the Instituto Nacional de Estadistica Geografica e Informatica (INEGI) of Mexico, the Geographical Survey Institute (GSI) of Japan, Manaaki Whenua Landcare Research of New Zealand, and the Scientific Committee on Antarctic Research (SCAR).
This is a tiled collection of the 3D Elevation Program (3DEP) and is one meter resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. USGS standard one-meter DEMs are produced exclusively from high resolution light detection and ranging (lidar) source data of one-meter or higher resolution. One-meter DEM surfaces are seamless within collection projects, but, not necessarily seamless across projects. The spatial reference used for tiles of the one-meter DEM within the conterminous United States (CONUS) is Universal Transverse Mercator (UTM) in units of meters, and in conformance with the North American Datum of 1983 (NAD83). All bare earth elevation values are in meters and are referenced to the North American Vertical Datum of 1988 (NAVD88). Each tile is distributed in the UTM Zone in which it lies. If a tile crosses two UTM zones, it is delivered in both zones. The one-meter DEM is the highest resolution standard DEM offered in the 3DEP product suite. Other 3DEP products are nationally seamless DEMs in resolutions of 1/3, 1, and 2 arc seconds. These seamless DEMs were referred to as the National Elevation Dataset (NED) from about 2000 through 2015 at which time they became the seamless DEM layers under the 3DEP program and the NED name and system were retired. Other 3DEP products include five-meter DEMs in Alaska as well as various source datasets including the lidar point cloud and interferometric synthetic aperture radar (Ifsar) digital surface models and intensity images. All 3DEP products are public domain.
The ASTER Global Digital Elevation Model (GDEM) Version 3 (ASTGTM) provides a global digital elevation model (DEM) of land areas on Earth at a spatial resolution of 1 arc second (approximately 30 meter horizontal posting at the equator).
The development of the ASTER GDEM data products is a collaborative effort between National Aeronautics and Space Administration (NASA) and Japan’s Ministry of Economy, Trade, and Industry (METI). The ASTER GDEM data products are created by the Sensor Information Laboratory Corporation (SILC) in Tokyo.
The ASTER GDEM Version 3 data product was created from the automated processing of the entire ASTER Level 1A (https://doi.org/10.5067/ASTER/AST_L1A.003) archive of scenes acquired between March 1, 2000, and November 30, 2013. Stereo correlation was used to produce over one million individual scene based ASTER DEMs, to which cloud masking was applied. All cloud screened DEMs and non-cloud screened DEMs were stacked. Residual bad values and outliers were removed. In areas with limited data stacking, several existing reference DEMs were used to supplement ASTER data to correct for residual anomalies. Selected data were averaged to create final pixel values before partitioning the data into 1 degree latitude by 1 degree longitude tiles with a one pixel overlap. To correct elevation values of water body surfaces, the ASTER Global Water Bodies Database (ASTWBD) (https://doi.org/10.5067/ASTER/ASTWBD.001) Version 1 data product was also generated.
The geographic coverage of the ASTER GDEM extends from 83° North to 83° South. Each tile is distributed in NetCDF format and projected on the 1984 World Geodetic System (WGS84)/1996 Earth Gravitational Model (EGM96) geoid. Each of the 22,912 tiles in the collection contain at least 0.01% land area.
Each ASTGTM_NUMNC file indicates the number of scenes that were processed for each pixel and the source of the data.. The corresponding ASTGTM_NC data product contains a DEM file, which provides elevation information.
While the ASTER GDEM Version 3 data products offer substantial improvements over Version 2, users are advised that the products still may contain anomalies and artifacts that will reduce its usability for certain applications.
Improvements/Changes from Previous Versions • Expansion of acquisition coverage to increase the amount of cloud-free input scenes from about 1.5 million in Version 2 to about 1.88 million scenes in Version 3. • Separation of rivers from lakes in the water body processing. • Minimum water body detection size decreased from 1 km2 to 0.2 km2.
