100+ datasets found
  1. Countries with largest stock markets globally 2025

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries with largest stock markets globally 2025 [Dataset]. https://www.statista.com/statistics/710680/global-stock-markets-by-country/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2025
    Area covered
    Worldwide
    Description

    In 2025, stock markets in the United States accounted for roughly ** percent of world stocks. The next largest country by stock market share was China, followed by the European Union as a whole. The New York Stock Exchange (NYSE) and the NASDAQ are the largest stock exchange operators worldwide. What is a stock exchange? The first modern publicly traded company was the Dutch East Industry Company, which sold shares to the general public to fund expeditions to Asia. Since then, groups of companies have formed exchanges in which brokers and dealers can come together and make transactions in one space. Stock market indices group companies trading on a given exchange, giving an idea of how they evolve in real time. Appeal of stock ownership Over half of adults in the United States are investing money in the stock market. Stocks are an attractive investment because the possible return is higher than offered by other financial instruments.

  2. G

    Stock market capitalization, in dollars by country, around the world |...

    • theglobaleconomy.com
    csv, excel, xml
    Updated Apr 24, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2015). Stock market capitalization, in dollars by country, around the world | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/stock_market_capitalization_dollars/
    Explore at:
    xml, excel, csvAvailable download formats
    Dataset updated
    Apr 24, 2015
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1975 - Dec 31, 2024
    Area covered
    World
    Description

    The average for 2022 based on 75 countries was 1225.97 billion U.S. dollars. The highest value was in the USA: 40297.98 billion U.S. dollars and the lowest value was in Bermuda: 0.21 billion U.S. dollars. The indicator is available from 1975 to 2024. Below is a chart for all countries where data are available.

  3. Stock Market Dataset

    • kaggle.com
    zip
    Updated Jan 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ziya (2025). Stock Market Dataset [Dataset]. https://www.kaggle.com/datasets/ziya07/stock-market-dataset
    Explore at:
    zip(1075471 bytes)Available download formats
    Dataset updated
    Jan 25, 2025
    Authors
    Ziya
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    The "Stock Market Dataset for AI-Driven Prediction and Trading Strategy Optimization" is designed to simulate real-world stock market data for training and evaluating machine learning models. This dataset includes a combination of technical indicators, market metrics, sentiment scores, and macroeconomic factors, providing a comprehensive foundation for developing and testing AI models for stock price prediction and trading strategy optimization.

    Key Features Market Metrics:

    Open, High, Low, Close Prices: Daily stock price movement. Volume: Represents the trading activity during the day. Technical Indicators:

    RSI (Relative Strength Index): A momentum oscillator to measure the speed and change of price movements. MACD (Moving Average Convergence Divergence): An indicator to reveal changes in strength, direction, momentum, and duration of a trend. Bollinger Bands: Upper and lower bands around a stock price to measure volatility. Sentiment Analysis:

    Sentiment Score: Simulated sentiment derived from financial news and social media, ranging from -1 (negative) to 1 (positive). Macroeconomic Factors:

    GDP Growth: Indicates the overall health and growth of the economy. Inflation Rate: Reflects changes in purchasing power and economic stability. Target Variable:

    Buy/Sell Signal: Binary classification (1 = Buy, 0 = Sell) based on price movement thresholds, simulating actionable trading decisions. Use Cases AI Model Training: Ideal for building stock prediction models using LSTM, Gradient Boosting, Random Forest, etc. Trading Strategy Optimization: Enables testing of trading algorithms and strategies in a simulated environment. Sentiment Analysis Research: Useful for understanding how sentiment influences stock movements. Feature Engineering and Selection: Provides a diverse set of features for experimentation with advanced techniques like PCA and LDA. Dataset Highlights Synthetic Yet Realistic: Carefully designed to mimic real-world financial data trends and relationships. Comprehensive Coverage: Includes key indicators and metrics used by traders and analysts. Scalable: Suitable for use in both small-scale academic projects and larger AI-driven trading platforms. Accessible for All Levels: The intuitive structure ensures that even beginners can utilize this dataset for financial machine learning applications. File Format The dataset is provided in CSV format, where:

    Rows represent individual trading days. Columns represent features (technical indicators, market metrics, etc.) and the target variable. Acknowledgments This dataset is synthetically generated and is intended for research and educational purposes. It is not based on real market data and should not be used for actual trading.

