100+ datasets found
  1. G

    Financial markets development, depth by country, around the world |...

    • theglobaleconomy.com
    csv, excel, xml
    Updated Apr 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2024). Financial markets development, depth by country, around the world | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/financial_markets_development_depth/
    Explore at:
    excel, xml, csvAvailable download formats
    Dataset updated
    Apr 24, 2024
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1980 - Dec 31, 2021
    Area covered
    World
    Description

    The average for 2021 based on 157 countries was 0.255 index points. The highest value was in Canada: 0.999 index points and the lowest value was in Democratic Republic of the Congo: 0 index points. The indicator is available from 1980 to 2021. Below is a chart for all countries where data are available.

  2. Ruble USD/RUB FX rate, up to Nov 14, 2025

    • statista.com
    Updated Aug 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Raynor de Best (2025). Ruble USD/RUB FX rate, up to Nov 14, 2025 [Dataset]. https://www.statista.com/topics/1165/financial-markets/
    Explore at:
    Dataset updated
    Aug 8, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Raynor de Best
    Description

    The USD to ruble value lost significant ground after Russia's invasion of Ukraine, reaching a low of 135 rubles in March 2022. This devaluation is also observed in a chart that compares the monthly average of the ruble against both the U.S. dollar and the euro since 2008. A decline started in November 2020 and continued into 2021; no specific reason was given for the timing of this development. Interestingly, the USD/RUB exchange rate reached its highest point earlier in 2020, as one U.S. dollar could buy nearly 80 rubles in March 2020. Values were noticeably different years later, however, as the USD/RUB exchange rate was valued at 80.7 on November 14, 2025.

  3. Largest stock exchange operators worldwide 2025, by market capitalization

    • statista.com
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Largest stock exchange operators worldwide 2025, by market capitalization [Dataset]. https://www.statista.com/statistics/270126/largest-stock-exchange-operators-by-market-capitalization-of-listed-companies/
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Nov 2025
    Area covered
    Worldwide
    Description

    The New York Stock Exchange (NYSE) is the largest stock exchange in the world, with an equity market capitalization of almost ** trillion U.S. dollars as of November 2025. The following largest three exchanges were the NASDAQ, PINK Exchange, and the Frankfurt Exchange. What is a stock exchange? A stock exchange is a marketplace where stockbrokers, traders, buyers, and sellers can trade in equities products. The largest exchanges have thousands of listed companies. These companies sell shares of their business, giving the general public the opportunity to invest in them. The oldest stock exchange worldwide is the Frankfurt Stock Exchange, founded in the late sixteenth century. Other functions of a stock exchange Since these are publicly traded companies, every firm listed on a stock exchange has had an initial public offering (IPO). The largest IPOs can raise billions of dollars in equity for the firm involved. Related to stock exchanges are derivatives exchanges, where stock options, futures contracts, and other derivatives can be traded.

  4. Countries with the highest market cap in the world 2025

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries with the highest market cap in the world 2025 [Dataset]. https://www.statista.com/statistics/1202852/total-market-capitalization-listed-companies-country/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jun 2025
    Area covered
    World
    Description

    The market capitalization of companies in the United States was almost six times than that of China as of June 2025, making up a large share of the world's total market capitalization. Listed companies in the U.S. had a total market capitalization of nearly ** trillion U.S. dollars - against ** trillion U.S. dollars recorded by China. Japan followed as the next country in the ranking of nearly ***** trillion U.S. dollars.

  5. Global Stock Market Dataset

    • kaggle.com
    zip
    Updated Oct 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mehdi Aminazadeh (2025). Global Stock Market Dataset [Dataset]. https://www.kaggle.com/datasets/mehdiaminazadeh/global-stock-market-dataset
    Explore at:
    zip(2445985 bytes)Available download formats
    Dataset updated
    Oct 25, 2025
    Authors
    Mehdi Aminazadeh
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Global Stock Market Financial Dataset (from TradingView)

    This collection provides a comprehensive snapshot of over 11,800 publicly traded companies worldwide. It combines multiple financial statements and performance indicators extracted from TradingView to support data analysis, stock screening, and financial modeling.