This dataset contains the Digital Elevation Model (DEM) grid for the Asian continent from the Hydrologic Derivatives for Modeling and Analysis (HDMA) database. The DEM data were developed and distributed by processing units. There are 19 processing units for Asia. The distribution files have the number of the processing unit appended to the end of the zip file name (e.g. as_dem_3_2.zip contains the DEM data for unit 3-2). The HDMA database provides comprehensive and consistent global coverage of raster and vector topographically derived layers, including raster layers of digital elevation model (DEM) data, flow direction, flow accumulation, slope, and compound topographic index (CTI); and vector layers of streams and catchment boundaries. The coverage of the data is global (-180º, 180º, -90º, 90º) with the underlying DEM being a hybrid of three datasets: HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales), Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) and the Shuttle Radar Topography Mission (SRTM). For most of the globe south of 60º North, the raster resolution of the data is 3-arc-seconds, corresponding to the resolution of the SRTM. For the areas North of 60º, the resolution is 7.5-arc-seconds (the smallest resolution of the GMTED2010 dataset) except for Greenland, where the resolution is 30-arc-seconds. The streams and catchments are attributed with Pfafstetter codes, based on a hierarchical numbering system, that carry important topological information.
The Copernicus DEM is a Digital Surface Model (DSM) which represents the surface of the Earth including buildings, infrastructure and vegetation. This DSM is derived from an edited DSM named WorldDEM, where flattening of water bodies and consistent flow of rivers has been included. In addition, editing of shore- and coastlines, special features such as airports, and implausible terrain structures has also been applied.
The WorldDEM product is based on the radar satellite data acquired during the TanDEM-X Mission, which is funded by a Public Private Partnership between the German State, represented by the German Aerospace Centre (DLR) and Airbus Defence and Space. OpenTopography is providing access to the global GLO-90 Defence Gridded Elevation Data (DGED) 2023_1 version of the data hosted by ESA via the PRISM service. Details on the Copernicus DSM can be found on this ESA site.
Here we provide a mosaic of the Copernicus DEM 30m for Europe and the corresponding hillshade derived from the GLO-30 public instance of the Copernicus DEM. The CRS is the same as the original Copernicus DEM CRS: EPSG:4326. Note that GLO-30 Public provides limited coverage at 30 meters because a small subset of tiles covering specific countries are not yet released to the public by the Copernicus Programme. Note that ocean areas do not have tiles, there one can assume height values equal to zero. Data is provided as Cloud Optimized GeoTIFFs.
The Copernicus DEM is a Digital Surface Model (DSM) which represents the surface of the Earth including buildings, infrastructure and vegetation. The original GLO-30 provides worldwide coverage at 30 meters (refers to 10 arc seconds). Note that ocean areas do not have tiles, there one can assume height values equal to zero. Data is provided as Cloud Optimized GeoTIFFs. Note that the vertical unit for measurement of elevation height is meters.
The Copernicus DEM for Europe at 30 m in COG format has been derived from the Copernicus DEM GLO-30, mirrored on Open Data on AWS, dataset managed by Sinergise (https://registry.opendata.aws/copernicus-dem/).
Processing steps: The original Copernicus GLO-30 DEM contains a relevant percentage of tiles with non-square pixels. We created a mosaic map in https://gdal.org/drivers/raster/vrt.html format and defined within the VRT file the rule to apply cubic resampling while reading the data, i.e. importing them into GRASS GIS for further processing. We chose cubic instead of bilinear resampling since the height-width ratio of non-square pixels is up to 1:5. Hence, artefacts between adjacent tiles in rugged terrain could be minimized: gdalbuildvrt -input_file_list list_geotiffs_MOOD.csv -r cubic -tr 0.000277777777777778 0.000277777777777778 Copernicus_DSM_30m_MOOD.vrt
The pixel values were scaled with 1000 (storing the pixels as integer values) for data volume reduction. In addition, a hillshade raster map was derived from the resampled elevation map (using r.relief, GRASS GIS). Eventually, we exported the elevation and hillshade raster maps in Cloud Optimized GeoTIFF (COG) format, along with SLD and QML style files.