  4. Dataset for Stock Market Index of 7 Economies

    • kaggle.com
    zip
    Updated Jul 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Saad Aziz (2023). Dataset for Stock Market Index of 7 Economies [Dataset]. https://www.kaggle.com/datasets/saadaziz1985/dataset-for-stock-market-index-of-7-countries
    Explore at:
    zip(1917326 bytes)Available download formats
    Dataset updated
    Jul 4, 2023
    Authors
    Saad Aziz
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context:

    The provided dataset is extracted from yahoo finance using pandas and yahoo finance library in python. This deals with stock market index of the world best economies. The code generated data from Jan 01, 2003 to Jun 30, 2023 that’s more than 20 years. There are 18 CSV files, dataset is generated for 16 different stock market indices comprising of 7 different countries. Below is the list of countries along with number of indices extracted through yahoo finance library, while two CSV files deals with annualized return and compound annual growth rate (CAGR) has been computed from the extracted data.

    Number of Countries & Index:

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F15657145%2F90ce8a986761636e3edbb49464b304d8%2FNumber%20of%20Index.JPG?generation=1688490342207096&alt=media" alt="">

    Content:

    Unit of analysis: Stock Market Index Analysis

    This dataset is useful for research purposes, particularly for conducting comparative analyses involving capital market performance and could be used along with other economic indicators.

    There are 18 distinct CSV files associated with this dataset. First 16 CSV files deals with number of indices and last two CSV file deals with annualized return of each year and CAGR of each index. If data in any column is blank, it portrays that index was launch in later years, for instance: Bse500 (India), this index launch in 2007, so earlier values are blank, similarly China_Top300 index launch in year 2021 so early fields are blank too.

    The extraction process involves applying different criteria, like in 16 CSV files all columns are included, Adj Close is used to calculate annualized return. The algorithm extracts data based on index name (code given by the yahoo finance) according start and end date.

    Annualized return and CAGR has been calculated and illustrated in below image along with machine readable file (CSV) attached to that.

    To extract the data provided in the attachment, various criteria were applied:

    1. Content Filtering: The data was filtered based on several attributes, including the index name, start and end date. This filtering process ensured that only relevant data meeting the specified criteria.

    2. Collaborative Filtering: Another filtering technique used was collaborative filtering using yahoo finance, which relies on index similarity. This approach involves finding indices that are similar to other index or extended dataset scope to other countries or economies. By leveraging this method, the algorithm identifies and extracts data based on similarities between indices.

    In the last two CSV files, one belongs to annualized return, that was calculated based on the Adj close column and new DataFrame created to store its outcome. Below is the image of annualized returns of all index (if unreadable, machine-readable or CSV format is attached with the dataset).

    Annualized Return:

    As far as annualised rate of return is concerned, most of the time India stock market indices leading, followed by USA, Canada and Japan stock market indices.

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F15657145%2F37645bd90623ea79f3708a958013c098%2FAnnualized%20Return.JPG?generation=1688525901452892&alt=media" alt="">

    Compound Annual Growth Rate (CAGR):

    The best performing index based on compound growth is Sensex (India) that comprises of top 30 companies is 15.60%, followed by Nifty500 (India) that is 11.34% and Nasdaq (USA) all is 10.60%.

    The worst performing index is China top300, however this is launch in 2021 (post pandemic), so would not possible to examine at that stage (due to less data availability). Furthermore, UK and Russia indices are also top 5 in the worst order.

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F15657145%2F58ae33f60a8800749f802b46ec1e07e7%2FCAGR.JPG?generation=1688490409606631&alt=media" alt="">

    Geography: Stock Market Index of the World Top Economies

    Time period: Jan 01, 2003 – June 30, 2023

    Variables: Stock Market Index Title, Open, High, Low, Close, Adj Close, Volume, Year, Month, Day, Yearly_Return and CAGR

    File Type: CSV file

    Inspiration:

    • Time series prediction model
    • Investment opportunities in world best economies
    • Comparative Analysis of past data with other stock market indices or other indices

    Disclaimer:

    This is not a financial advice; due diligence is required in each investment decision.