    Files Overview

    1.tradingview_all_stocks.csv Contains general stock information and market statistics.

    Columns: ticker, name, close, change, change_abs, volume, market_cap_basic, price_earnings_ttm, sector, industry Size: 11,806 rows × 10 columns Description: Lists all active stocks with latest prices, PE ratios, and sector/industry classifications.

    2.tradingview_performance.csv Tracks short- and long-term stock performance.

    Columns (sample): ticker, name, close, Perf.W, Perf.1M, Perf.3M, Perf.6M, Perf.YTD, Perf.1Y, Perf.5Y, etc. Size: 11,814 rows × 17 columns Description: Shows relative percentage performance across multiple timeframes.

    3.balance_sheet.csv Summarizes financial position and liquidity metrics.

    Columns: total_assets_fq, cash_n_short_term_invest_fq, total_liabilities_fq, total_debt_fq, net_debt_fq, total_equity_fq, current_ratio_fq Size: 11,821 rows × 12 columns Description: Includes key balance sheet values, enabling leverage and liquidity analysis.

    4.cashflow.csv Focuses on company cash generation and sustainability.

    Columns: free_cash_flow_ttm Size: 11,821 rows × 4 columns Description: Provides trailing twelve-month free cash flow figures for profitability evaluation.

    5.dividends.csv Details dividend-related statistics.

    Columns: dividends_yield, dividend_payout_ratio_ttm Size: 11,823 rows × 5 columns Description: Useful for income-focused investors; includes dividend yields and payout ratios.

    6.income_statement.csv Presents company earnings metrics.

    Columns: total_revenue_ttm, gross_profit_ttm, net_income_ttm, ebitda_ttm Size: 11,821 rows × 7 columns Description: Captures profitability over the last 12 months for revenue and margin analysis.

    7.profitability.csv Shows margin-based performance indicators.

    Columns: gross_margin_ttm, operating_margin_ttm, net_margin_ttm, ebitda_margin_ttm Size: 11,823 rows × 7 columns Description: Enables efficiency and operational performance comparisons across companies.

    Use Cases 1. Stock market and financial analysis 2. Portfolio optimization and factor modeling 3. Machine learning for price prediction 4. Company benchmarking and screening 5. Academic or educational use in finance courses

    Data Source & Notes 1. All data was aggregated from TradingView using public financial data endpoints. 2. Missing values may occur for companies that do not report certain metrics. 3. All monetary figures are based on the latest available TTM (Trailing Twelve Months) or FQ (Fiscal Quarter) data at the time of extraction.

  6. Global Financial Development

    • datacatalog.worldbank.org
    databank, html
    Updated Nov 3, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research@worldbank.org (2021). Global Financial Development [Dataset]. https://datacatalog.worldbank.org/search/dataset/0038648/global-financial-development
    Explore at:
    databank, htmlAvailable download formats
    Dataset updated
    Nov 3, 2021
    Dataset provided by
    World Bankhttp://topics.nytimes.com/top/reference/timestopics/organizations/w/world_bank/index.html
    World Bank Grouphttp://www.worldbank.org/
    License

    https://datacatalog.worldbank.org/public-licenses?fragment=cchttps://datacatalog.worldbank.org/public-licenses?fragment=cc

    Description

    The Global Financial Development Database is an extensive dataset of financial system characteristics for 214 economies. It contains annual data, starting from 1960. It has been last updated in September 2022 and contains data through 2021 for 108 indicators, capturing various aspects of financial institutions and markets. Please, be advised that the latest release presents changes in the methodology to compute some of the indicators, which have been properly identified in blue in the tab "Metadata".

    The Global Financial Development Database is based on a “4x2 framework”. Specifically, it includes measures of (1) depth, (2) access, (3) efficiency, and (4) stability of financial systems. Each of these characteristics is captured both for (1) financial institutions (for example banks and insurance companies), and (2) financial markets (such as stock markets and bond markets). The database builds on, updates, and extends previous efforts, in particular the data collected for the World Bank database “Financial Development and Structure”.