This dataset contains the Digital Elevation Model (DEM) for South America from the Hydrologic Derivatives for Modeling and Analysis (HDMA) database. The data were developed and distributed by processing units. There are 10 processing units for South America. The distribution files have the number of the processing unit appended to the end of the zip file name (e.g. sa_dem_3.zip contains the DEM data for unit 3-2). The HDMA database provides comprehensive and consistent global coverage of raster and vector topographically derived layers, including raster layers of digital elevation model (DEM) data, flow direction, flow accumulation, slope, and compound topographic index (CTI); and vector layers of streams and catchment boundaries. The coverage of the data is global (-180º, 180º, -90º, 90º) with the underlying DEM being a hybrid of three datasets: HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales), Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) and the Shuttle Radar Topography Mission (SRTM). For most of the globe south of 60º North, the raster resolution of the data is 3-arc-seconds, corresponding to the resolution of the SRTM. For the areas North of 60º, the resolution is 7.5-arc-seconds (the smallest resolution of the GMTED2010 dataset) except for Greenland, where the resolution is 30-arc-seconds. The streams and catchments are attributed with Pfafstetter codes, based on a hierarchical numbering system, that carry important topological information.
This is a tiled collection of the 3D Elevation Program (3DEP) and is 1/3 arc-second (approximately 10 m) resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. The seamless 1/3 arc-second DEM layers are derived from diverse source data that are processed to a common coordinate system and unit of vertical measure. These data are distributed in geographic coordinates in units of decimal degrees, and in conformance with the North American Datum of 1983 (NAD 83). All elevation values are in meters and, over the continental United States, are referenced to the North American Vertical Datum of 1988 (NAVD88). The seamless 1/3 arc-second DEM layer provides coverage of the conterminous United States, Hawaii, Puerto Rico, other territorial islands, and in limited areas of Alaska. The seamless 1/3arc-second DEM is available as pre-staged current and historical products tiled in GeoTIFF format. The seamless 1/3 arc-second DEM layer is updated continually as new data become available in the current folder. Previously created 1 degree blocks are retained in the historical folder with an appended date suffix (YYYMMDD) when they were produced. Other 3DEP products are nationally seamless DEMs in resolutions of 1, and 2 arc seconds. These seamless DEMs were referred to as the National Elevation Dataset (NED) from about 2000 through 2015 at which time they became the seamless DEM layers under the 3DEP program and the NED name and system were retired. Other 3DEP products include one-meter DEMs produced exclusively from high resolution light detection and ranging (lidar) source data and five-meter DEMs in Alaska as well as various source datasets including the lidar point cloud and interferometric synthetic aperture radar (Ifsar) digital surface models and intensity images. All 3DEP products are public domain.
The Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) Version 3 (ASTGTM) provides a global digital elevation model (DEM) of land areas on Earth at a spatial resolution of 1 arc second (approximately 30 meter horizontal posting at the equator).
The development of the ASTER GDEM data products is a collaborative effort between National Aeronautics and Space Administration (NASA) and Japan's Ministry of Economy, Trade, and Industry (METI). The ASTER GDEM data products are created by the Sensor Information Laboratory Corporation (SILC) in Tokyo.
The ASTER GDEM Version 3 data product was created from the automated processing of the entire ASTER Level 1A archive of scenes acquired between March 1, 2000, and November 30, 2013. Stereo correlation was used to produce over one million individual scene based ASTER DEMs, to which cloud masking was applied. All cloud screened DEMs and non-cloud screened DEMs were stacked. Residual bad values and outliers were removed. In areas with limited data stacking, several existing reference DEMs were used to supplement ASTER data to correct for residual anomalies. Selected data were averaged to create final pixel values before partitioning the data into 1 degree latitude by 1 degree longitude tiles with a one pixel overlap. To correct elevation values of water body surfaces, the ASTER Global Water Bodies Database (ASTWBD) Version 1 data product was also generated.
The geographic coverage of the ASTER GDEM extends from 83° North to 83° South. Each tile is distributed in both a Cloud Optimized GeoTIFF (COG) and NetCDF4 format through NASA Earthdata Search and in standard GeoTIFF format through the LP DAAC Data Pool. Data are projected on the 1984 World Geodetic System (WGS84)/1996 Earth Gravitational Model (EGM96) geoid. Each of the 22,912 tiles in the collection contain at least 0.01% land area.
Provided in the ASTER GDEM product are layers for DEM and number of scenes (NUM). The NUM layer indicates the number of scenes that were processed for each pixel and the source of the data.
While the ASTER GDEM Version 3 data products offer substantial improvements over Version 2, users are advised that the products still may contain anomalies and artifacts that will reduce its usability for certain applications.
