Food price inflation is an important metric to inform economic policy but traditional sources of consumer prices are often produced with delay during crises and only at an aggregate level. This may poorly reflect the actual price trends in rural or poverty-stricken areas, where large populations reside in fragile situations. This data set includes food price estimates and is intended to help gain insight in price developments beyond what can be formally measured by traditional methods. The estimates are generated using a machine-learning approach that imputes ongoing subnational price surveys, often with accuracy similar to direct measurement of prices. The data set provides new opportunities to investigate local price dynamics in areas where populations are sensitive to localized price shocks and where traditional data are not available.
A dataset of monthly food price inflation estimates (aggregated for all food products available in the data) is also available for all countries covered by this modeling exercise.
The data cover the following sub-national areas: Badakhshan, Badghis, Baghlan, Balkh, Bamyan, Daykundi, Farah, Faryab, Paktya, Ghazni, Ghor, Hilmand, Hirat, Nangarhar, Jawzjan, Kabul, Kandahar, Kapisa, Khost, Kunar, Kunduz, Laghman, Logar, Wardak, Nimroz, Nuristan, Paktika, Panjsher, Parwan, Samangan, Sar-e-pul, Takhar, Uruzgan, Zabul, Market Average, Armavir, Ararat, Aragatsotn, Tavush, Gegharkunik, Shirak, Kotayk, Syunik, Lori, Vayotz Dzor, Yerevan, Kayanza, Ruyigi, Bubanza, Karuzi, Bujumbura Mairie, Muramvya, Gitega, Rumonge, Bururi, Kirundo, Cankuzo, Cibitoke, Muyinga, Rutana, Bujumbura Rural, Makamba, Ngozi, Mwaro, SAHEL, CASCADES, SUD-OUEST, EST, BOUCLE DU MOUHOUN, CENTRE-NORD, PLATEAU-CENTRAL, HAUTS-BASSINS, CENTRE, NORD, CENTRE-SUD, CENTRE-OUEST, CENTRE-EST, Khulna, Chittagong, Barisal, Rajshahi, Dhaka, Rangpur, Sylhet, Mymensingh, Ouaka, Mbomou, Bangui, Nana-Mambéré, Ouham, Sangha-Mbaéré, Ombella M'Poko, Mambéré-Kadéï, Vakaga, Ouham Pendé, Lobaye, Haute-Kotto, Kémo, Nana-Gribizi, Bamingui-Bangoran, Haut-Mbomou, Nord, Extrême-Nord, Ouest, Nord-Ouest, Adamaoua, Sud-Ouest, Est, Littoral, Centre, Haut-Uele, Nord-Kivu, Ituri, Tshopo, Kwilu, Kasai, Sud-Kivu, Kongo-Central, Nord-Ubangi, Sud-Ubangi, Kasai-Central, Bas-Uele, Tanganyika, Lualaba, Kasai-Oriental, Kwango, Haut-Lomami, Haut-Katanga, Maniema, Kinshasa, Equateur, Lomami, Likouala, Brazzaville, Point-Noire, Pool, Bouenza, Cuvette, Lekoumou, Nzerekore, Boke, Kindia, Kankan, Faranah, Mamou, Labe, Kanifing Municipal Council, Central River, Upper River, West Coast, North Bank, Lower River, Bafata, Tombali, Cacheu, Sector Autonomo De Bissau, Biombo, Oio, Gabu, Bolama, Quinara, North, South, Artibonite, South-East, Grande'Anse, North-East, West, North-West, SULAWESI UTARA, SUMATERA UTARA, KALIMANTAN UTARA, JAWA BARAT, NUSA TENGGARA BARAT, NUSA TENGGARA TIMUR, SULAWESI SELATAN, JAMBI, JAWA TIMUR, KALIMANTAN SELATAN, BALI, BANTEN, JAWA TENGAH, RIAU, SUMATERA BARAT, KEPULAUAN RIAU, PAPUA, SULAWESI BARAT, BENGKULU, MALUKU UTARA, DAERAH ISTIMEWA YOGYAKARTA, KALIMANTAN BARAT, KALIMANTAN TENGAH, PAPUA BARAT, SUMATERA SELATAN, MALUKU, KEPULAUAN BANGKA BELITUNG, ACEH, DKI JAKARTA, SULAWESI TENGGARA, KALIMANTAN TIMUR, LAMPUNG, GORONTALO, SULAWESI