    For more information on the Global Financial Development Database, the 4x2 framework, and the underlying theoretical and empirical literature, see chapter 1 of the 2013 Global Financial Development Report, and Martin Cihák, Asli Demirgüç-Kunt, Erik Feyen, and Ross Levine. 2012. “Benchmarking Financial Systems around the World.” Policy Research Working Paper 6175, World Bank, Washington, DC. (A version of the paper also appeared in the Journal of Financial Perspectives.)

    The World Bank is not responsible for the quality or accuracy of the information reported in the database. The data set may contain errors and omissions. For a description of the various indicators, please refer to the concepts and definitions reported in the definition and sources tab. The original source of the data is also identified. Users are advised to consult the accompanying metadata and contact directly the original data providers for specific inquiries on data points and series.

  7. Stock Market Dataset

    • kaggle.com
    zip
    Updated Jan 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ziya (2025). Stock Market Dataset [Dataset]. https://www.kaggle.com/datasets/ziya07/stock-market-dataset
    Explore at:
    zip(1075471 bytes)Available download formats
    Dataset updated
    Jan 25, 2025
    Authors
    Ziya
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    The "Stock Market Dataset for AI-Driven Prediction and Trading Strategy Optimization" is designed to simulate real-world stock market data for training and evaluating machine learning models. This dataset includes a combination of technical indicators, market metrics, sentiment scores, and macroeconomic factors, providing a comprehensive foundation for developing and testing AI models for stock price prediction and trading strategy optimization.

    Key Features Market Metrics:

    Open, High, Low, Close Prices: Daily stock price movement. Volume: Represents the trading activity during the day. Technical Indicators:

    RSI (Relative Strength Index): A momentum oscillator to measure the speed and change of price movements. MACD (Moving Average Convergence Divergence): An indicator to reveal changes in strength, direction, momentum, and duration of a trend. Bollinger Bands: Upper and lower bands around a stock price to measure volatility. Sentiment Analysis:

    Sentiment Score: Simulated sentiment derived from financial news and social media, ranging from -1 (negative) to 1 (positive). Macroeconomic Factors:

    GDP Growth: Indicates the overall health and growth of the economy. Inflation Rate: Reflects changes in purchasing power and economic stability. Target Variable:

    Buy/Sell Signal: Binary classification (1 = Buy, 0 = Sell) based on price movement thresholds, simulating actionable trading decisions. Use Cases AI Model Training: Ideal for building stock prediction models using LSTM, Gradient Boosting, Random Forest, etc. Trading Strategy Optimization: Enables testing of trading algorithms and strategies in a simulated environment. Sentiment Analysis Research: Useful for understanding how sentiment influences stock movements. Feature Engineering and Selection: Provides a diverse set of features for experimentation with advanced techniques like PCA and LDA. Dataset Highlights Synthetic Yet Realistic: Carefully designed to mimic real-world financial data trends and relationships. Comprehensive Coverage: Includes key indicators and metrics used by traders and analysts. Scalable: Suitable for use in both small-scale academic projects and larger AI-driven trading platforms. Accessible for All Levels: The intuitive structure ensures that even beginners can utilize this dataset for financial machine learning applications. File Format The dataset is provided in CSV format, where:

    Rows represent individual trading days. Columns represent features (technical indicators, market metrics, etc.) and the target variable. Acknowledgments This dataset is synthetically generated and is intended for research and educational purposes. It is not based on real market data and should not be used for actual trading.