Known Issues * ASTER GDEM Version 3 tiles overlap by one pixel to the north, south, east, and west of the tile perimeter. In most cases the overlapping edge pixels have identical pixel values, but it is possible that in some instances values will differ. * ASTER GDEM Version 3 is considered to be void free except for Greenland and Antarctica. * Users are reminded that because there are known inaccuracies and artifacts in the dataset, to use the product with awareness of these limitations. The data are provided "as is" and neither NASA nor METI/Earth Resources Satellite Data Analysis Center (ERSDAC) will be responsible for any damages resulting from use of the data.
Improvements/Changes from Previous Version * Expansion of acquisition coverage to increase the amount of cloud free input scenes from about 1.5 million in Version 2 to about 1.88 million scenes in Version 3. * Separation of rivers from lakes in the water body processing. * Minimum water body detection size decreased from 1 square kilometer (km²) to 0.2 km².
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The High Resolution Digital Elevation Model (HRDEM) product is derived from airborne LiDAR data (mainly in the south) and satellite images in the north. The complete coverage of the Canadian territory is gradually being established. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived data. For DTM datasets, derived data available are slope, aspect, shaded relief, color relief and color shaded relief maps and for DSM datasets, derived data available are shaded relief, color relief and color shaded relief maps. The productive forest line is used to separate the northern and the southern parts of the country. This line is approximate and may change based on requirements. In the southern part of the country (south of the productive forest line), DTM and DSM datasets are generated from airborne LiDAR data. They are offered at a 1 m or 2 m resolution and projected to the UTM NAD83 (CSRS) coordinate system and the corresponding zones. The datasets at a 1 m resolution cover an area of 10 km x 10 km while datasets at a 2 m resolution cover an area of 20 km by 20 km. In the northern part of the country (north of the productive forest line), due to the low density of vegetation and infrastructure, only DSM datasets are generally generated. Most of these datasets have optical digital images as their source data. They are generated at a 2 m resolution using the Polar Stereographic North coordinate system referenced to WGS84 horizontal datum or UTM NAD83 (CSRS) coordinate system. Each dataset covers an area of 50 km by 50 km. For some locations in the north, DSM and DTM datasets can also be generated from airborne LiDAR data. In this case, these products will be generated with the same specifications as those generated from airborne LiDAR in the southern part of the country. The HRDEM product is referenced to the Canadian Geodetic Vertical Datum of 2013 (CGVD2013), which is now the reference standard for heights across Canada. Source data for HRDEM datasets is acquired through multiple projects with different partners. Since data is being acquired by project, there is no integration or edgematching done between projects. The tiles are aligned within each project. The product High Resolution Digital Elevation Model (HRDEM) is part of the CanElevation Series created in support to the National Elevation Data Strategy implemented by NRCan. Collaboration is a key factor to the success of the National Elevation Data Strategy. Refer to the “Supporting Document” section to access the list of the different partners including links to their respective data.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Overview:
The Copernicus DEM is a Digital Surface Model (DSM) which represents the surface of the Earth including buildings, infrastructure and vegetation. The original GLO-30 provides worldwide coverage at 30 meters (refers to 10 arc seconds). Note that ocean areas do not have tiles, there one can assume height values equal to zero. Data is provided as Cloud Optimized GeoTIFFs. Note that the vertical unit for measurement of elevation height is meters.
The Copernicus DEM for Europe at 1000 meter resolution (EU-LAEA projection) in COG format has been derived from the Copernicus DEM GLO-30, mirrored on Open Data on AWS, dataset managed by Sinergise (https://registry.opendata.aws/copernicus-dem/).
Processing steps:
The original Copernicus GLO-30 DEM contains a relevant percentage of tiles with non-square pixels. We created a mosaic map in VRT format and defined within the VRT file the rule to apply cubic resampling while reading the data, i.e. importing them into GRASS GIS for further processing. We chose cubic instead of bilinear resampling since the height-width ratio of non-square pixels is up to 1:5. Hence, artefacts between adjacent tiles in rugged terrain could be minimized:
gdalbuildvrt -input_file_list list_geotiffs_MOOD.csv -r cubic -tr 0.000277777777777778 0.000277777777777778 Copernicus_DSM_30m_MOOD.vrt
In order to reproject the data to EU-LAEA projection while reducing the spatial resolution to 1000 m, bilinear resampling was performed in GRASS GIS (using r.proj
and the pixel values were scaled with 1000 (storing the pixels as Integer values) for data volume reduction. In addition, a hillshade raster map was derived from the resampled elevation map (using r.relief
, GRASS GIS). Eventually, we exported the elevation and hillshade raster maps in Cloud Optimized GeoTIFF (COG) format, along with SLD and QML style files.