  5. Global Stock Indices Historical Data

    • kaggle.com
    zip
    Updated Jun 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Guillem SD (2024). Global Stock Indices Historical Data [Dataset]. https://www.kaggle.com/datasets/guillemservera/global-stock-indices-historical-data
    Explore at:
    zip(10503247 bytes)Available download formats
    Dataset updated
    Jun 25, 2024
    Authors
    Guillem SD
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    About:

    This dataset encompasses the historical data of major stock indices from around the world, sourced directly from Yahoo Finance. With data reaching back to the early 1920s (where available), it serves as an invaluable repository for academic researchers, financial analysts, and market enthusiasts. Users can delve into trends across decades, evaluate historical market behaviors, or even design and validate predictive financial models.

    Photo by Tötös Ádám on Unsplash

    Info on CSVs:

    1. all_indices_data.csv:

      • Description: A consolidated dataset merging all the stock indices from Yahoo Finance.
      • Columns:
        • date: The date of the data point (formatted as YYYY-MM-DD).
        • open: The opening value of the index on that date.
        • high: The highest value of the index during the trading session.
        • low: The lowest value of the index during the trading session.
        • close: The closing value of the index.
        • volume: The trading volume of the index on that date.
        • ticker: The ticker symbol of the stock index.
    2. individual_indices_data/[SYMBOL]_data.csv:

      • Description: Individual datasets for each stock index, where [SYMBOL] denotes the ticker symbol of the respective stock index. Each dataset is curated from Yahoo Finance's historical data archives.
      • Columns:
        • date: The date of the data point (formatted as YYYY-MM-DD).
        • open: The opening value of the index on that date.
        • high: The highest value of the index during the trading session.
        • low: The lowest value of the index during the trading session.
        • close: The closing value of the index.
        • volume: The trading volume of the index on that date.
  6. Leading global sovereign wealth funds 2022, by assets under management

    • statista.com
    Updated Oct 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Leading global sovereign wealth funds 2022, by assets under management [Dataset]. https://www.statista.com/study/12442/financial-markets/
    Explore at:
    Dataset updated
    Oct 1, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Description

    The world’s largest sovereign wealth fund (SWF) as of December 2022 was China Investment Corporation (CIC), managing assets reaching around 1.35 trillion U.S. dollars. The CIC is used to manage a portion of China's foreign currency reserves and established in 2007.

    What are sovereign wealth funds?

    Sovereign wealth funds are state-owned and are comprised of a wide array of financial assets including stocks, bonds, real estate, precious metals, and other financial instruments. In the main, sovereign wealth funds are funded by foreign-exchange reserves, assets which are held by monetary authorities or central banks in the form of U.S. dollars and other leading world currencies as a way of backing liabilities.

    Who holds the SWF? A state’s central bank will generally hold the sovereign wealth fund; in the process of its management of a nations funds or banking system funds will be accumulated. These types of state fund are of major economic and fiscal importance, and may be implemented for different objectives: protect the economy against sudden shocks, hedge against the problem of an aging population, or to foster socio-economic development.

  7. Largest stock exchange operators worldwide 2025, by market capitalization

    • statista.com
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Largest stock exchange operators worldwide 2025, by market capitalization [Dataset]. https://www.statista.com/statistics/270126/largest-stock-exchange-operators-by-market-capitalization-of-listed-companies/
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Nov 2025
    Area covered
    Worldwide
    Description

    The New York Stock Exchange (NYSE) is the largest stock exchange in the world, with an equity market capitalization of almost ** trillion U.S. dollars as of November 2025. The following largest three exchanges were the NASDAQ, PINK Exchange, and the Frankfurt Exchange. What is a stock exchange? A stock exchange is a marketplace where stockbrokers, traders, buyers, and sellers can trade in equities products. The largest exchanges have thousands of listed companies. These companies sell shares of their business, giving the general public the opportunity to invest in them. The oldest stock exchange worldwide is the Frankfurt Stock Exchange, founded in the late sixteenth century. Other functions of a stock exchange Since these are publicly traded companies, every firm listed on a stock exchange has had an initial public offering (IPO). The largest IPOs can raise billions of dollars in equity for the firm involved. Related to stock exchanges are derivatives exchanges, where stock options, futures contracts, and other derivatives can be traded.

