This map shows the average number of children born to a woman during her lifetime. Data from Population Reference Bureau's 2017 World Population Data Sheet. The world's total fertility rate reported in 2017 was 2.5 as a whole. Replacement-Level fertility is widely recognized as 2.0 children per woman, so as to "replace" each parent in the next generation. Countries depicted in pink have a total fertility rate below replacement level whereas countries depicted in teal have a total fertility rate above replacement level. In countries with very high child mortality rates, a replacement level of 2.1 could be used, since not every child will survive into their reproductive years. Determinants of Total Fertility Rate include: women's education levels and opportunities, marriage rates among women of childbearing age (generally defined as 15-49), contraceptive usage and method mix/effectiveness, infant & child mortality rates, share of population living in urban areas, the importance of children as part of the labor force (or cost/penalty to women's labor force options that having children poses), and religious and cultural norms, among many other factors. This map was made using the Global Population and Maternal Health Indicators layer.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
<ul style='margin-top:20px;'>
<li>World birth rate for 2024 was <strong>17.30</strong>, a <strong>5.9% increase</strong> from 2023.</li>
<li>World birth rate for 2023 was <strong>16.33</strong>, a <strong>1.34% decline</strong> from 2022.</li>
<li>World birth rate for 2022 was <strong>16.56</strong>, a <strong>1.7% decline</strong> from 2021.</li>
</ul>Crude birth rate indicates the number of live births occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.
In 2023, the Faroe Islands was the European country estimated to have the highest fertility rate. The small Atlantic island state had a fertility rate of 2.71 children per woman. Other small countries such as Monaco and Gibraltar also came towards the top of the list for 2023, while the large country with the highest fertility rate was France, with 1.79 children per woman. On the other hand, Andorra, San Marino, and Malta had the lowest fertility rates in Europe, with Ukraine, Spain, and Italy being the largest countries with low fertility rates in that year, averaging around 1.3 children per woman.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This area map of countries shows the average, weighted by population female, of fertility rate. The darker shades for each country indicate a higher average, weighted by population female, of fertility rate.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This area map of countries shows the average, weighted by population, of birth rate in Europe. The darker shades for each country indicate a higher average, weighted by population, of birth rate.
This map service, derived from World Bank data, shows
various characteristics of the Health topic. The World Bank Group provides financing, state-of-the-art analysis, and policy advice to help countries expand access to quality, affordable health care; protects people from falling into poverty or worsening poverty due to illness; and promotes investments in all sectors that form the foundation of healthy societies.Age Dependency Ratio: Age
dependency ratio is the ratio of dependents--people younger than 15 or
older than 64--to the working-age population--those ages 15-64. Data
are shown as the proportion of dependents per 100 working-age
population. Data from 1960 – 2012.Age Dependency Ratio Old: Age
dependency ratio, old, is the ratio of older dependents--people older
than 64--to the working-age population--those ages 15-64. Data are
shown as the proportion of dependents per 100 working-age population.
Data from 1960 – 2012.Birth/Death Rate: Crude birth/death rate
indicates the number of births/deaths occurring during the year, per
1,000 population estimated at midyear. Subtracting the crude death rate
from the crude birth rate provides the rate of natural increase, which
is equal to the rate of population change in the absence of migration. Data spans from 1960 – 2008.Total Fertility: Total
fertility rate represents the number of children that would be born to
a woman if she were to live to the end of her childbearing years and
bear children in accordance with current age-specific fertility rates. Data shown is for 1960 - 2008.Population Growth: Annual
population growth rate for year t is the exponential rate of growth of
midyear population from year t-1 to t, expressed as a percentage.