Projection + EPSG code:
ETRS89-extended / LAEA Europe (EPSG: 3035)
Spatial extent:
north: 6874000
south: -485000
west: 869000
east: 8712000
Spatial resolution:
1000 m
Pixel values:
meters * 1000 (scaled to Integer; example: value 23220 = 23.220 m a.s.l.)
Software used:
GDAL 3.2.2 and GRASS GIS 8.0.0 (r.proj; r.relief)
Original dataset license:
https://spacedata.copernicus.eu/documents/20126/0/CSCDA_ESA_Mission-specific+Annex.pdf
Processed by:
mundialis GmbH & Co. KG, Germany (https://www.mundialis.de/)
This dataset contains the Digital Elevation Model (DEM) for Africa from the Hydrologic Derivatives for Modeling and Analysis (HDMA) database. The DEM data were developed and distributed by processing units. There are 19 processing units for Africa. The distribution files have the number of the processing unit appended to the end of the zip file name (e.g. af_dem_3_2.zip contains the DEM data for unit 3-2). The HDMA database provides comprehensive and consistent global coverage of raster and vector topographically derived layers, including raster layers of digital elevation model (DEM) data, flow direction, flow accumulation, slope, and compound topographic index (CTI); and vector layers of streams and catchment boundaries. The coverage of the data is global (-180º, 180º, -90º, 90º) with the underlying DEM being a hybrid of three datasets: HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales), Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) and the Shuttle Radar Topography Mission (SRTM). For most of the globe south of 60º North, the raster resolution of the data is 3-arc-seconds, corresponding to the resolution of the SRTM. For the areas North of 60º, the resolution is 7.5-arc-seconds (the smallest resolution of the GMTED2010 dataset) except for Greenland, where the resolution is 30-arc-seconds. The streams and catchments are attributed with Pfafstetter codes, based on a hierarchical numbering system, that carry important topological information.
This is a 1 arc-second (approximately 30 m) resolution tiled collection of the 3D Elevation Program (3DEP) seamless data products . 3DEP data serve as the elevation layer of The National Map, and provide basic elevation information for Earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for global change research, hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. 3DEP data compose an elevation dataset that consists of seamless layers and a high resolution layer. Each of these layers consists of the best available raster elevation data of the conterminous United States, Alaska, Hawaii, territorial islands, Mexico and Canada. 3DEP data are updated continually as new data become available. Seamless 3DEP data are derived from diverse source data that are processed to a common coordinate system and unit of vertical measure. These data are distributed in geographic coordinates in units of decimal degrees, and in conformance with the North American Datum of 1983 (NAD 83). All elevation values are in meters and, over the conterminous United States, are referenced to the North American Vertical Datum of 1988 (NAVD 88). The vertical reference will vary in other areas. The elevations in these DEMs represent the topographic bare-earth surface. All 3DEP products are public domain.
This dataset includes data over Canada and Mexico as part of an international, interagency collaboration with the Mexico's National Institute of Statistics and Geography (INEGI) and the Natural Resources Canada (NRCAN) Centre for Topographic Information-Sherbrook, Ottawa. For more details on the data provenance of this dataset, visit here and here.