TENGAH, Anbar, Babil, Baghdad, Basrah, Diyala, Dahuk, Erbil, Ninewa, Kerbala, Kirkuk, Missan, Muthanna, Najaf, Qadissiya, Salah al-Din, Sulaymaniyah, Thi-Qar, Wassit, Coast, North Eastern, Nairobi, Rift Valley, , Eastern, Central, Nyanza, Attapeu, Bokeo, Bolikhamxai, Champasack, Houaphan, Khammouan, Louangphabang, Louangnamtha, Oudomxai, Phongsaly, Salavan, Savannakhet, Sekong, Vientiane Capital, Vientiane, Xaignabouly, Xiengkhouang, Akkar, Mount Lebanon, Baalbek-El Hermel, Beirut, Bekaa, El Nabatieh, Nimba, Grand Kru, Grand Cape Mount, Gbarpolu, Grand Bassa, Rivercess, Montserrado, River Gee, Lofa, Bomi, Bong, Sinoe, Maryland, Margibi, Grand Gedeh, East, North Central, Uva, Western, Sabaragamuwa, Southern, Northern, North Western, Kidal, Gao, Tombouctou, Bamako, Kayes, Koulikoro, Mopti, Segou, Sikasso, Yangon, Rakhine, Shan (North), Kayin, Kachin, Shan (South), Mon, Tanintharyi, Mandalay, Kayah, Shan (East), Chin, Magway, Sagaing, Zambezia, Cabo_Delgado, Tete, Manica, Sofala, Maputo, Gaza, Niassa, Inhambane, Maputo City, Nampula, Hodh Ech Chargi, Hodh El Gharbi, Brakna, Adrar, Assaba, Guidimakha, Gorgol, Trarza, Tagant, Dakhlet-Nouadhibou, Nouakchott, Tiris-Zemmour, Central Region, Southern Region, Northern Region, Tillaberi, Tahoua, Agadez, Zinder, Dosso, Niamey, Maradi, Diffa, Abia, Borno, Yobe, Katsina, Kano, Kaduna, Gombe, Jigawa, Kebbi, Oyo, Sokoto, Zamfara, Lagos, Adamawa, Cordillera Administrative region, Region XIII, Region VI, Region V, Region III, Autonomous region in Muslim Mindanao, Region IV-A, Region VIII, Region VII, Region X, Region II, Region IV-B, Region XII, Region XI, Region I, National Capital region, Region IX, North Darfur, Blue Nile, Nile, Eastern Darfur, West Kordofan, Gedaref, West Darfur, North Kordofan, South Kordofan, Kassala, Khartoum, White Nile, South Darfur, Red Sea, Sennar, Al Gezira, Central Darfur, Tambacounda, Diourbel, Ziguinchor, Kaffrine, Dakar, Saint Louis, Fatick, Kolda, Louga, Kaolack, Kedougou, Matam, Thies, Sedhiou, Shabelle Hoose, Juba Hoose, Bay, Banadir, Shabelle Dhexe, Gedo, Hiraan, Woqooyi Galbeed, Awdal, Bari, Juba Dhexe, Togdheer, Nugaal, Galgaduud, Bakool, Sanaag, Mudug, Sool, Warrap, Unity, Jonglei, Northern Bahr el Ghazal, Upper Nile, Eastern Equatoria, Central Equatoria, Western Bahr el Ghazal, Western Equatoria, Lakes, Aleppo, Dar'a, Quneitra, Homs, Deir-ez-Zor, Damascus, Ar-Raqqa, Al-Hasakeh, Hama, As-Sweida, Rural Damascus, Tartous, Idleb, Lattakia, Ouaddai, Salamat, Wadi Fira, Sila, Ennedi Est, Batha, Tibesti, Logone Oriental, Logone Occidental, Guera, Hadjer Lamis, Lac, Mayo Kebbi Est, Chari Baguirmi, Ennedi Ouest, Borkou, Tandjile, Mandoul, Moyen Chari, Mayo Kebbi Ouest, Kanem, Barh El Gazal, Ndjaména, Al Dhale'e, Aden, Al Bayda, Al Maharah, Lahj, Al Jawf, Raymah, Al Hudaydah, Hajjah, Amran, Shabwah, Dhamar, Ibb, Sana'a, Al Mahwit, Marib, Hadramaut, Sa'ada, Amanat Al Asimah, Socotra, Taizz, Abyan
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2021 based on 10 countries was 89.847 index points. The highest value was in Singapore: 130.75 index points and the lowest value was in India: 58.17 index points. The indicator is available from 2017 to 2021. Below is a chart for all countries where data are available.