Population is based on the de facto definition of population, which
counts all residents regardless of legal status or citizenship--except
for refugees not permanently settled in the country of asylum, who are
generally considered part of the population of the country of origin. Data spans from 1960 – 2009.Life Expectancy: Life
expectancy at birth indicates the number of years a newborn infant
would live if prevailing patterns of mortality at the time of its birth
were to stay the same throughout its life. Data spans from 1960 – 2008.Population Female: Female population is the percentage of the population that is female. Population is based on the de facto definition of population. Data from 1960 – 2009.For more information, please visit: World Bank Open Data. _Other International User Community content that may interest you World Bank World Bank Age World Bank Health
Students will explore the patterns of world population in terms of total population, arithmetic density, total fertility rate, natural increase rate, and infant mortality rate. The activity uses a web-based map.Learning outcomes:Students will be able to identify and explain the spatial patterns and distribution of world population based on total population, density, total fertility rate, natural increase rate, and infant mortality rate.Other New Zealand GeoInquiry instructional material freely available at https://arcg.is/1GPDXe
In 2023, the Italian region which registered the highest fertility rate was Trentino-South Tyrol, where the average number of children born per female reached 1.42 infants. Over the last years, the fertility rate in Italy has constantly decreased, except for 2021 when a slight increase by 0.01 points was recorded. Fewer and fewer children born per womanThe average number of children born per female significantly varied from the middle of the twentieth century to present days. In 2017, Italian women were on average a mother of one child, whereas about seven decades earlier, females had on average at least two kids. The lowest fertility rates worldwide From the global perspective, Italy was one of the world's twenty countries with the lowest fertility rate in 2023. This figure in Taiwan reached only 1.07 children per woman, placing the country on top of the ranking.
(by Joseph Kerski)This map is for use in the "What is the spatial pattern of demographic variables around the world?" activity in Section 1 of the Going Places with Spatial Analysiscourse. The map contains population characteristics by country for 2013.These data come from the Population Reference Bureau's 2014 World Population Data Sheet.The Population Reference Bureau (PRB) informs people around the world about population, health, and the environment, empowering them to use that information to advance the well-being of current and future generations.PRB analyzes complex demographic data and research to provide the most objective, accurate, and up-to-date population information in a format that is easily understood by advocates, journalists, and decision makers alike.The 2014 year's data sheet has detailed information on 16 population, health, and environment indicators for more than 200 countries. For infant mortality, total fertility rate, and life expectancy, we have included data from 1970 and 2013 to show change over time. This year's special data column is on carbon emissions.For more information about how PRB compiles its data, see: https://www.prb.org/
The fertility rate of a country is the average number of children that women from that country will have throughout their reproductive years. In the United States in 1800, the average woman of childbearing age would have seven children over the course of their lifetime. As factors such as technology, hygiene, medicine and education improved, women were having fewer children than before, reaching just two children per woman in 1940. This changed quite dramatically in the aftermath of the Second World War, rising sharply to over 3.5 children per woman in 1960 (children born between 1946 and 1964 are nowadays known as the 'Baby Boomer' generation, and they make up roughly twenty percent of todays US population). Due to the end of the baby boom and increased access to contraception, fertility reached it's lowest point in the US in 1980, where it was just 1.77. It did however rise to over two children per woman between 1995 and 2010, although it is expected to drop again by 2020, to just 1.78.
This map service, derived from World Bank data, shows
various characteristics of the Health topic. The World Bank Group provides financing, state-of-the-art analysis, and policy advice to help countries expand access to quality, affordable health care; protects people from falling into poverty or worsening poverty due to illness; and promotes investments in all sectors that form the foundation of healthy societies.Age Dependency Ratio: Age
dependency ratio is the ratio of dependents--people younger than 15 or
older than 64--to the working-age population--those ages 15-64. Data
are shown as the proportion of dependents per 100 working-age
population. Data from 1960 – 2012.Age Dependency Ratio Old: Age
dependency ratio, old, is the ratio of older dependents--people older
than 64--to the working-age population--those ages 15-64. Data are
shown as the proportion of dependents per 100 working-age population.
Data from 1960 – 2012.Birth/Death Rate: Crude birth/death rate
indicates the number of births/deaths occurring during the year, per
1,000 population estimated at midyear. Subtracting the crude death rate
from the crude birth rate provides the rate of natural increase, which
is equal to the rate of population change in the absence of migration. Data spans from 1960 – 2008.Total Fertility: Total
fertility rate represents the number of children that would be born to
a woman if she were to live to the end of her childbearing years and
bear children in accordance with current age-specific fertility rates. Data shown is for 1960 - 2008.Population Growth: Annual
population growth rate for year t is the exponential rate of growth of
midyear population from year t-1 to t, expressed as a percentage.