  8. F

    Stock Market Capitalization to GDP for World (DISCONTINUED)

    • fred.stlouisfed.org
    json
    Updated Aug 30, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Stock Market Capitalization to GDP for World (DISCONTINUED) [Dataset]. https://fred.stlouisfed.org/series/DDDM011WA156NWDB
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Aug 30, 2017
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Stock Market Capitalization to GDP for World (DISCONTINUED) (DDDM011WA156NWDB) from 1975 to 2015 about market cap, stock market, capital, and GDP.

  9. G

    Financial markets development, depth by country, around the world |...

    • theglobaleconomy.com
    csv, excel, xml
    Updated Apr 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2024). Financial markets development, depth by country, around the world | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/financial_markets_development_depth/
    Explore at:
    excel, xml, csvAvailable download formats
    Dataset updated
    Apr 24, 2024
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1980 - Dec 31, 2021
    Area covered
    World
    Description

    The average for 2021 based on 157 countries was 0.255 index points. The highest value was in Canada: 0.999 index points and the lowest value was in Democratic Republic of the Congo: 0 index points. The indicator is available from 1980 to 2021. Below is a chart for all countries where data are available.

  10. d

    Global Stock, ETF, and Index data

    • datarade.ai
    .json, .csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Twelve Data, Global Stock, ETF, and Index data [Dataset]. https://datarade.ai/data-products/twelve-data-world-stock-forex-crypto-data-via-api-and-webs-twelve-data
    Explore at:
    .json, .csvAvailable download formats
    Dataset authored and provided by
    Twelve Data
    Area covered
    Iran (Islamic Republic of), Costa Rica, Burundi, Afghanistan, Belarus, Christmas Island, Micronesia (Federated States of), Egypt, Mozambique, United States Minor Outlying Islands
    Description

    Twelve Data is a technology-driven company that provides financial market data, financial tools, and dedicated solutions. Large audiences - from individuals to financial institutions - use our products to stay ahead of the competition and success.

    At Twelve Data we feel responsible for where the markets are going and how people are able to explore them. Coming from different technological backgrounds, we see how the world is lacking the unique and simple place where financial data can be accessed by anyone, at any time. This is what distinguishes us from others, we do not only supply the financial data but instead, we want you to benefit from it, by using the convenient format, tools, and special solutions.

    We believe that the human factor is still a very important aspect of our work and therefore our ethics guides us on how to treat people, with convenient and understandable resources. This includes world-class documentation, human support, and dedicated solutions.

  11. Financial Market Forecasting Dataset

    • kaggle.com
    zip
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ziya (2025). Financial Market Forecasting Dataset [Dataset]. https://www.kaggle.com/datasets/ziya07/financial-market-forecasting-dataset
    Explore at:
    zip(41874 bytes)Available download formats
    Dataset updated
    Jun 25, 2025
    Authors
    Ziya
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset is designed to support research and model development in financial market forecasting. It consists of daily stock market data for multiple companies, enriched with macroeconomic indicators and simulated market stress events to reflect real-world volatility.

    Key features include:

    Stock price details (Open, High, Low, Close) and Trading Volume

    Macroeconomic indicators such as GDP growth rate, inflation rate, interest rate, and unemployment rate

    A Market Stress Level (normalized between 0 and 1) indicating systemic volatility

    A binary Event Flag to simulate major financial shocks or critical economic events

    Data spans across multiple tickers (e.g., AAPL, GOOGL, TSLA) for 500+ trading days