  8. Dataset for Stock Market Index of 7 Economies

    • kaggle.com
    zip
    Updated Jul 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Saad Aziz (2023). Dataset for Stock Market Index of 7 Economies [Dataset]. https://www.kaggle.com/datasets/saadaziz1985/dataset-for-stock-market-index-of-7-countries
    Explore at:
    zip(1917326 bytes)Available download formats
    Dataset updated
    Jul 4, 2023
    Authors
    Saad Aziz
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context:

    The provided dataset is extracted from yahoo finance using pandas and yahoo finance library in python. This deals with stock market index of the world best economies. The code generated data from Jan 01, 2003 to Jun 30, 2023 that’s more than 20 years. There are 18 CSV files, dataset is generated for 16 different stock market indices comprising of 7 different countries. Below is the list of countries along with number of indices extracted through yahoo finance library, while two CSV files deals with annualized return and compound annual growth rate (CAGR) has been computed from the extracted data.

    Number of Countries & Index:

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F15657145%2F90ce8a986761636e3edbb49464b304d8%2FNumber%20of%20Index.JPG?generation=1688490342207096&alt=media" alt="">

    Content:

    Unit of analysis: Stock Market Index Analysis

    This dataset is useful for research purposes, particularly for conducting comparative analyses involving capital market performance and could be used along with other economic indicators.

    There are 18 distinct CSV files associated with this dataset. First 16 CSV files deals with number of indices and last two CSV file deals with annualized return of each year and CAGR of each index. If data in any column is blank, it portrays that index was launch in later years, for instance: Bse500 (India), this index launch in 2007, so earlier values are blank, similarly China_Top300 index launch in year 2021 so early fields are blank too.

    The extraction process involves applying different criteria, like in 16 CSV files all columns are included, Adj Close is used to calculate annualized return. The algorithm extracts data based on index name (code given by the yahoo finance) according start and end date.

    Annualized return and CAGR has been calculated and illustrated in below image along with machine readable file (CSV) attached to that.

    To extract the data provided in the attachment, various criteria were applied:

    1. Content Filtering: The data was filtered based on several attributes, including the index name, start and end date. This filtering process ensured that only relevant data meeting the specified criteria.

    2. Collaborative Filtering: Another filtering technique used was collaborative filtering using yahoo finance, which relies on index similarity. This approach involves finding indices that are similar to other index or extended dataset scope to other countries or economies. By leveraging this method, the algorithm identifies and extracts data based on similarities between indices.

    In the last two CSV files, one belongs to annualized return, that was calculated based on the Adj close column and new DataFrame created to store its outcome. Below is the image of annualized returns of all index (if unreadable, machine-readable or CSV format is attached with the dataset).

    Annualized Return:

    As far as annualised rate of return is concerned, most of the time India stock market indices leading, followed by USA, Canada and Japan stock market indices.

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F15657145%2F37645bd90623ea79f3708a958013c098%2FAnnualized%20Return.JPG?generation=1688525901452892&alt=media" alt="">

    Compound Annual Growth Rate (CAGR):

    The best performing index based on compound growth is Sensex (India) that comprises of top 30 companies is 15.60%, followed by Nifty500 (India) that is 11.34% and Nasdaq (USA) all is 10.60%.

    The worst performing index is China top300, however this is launch in 2021 (post pandemic), so would not possible to examine at that stage (due to less data availability). Furthermore, UK and Russia indices are also top 5 in the worst order.

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F15657145%2F58ae33f60a8800749f802b46ec1e07e7%2FCAGR.JPG?generation=1688490409606631&alt=media" alt="">

    Geography: Stock Market Index of the World Top Economies

    Time period: Jan 01, 2003 – June 30, 2023

    Variables: Stock Market Index Title, Open, High, Low, Close, Adj Close, Volume, Year, Month, Day, Yearly_Return and CAGR

    File Type: CSV file

    Inspiration:

    • Time series prediction model
    • Investment opportunities in world best economies
    • Comparative Analysis of past data with other stock market indices or other indices

    Disclaimer:

    This is not a financial advice; due diligence is required in each investment decision.