Population is based on the de facto definition of population, which
counts all residents regardless of legal status or citizenship--except
for refugees not permanently settled in the country of asylum, who are
generally considered part of the population of the country of origin. Data spans from 1960 – 2009.Life Expectancy: Life
expectancy at birth indicates the number of years a newborn infant
would live if prevailing patterns of mortality at the time of its birth
were to stay the same throughout its life. Data spans from 1960 – 2008.Population Female: Female population is the percentage of the population that is female. Population is based on the de facto definition of population. Data from 1960 – 2009.For more information, please visit: World Bank Open Data. _Other International User Community content that may interest you World Bank World Bank Age World Bank Health
Soil fertility index for Africa derived from the FAO/UNESCO Digital Soil Map of the World interpreted in terms of soil fertility.
The health and survival of women and their new-born babies in low income countries is a key public health priority, but basic and consistent subnational data on the number of live births to support decision making has been lacking. WorldPop integrates small area data on the distribution of women of childbearing age and age-specific fertility rates to map the estimated distributions of births for each 1x1km grid square across all low and middle income countries. Further details on the methods can be found in Tatem et al. and James et al..
Data for earlier dates is available directly from WorldPop.
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton). 2018. Japan 1km Births. Version 1.0 2015 estimates of numbers of live births per grid square, with national totals adjusted to match UN national estimates on numbers of live births (http://esa.un.org/wpp/). DOI: 10.5258/SOTON/WP00559
Series Name: Adolescent birth rate (per 1 000 women aged 15-19 years)Series Code: SP_DYN_ADKLRelease Version: 2020.Q2.G.03This dataset is the part of the Global SDG Indicator Database compiled through the UN System in preparation for the Secretary-General's annual report on Progress towards the Sustainable Development Goals.Indicator 3.7.2: Adolescent birth rate (aged 10–14 years; aged 15–19 years) per 1,000 women in that age groupTarget 3.7: By 2030, ensure universal access to sexual and reproductive health-care services, including for family planning, information and education, and the integration of reproductive health into national strategies and programmesGoal 3: Ensure healthy lives and promote well-being for all at all agesFor more information on the compilation methodology of this dataset, see https://unstats.un.org/sdgs/metadata/
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Infertility affects one in every six couples worldwide. Randomized controlled trials are the best way to identify safe and effective treatments, but it is unclear how many of the trials are useful and designed with high quality.
My PhD aims to describe the landscape of infertility trials and map out the methodological issues of these trials. Uncovering the strengths and limitations of the trials will help us pinpoint the research priority and optimize the design of future research.
In 2023, Murcia ranked as the Spanish region with the highest fertility rate in Spain, with an average of roughly 1.36 children per woman. That year, Melilla ranked first as the region with the highest birth rate, with an average of 8.99 newborns every 1,000 inhabitants.
Map was updated in 2022 with (2013- 2017) five year birth rates for eight different indicators. Adolescent Fertility (Teen Birth) Rates and Trends, as well as Births By Attendant and Mother's Education. Also depicts population birth rates and percent first born births for the years 1998 through 2013.Comparing the years 2000-04 to the years 2005-09, adolescent fertility rates in NM trended down by 5.3% for women age 15-17 and up by 2.5% for women age 18-19. Comparing the years 2000-04 to the years 2009-13, adolescent fertility rates in NM trended down by 40.6% for women age 15-17 and down by 18.6% for women age 18-19.5 year counts and percentages of births by type of birth attendant for 108 NM Small Areas. In New Mexico (2005-2009) 68% of births were attended by a physician, 27% by a Certified Nurse Midwife, and 2.3% by a Licensed Midwife. "Sixty-eight percent of births are attended by a midwife in Britain and 45 percent in the Netherlands, compared with 8 percent in the United States." - https://www.nytimes.com/2013/07/01/health/american-way-of-birth-costliest-in-the-world.htmlSource:Birth Data - NM Department of Health, Vital Records and Health Statistics Bureau, via https://ibis.health.state.nm.us/query/result/birth/BirthPopSarea/FertRate.html
The health and survival of women and their new-born babies in low income countries is a key public health priority, but basic and consistent subnational data on the number of live births to support decision making has been lacking. WorldPop integrates small area data on the distribution of women of childbearing age and age-specific fertility rates to map the estimated distributions of births for each 1x1km grid square across all low and middle income countries. Further details on the methods can be found in Tatem et al. and James et al..