  12. Equity market capitalization worldwide 2013-2024

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Equity market capitalization worldwide 2013-2024 [Dataset]. https://www.statista.com/statistics/274490/global-value-of-share-holdings-since-2000/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    The value of global domestic equity market increased from ***** trillion U.S. dollars in 2013 to ****** trillion U.S. dollars in 2024. The United States was by far the leading country with the largest share of total world stocks as of 2024. Global market capitalization in different regions The market capitalization of domestic companies listed varied across different regions of the world. As of Decmber 2024, the Americas region had the largest domestic equity market, totaling ** trillion U.S. dollars. This region is home to the NYSE and Nasdaq, which are the two largest stock exchange operators in the world. The market capitalization of these two exchanges alone exceeded ** billion U.S. dollars as of January 2025, larger than the total market capitalization in the Asia-Pacific, and in the EMEA regions in the same period. Largest Stock Exchanges in Latin America As of December 2024, the B3 (Brasil Bolsa Balcao) was the biggest stock exchange in Latin America in terms of market capitalization and the second-largest in terms of number of listed companies. Following the B3 were the Mexican Stock Exchange and the Santiago Stock Exchange in Chile. The most valuable company in Latin America is listed on the Mexican Stock Exchange: Fomento Económico Mexicano, a multinational beverage and retail company headquartered in Monterrey, had a market cap of *** billion U.S. dollars as of March 2025.

  13. Domestic equity market capitalization worldwide 2013-2024, by region

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Domestic equity market capitalization worldwide 2013-2024, by region [Dataset]. https://www.statista.com/statistics/376681/global-equity-market-capitalization-by-region/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Global equity markets have seen significant growth and regional shifts over the past decade. The ******** region has solidified its position as the dominant player, with its domestic equity market value surging from **** trillion U.S. dollars in 2013 to an impressive ***** trillion U.S. dollars by 2024. U.S. dominance in global stock markets The United States continues to be the powerhouse of global equity markets, accounting for approximately ** percent of world stocks in 2024. This dominance is driven by the New York Stock Exchange (NYSE) and NASDAQ, which are the two largest stock exchange operators worldwide. The NYSE alone boasts an equity market capitalization exceeding ** trillion U.S. dollars as of December 2024, making it the largest stock exchange globally, which underscores the country's central role in global finance and investment. Regional market dynamics and emerging players While the Americas region leads in market capitalization, other regions are also experiencing growth and evolution. The Asia-Pacific region has seen its market value increase from ***** trillion U.S. dollars in 2013 to ***** trillion U.S. dollars in 2024, reflecting the rising economic influence of countries in this area. Notably, the Teheran Exchange has emerged as a significant player in the derivatives market, ranking ***** globally in single stock options contracts traded in 2024, which highlights the increasing sophistication and diversity of global financial markets beyond traditional powerhouses.

  14. F

    Stock Market Turnover Ratio (Value Traded/Capitalization) for Finland

    • fred.stlouisfed.org
    json
    Updated Aug 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Stock Market Turnover Ratio (Value Traded/Capitalization) for Finland [Dataset]. https://fred.stlouisfed.org/series/DDEM01FIA156NWDB
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Aug 4, 2022
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Stock Market Turnover Ratio (Value Traded/Capitalization) for Finland (DDEM01FIA156NWDB) from 1982 to 2004 about Finland, ratio, and stock market.

  15. Human Labeled OHLCV Stock Market Data

    • kaggle.com
    zip
    Updated Mar 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Barathan Aslan (2025). Human Labeled OHLCV Stock Market Data [Dataset]. https://www.kaggle.com/datasets/barathanaslan/human-labeled-synthetic-stock-market-data
    Explore at:
    zip(9914465 bytes)Available download formats
    Dataset updated
    Mar 26, 2025
    Authors
    Barathan Aslan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Context

    This dataset provides synthetically generated financial time series data, presented as OHLCV (Open-High-Low-Close-Volume) candlestick charts. A key feature of this dataset is the inclusion of technical analysis annotations (labels) meticulously created by a human analyst for each chart.

    The primary goal is to offer a resource for training and evaluating machine learning models focused on automated technical analysis and chart pattern recognition. By providing synthetic data with high-quality human labels, this dataset aims to facilitate research and development in areas like algorithmic trading and financial visualization analysis.

    This is an evolving dataset. It represents the initial phase of a larger labeling effort, and future updates are planned to incorporate a greater number and variety of labeled chart patterns.