  9. Share of Americans investing money in the stock market 1999-2025

    • statista.com
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Share of Americans investing money in the stock market 1999-2025 [Dataset]. https://www.statista.com/statistics/270034/percentage-of-us-adults-to-have-money-invested-in-the-stock-market/
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    1999 - 2025
    Area covered
    United States
    Description

    In 2025, ** percent of adults in the United States invested in the stock market. This figure has remained steady over the last few years and is still below the levels before the Great Recession, when it peaked in 2007 at ** percent. What is the stock market? The stock market can be defined as a group of stock exchanges where investors can buy shares in a publicly traded company. In more recent years, it is estimated an increasing number of Americans are using neobrokers, making stock trading more accessible to investors. Other investments A significant number of people think stocks and bonds are the safest investments, while others point to real estate, gold, bonds, or a savings account. Since witnessing the significant one-day losses in the stock market during the financial crisis, many investors were turning towards these alternatives in hopes for more stability, particularly for investments with longer maturities. This could explain the decrease in this statistic since 2007. Nevertheless, some speculators enjoy chasing the short-run fluctuations, and others see value in choosing particular stocks.

  10. H

    Interlinkages Between Financial Markets and Macroeconomic Stability: A...

    • dataverse.harvard.edu
    • dataone.org
    Updated Jul 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lemuel David (2025). Interlinkages Between Financial Markets and Macroeconomic Stability: A Global Empirical Analysis [Dataset]. http://doi.org/10.7910/DVN/V3F1PB
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 1, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Lemuel David
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This data was use to examine the intricate relationship between financial market volatility and macroeconomic stability through an empirical analysis across 211 countries, utilizing World Bank data from 1995 to 2024.

  11. G

    Stock market capitalization, in dollars by country, around the world |...

    • theglobaleconomy.com
    csv, excel, xml
    Updated Apr 24, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2015). Stock market capitalization, in dollars by country, around the world | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/stock_market_capitalization_dollars/
    Explore at:
    xml, excel, csvAvailable download formats
    Dataset updated
    Apr 24, 2015
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1975 - Dec 31, 2024
    Area covered
    World
    Description

    The average for 2022 based on 75 countries was 1225.97 billion U.S. dollars. The highest value was in the USA: 40297.98 billion U.S. dollars and the lowest value was in Bermuda: 0.21 billion U.S. dollars. The indicator is available from 1975 to 2024. Below is a chart for all countries where data are available.

  12. Global Financial Data Services Market Size By Service Type, By End-User, By...

    • verifiedmarketresearch.com
    Updated Sep 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VERIFIED MARKET RESEARCH (2024). Global Financial Data Services Market Size By Service Type, By End-User, By Deployment Mode, By Geographic Scope And Forecast [Dataset]. https://www.verifiedmarketresearch.com/product/financial-data-services-market/
    Explore at:
    Dataset updated
    Sep 5, 2024
    Dataset provided by
    Verified Market Researchhttps://www.verifiedmarketresearch.com/
    Authors
    VERIFIED MARKET RESEARCH
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2024 - 2031
    Area covered
    Global
    Description