The inflation rate for both Africa, the Middle East, and Latin America and the Caribbean reached more than 12 percent in 2023. Among the provided continents or regions, Asia and the Pacific had the lowest inflation rate that year. Consumer prices increased around the world following the COVID-19 pandemic and the Russian invasion of Ukraine. Inflation and food security Increases in food costs are one of the most prominent impacts of inflation globally. In the United Kingdom, for example, consumers have indicated that they have worried more about food costs in 2023 than in previous years. Meanwhile, in Canada, only a small fraction of survey respondents have said that inflation has had little impact on household food costs. Consumers have responded to rising food costs through various coping mechanisms. For example, Italian consumers have indicated that they purchase less unnecessary products, cut down on waste, and buy more discounted items in order to save costs. Changing consumer behvaiors Outside of food consumption, consumers have changed their purchasing behaviors with other types of goods and services. Surveying has indicated that nearly 60 percent of consumers have adjusted their shopping habits due to inflation. When holiday shopping in 2023, over 50 percent of Americans and over one third of British consumers said inflation had considerable impact on their holiday shopping. By generation, the Millenial generation has suffered the most due to rising inflation, while older generations have experienced less serious impacts.
The overall objective of this survey is to provide broad and up-to-date baseline information on food production and household food security for the implementation of the Sierra Leone PRSP. The principal aspects covered by the study are local farm production, trading of food in rural areas, access of rural households to food, utilisation of food at the household level including nutrition and health aspects, and vulnerability of the rural population to the various facets of food insecurity.
This research process was divided into three separate but complementary surveys that covered the same households in sampled districts: Farm Production Survey, Food Security and vulnerability survey and a Nutrition and health in women and young children. The objective of the combined surveys was to provide insight on a wide range of factors that influence the degree of food security or vulnerability to food insecurity for rural households and will provide guidance for the policies that should be implemented in order to achieve the overall targets set by the PRSP.
National
The survey covered all household heads and women (with anthropometric measurements taken on both women 15-49 years of age and children 0-59 months old) in each sampled household.
A household is defined as a person or a group of persons related or unrelated, living together or not, making common cooking arrangements and under the authority of the same household head.
Sample survey data [ssd]
The survey used a two-stage cluster sampling strategy. Statistics Sierra Leone (Statistic SL) helped to design of the sample frame, based on recent pre-census data that provided information on settlement names, populations, household sizes. Statistics SL grouped communities, consisting either of one larger village or several smaller settlements located in close proximity, into Enumeration Areas (EAs) that could be treated as the basic clusters. Codes were available for all EAs and GPS coordinates for the sampled communities were to be recorded during the survey.
The aim of the sampling strategy was to obtain at representative results at the district level, now known as Local Council Areas. Population figures from the recent pre-census were available only at Chiefdom level, but not for individual EAs.
Due to the lack of accurate population figures at EA level it was decided to apply the Probability Proportional to Size (PPS) method at Chiefdom level, meaning that the more populated Chiefdoms had a higher probability of selection. In each Local Council Area (LCA) approximately half of the Chiefdoms (on average 45%) were selected. The few larger urban-type settlements outside of Freetown were excluded from the selection process. In a second step, five EAs (communities) per Chiefdom were selected using simple random sampling techniques. The total number of EAs (or clusters in statistical terms) per Local Council Area was 25, with a total sample size of approximately 4500 households for food security and farm production, and 5600 for nutrition and health.