Data for earlier dates is available directly from WorldPop.
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton). 2017. Djibouti 1km births. Version 2.0 2015 estimates of numbers of live births per grid square, with national totals adjusted to match UN national estimates on numbers of live births (http://esa.un.org/wpp/). DOI: 10.5258/SOTON/WP00391
The health and survival of women and their new-born babies in low income countries is a key public health priority, but basic and consistent subnational data on the number of live births to support decision making has been lacking. WorldPop integrates small area data on the distribution of women of childbearing age and age-specific fertility rates to map the estimated distributions of births for each 1x1km grid square across all low and middle income countries. Further details on the methods can be found in Tatem et al. and James et al..
Data for earlier dates is available directly from WorldPop.
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton). 2018. Kyrgyzstan 1km Births. Version 2.0 2015 estimates of numbers of live births per grid square, with national totals adjusted to match UN national estimates on numbers of live births (http://esa.un.org/wpp/). DOI: 10.5258/SOTON/WP00563
The 2016 Ethiopia Demographic and Health Survey (EDHS) is the fourth Demographic and Health Survey conducted in Ethiopia. It was implemented by the Central Statistical Agency (CSA) at the request of the Federal Ministry of Health (FMoH). The primary objective of the 2016 EDHS is to provide up-to-date estimates of key demographic and health indicators. The EDHS provides a comprehensive overview of population, maternal, and child health issues in Ethiopia. More specifically, the 2016 EDHS: - Collected data at the national level that allowed calculation of key demographic indicators, particularly fertility and under-5 and adult mortality rates - Explored the direct and indirect factors that determine levels and trends of fertility and child mortality ? Measured levels of contraceptive knowledge and practice - Collected data on key aspects of family health, including immunisation coverage among children, prevalence and treatment of diarrhoea and other diseases among children under age 5, and maternity care indicators such as antenatal visits and assistance at delivery - Obtained data on child feeding practices, including breastfeeding - Collected anthropometric measures to assess the nutritional status of children under age 5, women age 15-49, and men age 15-59 - Conducted haemoglobin testing on eligible children age 6-59 months, women age 15-49, and men age 15-59 to provide information on the prevalence of anaemia in these groups - Collected data on knowledge and attitudes of women and men about sexually transmitted diseases and HIV/AIDS and evaluated potential exposure to the risk of HIV infection by exploring high-risk behaviours and condom use - Conducted HIV testing of dried blood spot (DBS) samples collected from women age 15-49 and men age 15-59 to provide information on the prevalence of HIV among adults of reproductive age - Collected data on the prevalence of injuries and accidents among all household members - Collected data on knowledge and prevalence of fistula and female genital mutilation or cutting (FGM/C) among women age 15-49 and their daughters age 0-14 - Obtained data on women’s experience of emotional, physical, and sexual violence.
National
The survey covered all de jure household members (usual residents), women age 15-49 years and men age 15-59 years resident in the household.
Sample survey data [ssd]
The sampling frame used for the 2016 EDHS is the Ethiopia Population and Housing Census (PHC), which was conducted in 2007 by the Ethiopia Central Statistical Agency. The census frame is a complete list of 84,915 enumeration areas (EAs) created for the 2007 PHC. An EA is a geographic area covering on average 181 households. The sampling frame contains information about the EA location, type of residence (urban or rural), and estimated number of residential households. With the exception of EAs in six zones of the Somali region, each EA has accompanying cartographic materials. These materials delineate geographic locations, boundaries, main access, and landmarks in or outside the EA that help identify the EA. In Somali, a cartographic frame was used in three zones where sketch maps delineating the EA geographic boundaries were available for each EA; in the remaining six zones, satellite image maps were used to provide a map for each EA.