    Financial Data Services Market size was valued at USD 23.3 Billion in 2023 and is projected to reach USD 42.6 Billion by 2031, growing at a CAGR of 8.1% during the forecast period 2024-2031.Global Financial Data Services Market DriversThe market drivers for the Financial Data Services Market can be influenced by various factors. These may include:The need for real-time analytics is growing: Real-time analytics are becoming more and more necessary in the financial sector due to the acceleration of data consumption. To reduce risks, make wise decisions, and enhance customer service, organizations need quick insights. Stakeholders are giving priority to solutions that enable quick data processing and analysis due to the increase in market volatility and complexity. The need for sophisticated analytical skills is driving providers of financial data services to modernize their products. As companies come to realize that using real-time data is crucial for keeping a competitive edge in a fast-paced financial climate, the competition among them to provide timely insights also boosts market growth.Growing Machine Learning and AI Adoption: Data analysis has been profoundly changed by the incorporation of AI and machine learning technology into financial data services. By enabling predictive analytics, these technologies help financial organizations make better decisions and reduce risk. Businesses can find trends that were previously invisible by automating data processing operations. This leads to more precise forecasts and improved investment plans. Furthermore, sophisticated algorithms are flexible enough to adjust to shifting circumstances, keeping organizations flexible. The increasing intricacy of financial markets necessitates the use of AI and machine learning, which in turn drives demand for sophisticated financial data services and promotes innovation in the sector.Global Financial Data Services Market RestraintsSeveral factors can act as restraints or challenges for the Financial Data Services Market. These may include:Difficulties in Regulatory Compliance: Regulations controlling data management, privacy, and financial transactions place heavy restrictions on the financial data services market. Regulations like the GDPR, CCPA, and banking industry standards like Basel III and SOX must all be complied with by organizations. Complying with these requirements frequently necessitates a significant investment in staff and compliance systems, which can be taxing, especially for smaller businesses. Regulations are dynamic, and different locations have different needs, which adds to the complexity and expense. Noncompliance not only results in monetary fines but also has the potential to harm an entity's image, so impeding market expansion.Dangers to Data Security: Threats to data security are a major impediment to the financial data services market. Because they manage sensitive data, financial institutions are often the targets of cyberattacks. Breach can lead to significant monetary losses, legal repercussions, and long-term harm to one's image. Although they can greatly increase operating expenses, investments in strong security measures like encryption, safe access protocols, and continual monitoring are crucial. Moreover, the dynamic strategies employed by cybercriminals need continuous adjustment, placing a burden on resources and detracting from the main operations of businesses. The evolution of security threats poses a challenge to preserving consumer trust, hence impeding industry expansion.

  13. Financial Market Forecasting Dataset

    • kaggle.com
    zip
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ziya (2025). Financial Market Forecasting Dataset [Dataset]. https://www.kaggle.com/datasets/ziya07/financial-market-forecasting-dataset
    Explore at:
    zip(41874 bytes)Available download formats
    Dataset updated
    Jun 25, 2025
    Authors
    Ziya
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset is designed to support research and model development in financial market forecasting. It consists of daily stock market data for multiple companies, enriched with macroeconomic indicators and simulated market stress events to reflect real-world volatility.

    Key features include:

    Stock price details (Open, High, Low, Close) and Trading Volume

    Macroeconomic indicators such as GDP growth rate, inflation rate, interest rate, and unemployment rate

    A Market Stress Level (normalized between 0 and 1) indicating systemic volatility

    A binary Event Flag to simulate major financial shocks or critical economic events

    Data spans across multiple tickers (e.g., AAPL, GOOGL, TSLA) for 500+ trading days

  14. d

    Global Stock, ETF, and Index data

    • datarade.ai
    .json, .csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Twelve Data, Global Stock, ETF, and Index data [Dataset]. https://datarade.ai/data-products/twelve-data-world-stock-forex-crypto-data-via-api-and-webs-twelve-data
    Explore at:
    .json, .csvAvailable download formats
    Dataset authored and provided by
    Twelve Data
    Area covered
    Afghanistan, Belarus, Burundi, Christmas Island, Iran (Islamic Republic of), United States Minor Outlying Islands, Costa Rica, Mozambique, Egypt, Micronesia (Federated States of)
    Description

    Twelve Data is a technology-driven company that provides financial market data, financial tools, and dedicated solutions. Large audiences - from individuals to financial institutions - use our products to stay ahead of the competition and success.

    At Twelve Data we feel responsible for where the markets are going and how people are able to explore them. Coming from different technological backgrounds, we see how the world is lacking the unique and simple place where financial data can be accessed by anyone, at any time. This is what distinguishes us from others, we do not only supply the financial data but instead, we want you to benefit from it, by using the convenient format, tools, and special solutions.

    We believe that the human factor is still a very important aspect of our work and therefore our ethics guides us on how to treat people, with convenient and understandable resources. This includes world-class documentation, human support, and dedicated solutions.