Click here for a broad overview of this dataset
The CGIAR-CSI GeoPortal is able to provide SRTM 90m Digital Elevation Data for the entire world. The SRTM digital elevation data, produced by NASA originally, is a major breakthrough in digital mapping of the world, and provides a major advance in the accessibility of high quality elevation data for large portions of the tropics and other areas of the developing world. The SRTM digital elevation data provided on this site has been processed to fill data voids, and to facilitate it's ease of use by a wide group of potential users. This data is provided in an effort to promote the use of geospatial science and applications for sustainable development and resource conservation in the developing world. Digital elevation models (DEM) for the entire globe, covering all of the countries of the world, are available for download on this site. The SRTM 90m DEM's have a resolution of 90m at the equator, and are provided in mosaiced 5 deg x 5 deg tiles for easy download and use. All are produced from a seamless dataset to allow easy mosaicing. These are available in both ArcInfo ASCII and GeoTiff format to facilitate their ease of use in a variety of image processing and GIS applications. Data can be downloaded using a browser or accessed directly from the ftp site.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset is a 10 m-resolution DEM in grid format covering the whole Italian territory. The DEM is encoded as “ESRI ASCII Raster” obtained by interpolating the original DEM in Triangular Irregular Network (TIN) format. The TIN version benefited from the systematic application of the DEST algorithm. The projection is UTM, the World Geodetic System 1984 (WGS 84). To provide the dataset as a single seamless DEM, the sole zone 32 N was selected, although about half of Italy belongs to zone 33 N. The database is arranged in 193 square tiles having 50 km side. Data e Risorse Questo dataset non ha dati ambiente terremoti vulcani
The Land Processes Distributed Active Archive Center (LP DAAC) is responsible for the archive and distribution of the NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Digital Elevation Model (DEM) version 1 (NASADEM_HGT) dataset, which provides global elevation data at 1 arc second spacing.
NASADEM data products were derived from original telemetry data from the Shuttle Radar Topography Mission (SRTM), a collaboration between NASA and the National Geospatial-Intelligence Agency (NGA), as well as participation from the German and Italian space agencies. SRTM's primary focus was to generate a near-global DEM of the Earth using radar interferometry. It was a primary component of the payload on space shuttle Endeavour during its STS-99 mission, which was launched on February 11, 2000, and flew for 11 days.
In addition to Terra Advanced Spaceborne Thermal and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) Version 2 data, NASADEM also relied on Ice, Cloud, and Land Elevation Satellite (ICESat) Geoscience Laser Altimeter System (GLAS) ground control points of its lidar shots to improve surface elevation measurements that led to improved geolocation accuracy. Other reprocessing improvements include the conversion to geoid reference and the use of GDEMs and Advanced Land Observing Satellite Panchromatic Remote-sensing instrument for Stereo Mapping (PRISM) AW3D30 DEM, and interpolation for void filling.
NASADEM are distributed in 1 degree latitude by 1 degree longitude tiles and consist of all land between 60° N and 56° S latitude. This accounts for about 80% of Earth's total landmass.
NASADEM_HGT data product layers include DEM, number of scenes (NUM), and an updated SRTM water body dataset (water mask). The NUM layer indicates the number of scenes that were processed for each pixel and the source of the data. A low-resolution browse image showing elevation is also available for each NASADEM_HGT granule.
The global 1 arc second NASADEM product is also available in NetCDF4 format as the NASADEM_NC dataset with the source of each elevation pixel in the corresponding NASADEM_NUMNC product.
ASTER is capable of collecting in-track stereo using nadir- and aft-looking near infrared cameras. Since 2001, these stereo pairs have been used to produce single-scene (60- x 60-kilomenter (km)) digital elevation models (DEM) having vertical (root-mean-squared-error) accuracies generally between 10- and 25-meters (m). The methodology used by Japan's Sensor Information Laboratory Corporation (SILC) to produce the ASTER GDEM involves automated processing of the entire ASTER Level-1A archive. Stereo-correlation is used to produce over one million individual scene-based ASTER DEMs, to which cloud masking is applied to remove cloudy pixels. All cloud-screened DEMS are stacked and residual bad values and outliers are removed. Selected data are averaged to create final pixel values, and residual anomalies are corrected before partitioning the data into 1 degree (°) x 1° tiles. The ASTER GDEM covers land surfaces between 83°N and 83°S and is comprised of 22,702 tiles. Tiles that contain at least 0.01% land area are included. The ASTER GDEM is distributed as Geographic Tagged Image File Format (GeoTIFF) files with geographic coordinates (latitude, longitude). The data are posted on a 1 arc-second (approximately 30–m at the equator) grid and referenced to the 1984 World Geodetic System (WGS84)/ 1996 Earth Gravitational Model (EGM96) geoid.