    Content

    The dataset is provided entirely as a collection of JSON files. Each file represents a single 300-candle chart window and contains:

    1. metadata: Contains basic information related to the generation of the file (e.g., generation timestamp, version).
    2. ohlcv_data: A sequence of 300 data points. Each point is a dictionary representing one time candle and includes:
      • time: Timestamp string (ISO 8601 format). Note: These timestamps maintain realistic intra-day time progression (hours, minutes), but the specific dates (Day, Month, Year) are entirely synthetic and do not align with real-world calendar dates.
      • open, high, low, close: Numerical values representing the candle's price range. Note: These values are synthetic and are not tied to any real financial instrument's price.
      • volume: A numerical value representing activity during the candle's period. Note: This is also a synthetic value.
    3. labels: A dictionary containing the human-provided technical analysis annotations for the corresponding chart window:
      • horizontal_lines: A list of structures, each containing a price key. These typically denote significant horizontal levels identified by the labeler, such as support or resistance.
      • ray_lines: A list of structures, each defining a line segment via start_date, start_price, end_date, and end_price. These are used to represent patterns like trendlines, channel boundaries, or other linear formations observed by the labeler.

    Data Generation Approach

    The dataset features synthetically generated candlestick patterns. The generation process focuses on creating structurally plausible chart sequences. Human analysts then carefully review these sequences and apply relevant technical analysis labels (support, resistance, trendlines).

    While the patterns may resemble those seen in financial markets, the underlying numerical data (price, volume, and the associated timestamps) is artificial and intentionally detached from any real-world financial data. Users should focus on the relative structure of the candles and the associated human-provided labels, rather than interpreting the absolute values as representative of any specific market or time.

    Acknowledgements

    This dataset is made possible through ongoing human labeling efforts and custom data generation software.

    Inspiration

    • Train models (e.g., CNNs, Transformers) to recognize support/resistance levels and trendlines directly from chart data.
    • Develop and benchmark algorithms for automated technical analysis pattern detection.
    • Use as a basis for generating further augmented chart data for ML training.
    • Explore novel approaches to financial time series analysis using labeled, synthetic data.
  16. F

    Stock Market Capitalization to GDP for Jordan

    • fred.stlouisfed.org
    json
    Updated May 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Stock Market Capitalization to GDP for Jordan [Dataset]. https://fred.stlouisfed.org/series/DDDM01JOA156NWDB
    Explore at:
    jsonAvailable download formats
    Dataset updated
    May 7, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Stock Market Capitalization to GDP for Jordan (DDDM01JOA156NWDB) from 2007 to 2020 about Jordan, market cap, stock market, capital, and GDP.

  17. G

    Stock market return by country, around the world | TheGlobalEconomy.com

    • theglobaleconomy.com
    csv, excel, xml
    Updated Nov 25, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2016). Stock market return by country, around the world | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/Stock_market_return/
    Explore at:
    csv, excel, xmlAvailable download formats
    Dataset updated
    Nov 25, 2016
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1984 - Dec 31, 2021
    Area covered
    World
    Description

    The average for 2021 based on 87 countries was 32.21 percent. The highest value was in Venezuela: 991.39 percent and the lowest value was in Botswana: -6.38 percent. The indicator is available from 1984 to 2021. Below is a chart for all countries where data are available.

  18. Indian Stock Market ROI Dataset

    • kaggle.com
    zip
    Updated Feb 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sarmad07X (2024). Indian Stock Market ROI Dataset [Dataset]. https://www.kaggle.com/datasets/sarmad07x/indian-stock-market-roi-dataset
    Explore at:
    zip(507433 bytes)Available download formats
    Dataset updated
    Feb 9, 2024
    Authors
    Sarmad07X
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    The Indian Stock Market Dataset provides a comprehensive collection of stock market data sourced from secondary sources, primarily Google, offering insights into investment opportunities and trends within the Indian financial landscape. This dataset encompasses a wide array of information, with a primary focus on Return on Investment (ROI) metrics and the respective industry sectors in which investments are made.

    With a reliability rating of 80%, this dataset offers valuable insights for investors, analysts, researchers, and enthusiasts seeking to understand and navigate the complexities of the Indian stock market. The dataset serves as a foundational resource for analyzing market performance, identifying lucrative investment opportunities, and making informed decisions in a dynamic financial environment.

    Key features of the dataset include:

    ROI Analysis: The dataset provides detailed ROI metrics, allowing stakeholders to assess the profitability of various investment avenues over specific timeframes. By analyzing ROI trends, investors can gauge the performance of individual stocks, portfolios, or entire industry sectors, facilitating strategic investment planning and risk management.