  15. Global Financial Development

    • kaggle.com
    zip
    Updated May 16, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank (2019). Global Financial Development [Dataset]. https://www.kaggle.com/theworldbank/global-financial-development
    Explore at:
    zip(3448001 bytes)Available download formats
    Dataset updated
    May 16, 2019
    Dataset provided by
    World Bank Grouphttp://www.worldbank.org/
    Authors
    World Bank
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Content

    The Global Financial Development Database is an extensive dataset of financial system characteristics for 206 economies. The database includes measures of (1) size of financial institutions and markets (financial depth), (2) degree to which individuals can and do use financial services (access), (3) efficiency of financial intermediaries and markets in intermediating resources and facilitating financial transactions (efficiency), and (4) stability of financial institutions and markets (stability).

    For a complete description of the dataset and a discussion of the underlying literature, see: Martin Čihák, Aslı Demirgüç-Kunt, Erik Feyen, and Ross Levine, 2012. "Benchmarking Financial Systems Around the World." World Bank Policy Research Working Paper 6175, World Bank, Washington, D.C.

    Context

    This is a dataset hosted by the World Bank. The organization has an open data platform found here and they update their information according the amount of data that is brought in. Explore the World Bank using Kaggle and all of the data sources available through the World Bank organization page!

    • Update Frequency: This dataset is updated daily.

    Acknowledgements

    This dataset is maintained using the World Bank's APIs and Kaggle's API.

    Cover photo by Raphael Rychetsky on Unsplash
    Unsplash Images are distributed under a unique Unsplash License.

  16. U

    United States US: Stocks Traded: Total Value

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2023). United States US: Stocks Traded: Total Value [Dataset]. https://www.ceicdata.com/en/united-states/financial-sector/us-stocks-traded-total-value
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2006 - Dec 1, 2017
    Area covered
    United States
    Variables measured
    Turnover
    Description

    United States US: Stocks Traded: Total Value data was reported at 39,785.881 USD bn in 2017. This records a decrease from the previous number of 42,071.330 USD bn for 2016. United States US: Stocks Traded: Total Value data is updated yearly, averaging 17,934.293 USD bn from Dec 1984 (Median) to 2017, with 34 observations. The data reached an all-time high of 47,245.496 USD bn in 2008 and a record low of 1,108.421 USD bn in 1984. United States US: Stocks Traded: Total Value data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Financial Sector. The value of shares traded is the total number of shares traded, both domestic and foreign, multiplied by their respective matching prices. Figures are single counted (only one side of the transaction is considered). Companies admitted to listing and admitted to trading are included in the data. Data are end of year values converted to U.S. dollars using corresponding year-end foreign exchange rates.; ; World Federation of Exchanges database.; Sum; Stock market data were previously sourced from Standard & Poor's until they discontinued their 'Global Stock Markets Factbook' and database in April 2013. Time series have been replaced in December 2015 with data from the World Federation of Exchanges and may differ from the previous S&P definitions and methodology.

  17. US Stock Market and Commodities Data (2020-2024)

    • kaggle.com
    Updated Sep 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Muhammad Ehsan (2024). US Stock Market and Commodities Data (2020-2024) [Dataset]. https://www.kaggle.com/datasets/muhammadehsan02/us-stock-market-and-commodities-data-2020-2024
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 1, 2024
    Dataset provided by
    Kaggle
    Authors
    Muhammad Ehsan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The US_Stock_Data.csv dataset offers a comprehensive view of the US stock market and related financial instruments, spanning from January 2, 2020, to February 2, 2024. This dataset includes 39 columns, covering a broad spectrum of financial data points such as prices and volumes of major stocks, indices, commodities, and cryptocurrencies. The data is presented in a structured CSV file format, making it easily accessible and usable for various financial analyses, market research, and predictive modeling. This dataset is ideal for anyone looking to gain insights into the trends and movements within the US financial markets during this period, including the impact of major global events.