Administratively, Ethiopia is divided into nine geographical regions and two administrative cities. The sample for the 2016 EDHS was designed to provide estimates of key indicators for the country as a whole, for urban and rural areas separately, and for each of the nine regions and the two administrative cities.
The 2016 EDHS sample was stratified and selected in two stages. Each region was stratified into urban and rural areas, yielding 21 sampling strata. Samples of EAs were selected independently in each stratum in two stages. Implicit stratification and proportional allocation were achieved at each of the lower administrative levels by sorting the sampling frame within each sampling stratum before sample selection, according to administrative units in different levels, and by using a probability proportional to size selection at the first stage of sampling.
For further details on sample design, see Appendix A of the final report.
Face-to-face [f2f]
Five questionnaires were used for the 2016 EDHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, the Biomarker Questionnaire, and the Health Facility Questionnaire. These questionnaires, based on the DHS Program’s standard Demographic and Health Survey questionnaires, were adapted to reflect the population and health issues relevant to Ethiopia. Input was solicited from various stakeholders representing government ministries and agencies, nongovernmental organisations, and international donors. After all questionnaires were finalised in English, they were translated into Amarigna, Tigrigna, and Oromiffa.
All electronic data files for the 2016 EDHS were transferred via IFSS to the CSA central office in Addis Ababa, where they were stored on a password-protected computer. The data processing operation included secondary editing, which required resolution of computer-identified inconsistencies and coding of openended questions; it also required generating a file for the list of children for whom a vaccination card was not seen by the interviewers and whose vaccination records had to be checked at health facilities. The data were processed by two individuals who took part in the main fieldwork training; they were supervised by two senior staff from CSA. Data editing was accomplished using CSPro software. During the duration of fieldwork, tables were generated to check various data quality parameters and specific feedback was given to the teams to improve performance. Secondary editing and data processing were initiated in January 2016 and completed in August 2016.
A total of 18,008 households were selected for the sample, of which 17,067 were occupied. Of the occupied households, 16,650 were successfully interviewed, yielding a response rate of 98%.
In the interviewed households, 16,583 eligible women were identified for individual interviews. Interviews were completed with 15,683 women, yielding a response rate of 95%. A total of 14,795 eligible men were identified in the sampled households and 12,688 were successfully interviewed, yielding a response rate of 86%. Although overall there was little variation in response rates according to residence, response rates among men were higher in rural than in urban areas.
The estimates from a sample survey are affected by two types of errors: non-sampling errors and sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding the questions by either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2016 Ethiopia DHS (EDHS) to minimise this type of error, non-sampling errors are impossible to avoid and are difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2016 EDHS is only one of many samples that could have been selected from the same population, by using the same design and the expected size. Each of those samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
Sampling error is usually measured in terms of the standard error for a particular statistic (such as mean or percentage), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2016 EDHS sample is the result of a multi-stage stratified design and, consequently, it was necessary to use more complex formulae. Sampling errors are computed in either ISSA or SAS, with programs developed by ICF International. These programs use the Taylor linearisation method of variance estimation for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
A more detailed description of estimates of sampling errors are presented in Appendix B of the survey final report.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar
This map shows the average number of children born to a woman during her lifetime. Data from Population Reference Bureau's 2017 World Population Data Sheet. The world's total fertility rate reported in 2017 was 2.5 as a whole. Replacement-Level fertility is widely recognized as 2.0 children per woman, so as to "replace" each parent in the next generation. Countries depicted in pink have a total fertility rate below replacement level whereas countries depicted in teal have a total fertility rate above replacement level. In countries with very high child mortality rates, a replacement level of 2.1 could be used, since not every child will survive into their reproductive years. Determinants of Total Fertility Rate include: women's education levels and opportunities, marriage rates among women of childbearing age (generally defined as 15-49), contraceptive usage and method mix/effectiveness, infant & child mortality rates, share of population living in urban areas, the importance of children as part of the labor force (or cost/penalty to women's labor force options that having children poses), and religious and cultural norms, among many other factors. This map was made using the Global Population and Maternal Health Indicators layer.