    Industry Classification: Each investment entry in the dataset is categorized according to its respective industry sector. This classification enables users to explore investment opportunities within specific sectors such as technology, healthcare, finance, energy, consumer goods, and more. Understanding industry dynamics and market trends is essential for optimizing investment portfolios and diversifying risk exposure.

    Historical Data: The dataset includes historical stock market data, offering insights into past performance trends and market behavior. By examining historical data, users can identify patterns, correlations, and anomalies that may impact future investment decisions. Historical analysis empowers investors to make informed predictions and adapt strategies in response to evolving market conditions.

    Data Accuracy: While the dataset boasts an accuracy rate of 80%, users should exercise diligence and consider additional sources for validation and verification. While the majority of data points are reliable, occasional discrepancies or inaccuracies may exist, highlighting the importance of due diligence and comprehensive analysis in the investment process.

    Accessibility: The Indian Stock Market Dataset is easily accessible and user-friendly, catering to a diverse audience ranging from seasoned investors to novices exploring the world of finance. The dataset can be utilized for various purposes, including academic research, financial modeling, algorithmic trading, and investment portfolio management.

    In summary, the Indian Stock Market Dataset offers a valuable resource for analyzing ROI and industry trends within the Indian financial landscape. With a focus on accuracy, accessibility, and comprehensive data coverage, this dataset empowers stakeholders to make informed investment decisions, optimize portfolio performance, and navigate the complexities of the dynamic stock market environment. Whether you're a seasoned investor or a novice enthusiast, this dataset provides valuable insights for unlocking the potential of the Indian stock market.

  19. World Top Companies: Key Financial Analysis

    • kaggle.com
    zip
    Updated Oct 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Patrick L Ford (2024). World Top Companies: Key Financial Analysis [Dataset]. https://www.kaggle.com/datasets/patricklford/largest-companies-analysis-worldwide/code
    Explore at:
    zip(1448088 bytes)Available download formats
    Dataset updated
    Oct 1, 2024
    Authors
    Patrick L Ford
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Area covered
    World
    Description

    Introduction:

    This analysis delves into the financial performance of top companies by examining key metrics such as revenue, earnings, market capitalisation, P/E ratio, and dividend yield. By comparing these metrics, we gain a comprehensive understanding of a company's scale, profitability, market value, and growth potential. Through visualisations, the analysis also explores correlations between these metrics and offers insights into country-level performance, highlighting economic dominance across various sectors. This holistic approach provides a multi-dimensional view of global financial powerhouses, investor confidence, and regional economic trends.

    Key Metrics Used:

    1. Revenue (Trailing Twelve Months - TTM): - Definition: This is the total income generated by a company from its operations in the last twelve months. - Potential Insights: High revenue often indicates market dominance or high sales volume. Comparing revenues can reveal which companies are the largest in terms of business volume.

    2. Earnings (TTM): - Definition: This refers to the company's profit after taxes and expenses over the trailing twelve months. - Potential Insights: Companies with high earnings are more efficient at converting revenue into profit, suggesting better profitability or cost management. A comparison of earnings provides insight into profitability rather than just scale.

    3. Market Capitalisation (Market Cap): - Definition: Market cap is the total value of a company's outstanding shares of stock, calculated as stock price multiplied by the number of shares. It indicates the company’s size in the stock market. - Potential Insights: High market cap usually indicates investor confidence in the company. Comparing market cap among the top 15 companies reveals their relative size in financial markets.

    4. P/E Ratio (TTM): - Definition: Price-to-Earnings (P/E) ratio measures a company's current share price relative to its per-share earnings. - Potential Insights: A high P/E ratio may indicate that investors expect high growth in the future, while a low P/E ratio could imply undervaluation or scepticism about growth. Companies are compared by their growth prospects or current valuation.

    5. Dividend Yield (TTM): - Definition: Dividend yield is a financial ratio that shows how much a company pays out in dividends each year relative to its share price. - Potential Insights: High dividend yield may indicate that a company returns more income to shareholders. It’s particularly useful for income-focused investors.

    In this combined analysis, we will integrate the observations from the visualisations with the key financial metrics definitions and insights, to offer a comprehensive view of the top companies and country-level analysis across various financial dimensions.