    Key Features and Data Structure

    The dataset captures daily financial data across multiple assets, providing a well-rounded perspective of market dynamics. Key features include:

    • Commodities: Prices and trading volumes for natural gas, crude oil, copper, platinum, silver, and gold.
    • Cryptocurrencies: Prices and volumes for Bitcoin and Ethereum, including detailed 5-minute interval data for Bitcoin.
    • Stock Market Indices: Data for major indices such as the S&P 500 and Nasdaq 100.
    • Individual Stocks: Prices and volumes for major companies including Apple, Tesla, Microsoft, Google, Nvidia, Berkshire Hathaway, Netflix, Amazon, and Meta.

    The dataset’s structure is designed for straightforward integration into various analytical tools and platforms. Each column is dedicated to a specific asset's daily price or volume, enabling users to perform a wide range of analyses, from simple trend observations to complex predictive models. The inclusion of intraday data for Bitcoin provides a detailed view of market movements.

    Applications and Usability

    This dataset is highly versatile and can be utilized for various financial research purposes:

    • Market Analysis: Track the performance of key assets, compare volatility, and study correlations between different financial instruments.
    • Risk Assessment: Analyze the impact of commodity price movements on related stock prices and evaluate market risks.
    • Educational Use: Serve as a resource for teaching market trends, asset correlation, and the effects of global events on financial markets.

    The dataset’s daily updates ensure that users have access to the most current data, which is crucial for real-time analysis and decision-making. Whether for academic research, market analysis, or financial modeling, the US_Stock_Data.csv dataset provides a valuable foundation for exploring the complexities of financial markets over the specified period.

    Acknowledgements:

    This dataset would not be possible without the contributions of Dhaval Patel, who initially curated the US stock market data spanning from 2020 to 2024. Full credit goes to Dhaval Patel for creating and maintaining the dataset. You can find the original dataset here: US Stock Market 2020 to 2024.

  18. F

    Stock Market Total Value Traded to GDP for World (DISCONTINUED)

    • fred.stlouisfed.org
    json
    Updated Aug 30, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Stock Market Total Value Traded to GDP for World (DISCONTINUED) [Dataset]. https://fred.stlouisfed.org/series/DDDM021WA156NWDB
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Aug 30, 2017
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Stock Market Total Value Traded to GDP for World (DISCONTINUED) (DDDM021WA156NWDB) from 1975 to 2015 about market cap, stock market, trade, and GDP.

  19. F

    Stock Market Turnover Ratio (Value Traded/Capitalization) for Finland

    • fred.stlouisfed.org
    json
    Updated Aug 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Stock Market Turnover Ratio (Value Traded/Capitalization) for Finland [Dataset]. https://fred.stlouisfed.org/series/DDEM01FIA156NWDB
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Aug 4, 2022
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Stock Market Turnover Ratio (Value Traded/Capitalization) for Finland (DDEM01FIA156NWDB) from 1982 to 2004 about Finland, ratio, and stock market.

  20. F

    Stock Market Capitalization to GDP for United States

    • fred.stlouisfed.org
    json
    Updated May 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Stock Market Capitalization to GDP for United States [Dataset]. https://fred.stlouisfed.org/series/DDDM01USA156NWDB
    Explore at:
    jsonAvailable download formats
    Dataset updated
    May 7, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for Stock Market Capitalization to GDP for United States (DDDM01USA156NWDB) from 1975 to 2020 about market cap, stock market, capital, GDP, and USA.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Globalen LLC (2024). Financial markets development, depth by country, around the world | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/financial_markets_development_depth/

Financial markets development, depth by country, around the world | TheGlobalEconomy.com

Explore at:
excel, xml, csvAvailable download formats
Dataset updated
Apr 24, 2024
Dataset authored and provided by
Globalen LLC
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Dec 31, 1980 - Dec 31, 2021
Area covered
World
Description

The average for 2021 based on 157 countries was 0.255 index points. The highest value was in Canada: 0.999 index points and the lowest value was in Democratic Republic of the Congo: 0 index points. The indicator is available from 1980 to 2021. Below is a chart for all countries where data are available.

Search
Clear search
Close search
Google apps
Main menu