    Data Visualisations

    Visualisation 1: https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F13231939%2F2296eddd53ddd4b84346b1ea1324ec0a%2FScreenshot%202024-10-01%2015.16.51.png?generation=1727864461164331&alt=media" alt=""> Visualisation 2: https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F13231939%2Fb35516c91e54eda75a03ff073e94dd73%2FScreenshot%202024-10-01%2015.17.53.png?generation=1727864511265917&alt=media" alt=""> Visualisation 3: https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F13231939%2F506ca2428d34b15cd46e4a31261763d7%2FScreenshot%202024-10-01%2015.18.37.png?generation=1727864562835491&alt=media" alt=""> Visualisation 4: https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F13231939%2F41e7a3e28c757239d26226f6a0ccdca9%2FScreenshot%202024-10-01%2015.19.20.png?generation=1727864614352037&alt=media" alt=""> A Markdown document with the R code for the above visualisations. link

    1. Revenue (Trailing Twelve Months - TTM)

    • Definition: The total income generated from a company’s operations over the last 12 months.
    • Insights from Charts:
      • Revenue vs Earnings (Visualisation 2): Companies like Saudi Aramco are massive outliers with high revenues and even higher earnings, indicating impressive profitability despite their revenue volume.
      • Top 10 Countries by Average Revenue (Visualisation 3): China, South Korea, and Japan are at the top, with companies generating significant business volumes.
      • Analysis: High revenue companies like Walmart dominate the market but may not always convert this into proportional earnings or market cap growth. This could be due to operational costs or sector-specific challenges (retail margins being lower than tech).

    2. Earnings (TTM)

    • Definition: Profits...
  20. Largest stock exchange operators worldwide 2025, by value of traded shares

    • statista.com
    Updated Jul 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Largest stock exchange operators worldwide 2025, by value of traded shares [Dataset]. https://www.statista.com/statistics/270127/largest-stock-exchanges-worldwide-by-trading-volume/
    Explore at:
    Dataset updated
    Jul 4, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Mar 2025
    Area covered
    Worldwide
    Description

    This statistic shows the largest global stock exchanges globally as of March 2025, ranked by the value of electronic order book share trading. In that time, the NYSE Stock Market was the largest stock exchange worldwide, with the value of EOB shares traded amounting to *** trillion U.S. dollars. Stock exchanges — additional information Stock exchanges are an important part of the free market economic system and are the most important component of the stock market. A stock exchange provides the setting in which stockbrokers, sellers, buyers, and traders can be brought together to take part in the sale of shares, bonds, derivatives and other securities. The core function of a stock exchange is to enable the fair and orderly trading, as well as the provision of price information, of any securities being traded on that exchange. Originally the exchanges were physical places (in some world locations the goods are still traded over-the-counter) but with time, they took the shape of an electronic platform. In order that company shares may be bought, traded and sold on a stock exchange, the company is required to have undergone an initial public offering process (IPO) on that particular exchange. The initial public offering of Alibaba Group Holding, a Chinese company operating in the e-commerce sector, on the New York Stock Exchange in September 2014, was the largest listing in the United States since 1996. The IPO of Alibaba Group Holding raised approximately ***** billion U.S. dollars.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Countries with largest stock markets globally 2025 [Dataset]. https://www.statista.com/statistics/710680/global-stock-markets-by-country/
Organization logo

Countries with largest stock markets globally 2025

Explore at:
44 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Nov 29, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2025
Area covered
Worldwide
Description

In 2025, stock markets in the United States accounted for roughly ** percent of world stocks. The next largest country by stock market share was China, followed by the European Union as a whole. The New York Stock Exchange (NYSE) and the NASDAQ are the largest stock exchange operators worldwide. What is a stock exchange? The first modern publicly traded company was the Dutch East Industry Company, which sold shares to the general public to fund expeditions to Asia. Since then, groups of companies have formed exchanges in which brokers and dealers can come together and make transactions in one space. Stock market indices group companies trading on a given exchange, giving an idea of how they evolve in real time. Appeal of stock ownership Over half of adults in the United States are investing money in the stock market. Stocks are an attractive investment because the possible return is higher than offered by other financial instruments.

Search
Clear search
Close search
Google apps
Main menu