The sampling procedures used at EA (community) level are as follows: · Within the EA, household lists were created by the survey teams with assistance from the village leaders and then a sample of 12 households was selected using a random number draw. · As it can be assumed that a large proportion of the households were engaged in farming as primary or secondary occupation, and thus there was no need to differentiate between farming/non-farming families when selecting the households to be interviewed. If families without agriculture, livestock or fisheries activities were encountered, the farm production questionnaire was simply left blank (except for some general information).
Face-to-face [f2f]
Household Questionnaire: Demography; Housing and household facilities; Assets; Main sources of income; expenditure; Food consumption; shocks and coping strategies; land ownership and use; Household land ownership and us; Cropping system; Water and sanitation; Crops harvested last season; Food and cash crops sold; Livestock, Fisheries; Maternal health and nutrition; Child health and nutrition.
Community Questionnaire: Demography; Economy and infrastructure; education; health; agriculture; trading of food and cash crops; seasonal availability of main food crops and price trends.
The main objectives of the 2018/19 NLSS are: i) to provide critical information for production of a wide range of socio-economic and demographic indicators, including for benchmarking and monitoring of SDGs; ii) to monitor progress in population’s welfare; iii) to provide statistical evidence and measure the impact on households of current and anticipated government policies. In addition, the 2018/19 NLSS could be utilized to improve other non-survey statistical information, e.g. to determine and calibrate the contribution of final consumption expenditures of households to GDP; to update the weights and determine the basket for the national Consumer Price Index (CPI); to improve the methodology and dissemination of micro-economic and welfare statistics in Nigeria.
The 2018/19 NLSS collected a comprehensive and diverse set of socio-economic and demographic data pertaining to the basic needs and conditions under which households live on a day to day basis. The 2018/19 NLSS questionnaire includes wide-ranging modules, covering demographic indicators, education, health, labour, expenditures on food and non-food goods, non-farm enterprises, household assets and durables, access to safety nets, housing conditions, economic shocks, exposure to crime and farm production indicators.
National coverage
The survey covered all de jure households excluding prisons, hospitals, military barracks, and school dormitories.
Sample survey data [ssd]
The 2018/19 NLSS sample is designed to provide representative estimates for the 36 states and the Federal Capital Territory (FCT), Abuja. By extension. The sample is also representative at the national and zonal levels. Although the sample is not explicitly stratified by urban and rural areas, it is possible to obtain urban and rural estimates from the NLSS data at the national level. At all stages, the relative proportion of urban and rural EAs as has been maintained.
Before designing the sample for the 2018/19 NLSS, the results from the 2009/10 HNLSS were analysed to extract the sampling properties (variance, design effect, etc.) and estimate the required sample size to reach a desired precision for poverty estimates in the 2018/19 NLSS.
EA SELECTION: The sampling frame for the 2018/19 NLSS was based on the national master sample developed by the NBS, referred to as the NISH2 (Nigeria Integrated Survey of Households 2). This master sample was based on the enumeration areas (EAs) defined for the 2006 Nigeria Census Housing and Population conducted by National Population Commission (NPopC). The NISH2 was developed by the NBS to use as a frame for surveys with state-level domains. NISH2 EAs were drawn from another master sample that NBS developed for surveys with LGA-level domains (referred to as the “LGA master sample”). The NISH2 contains 200 EAs per state composed of 20 replicates of 10 sample EAs for each state, selected systematically from the full LGA master sample. Since the 2018/19 NLSS required domains at the state-level, the NISH2 served as the sampling frame for the survey.
Since the NISH2 is composed of state-level replicates of 10 sample EAs, a total of 6 replicates were selected from the NISH2 for each state to provide a total sample of 60 EAs per state. The 6 replicates selected for the 2018/19 NLSS in each state were selected using random systematic sampling. This sampling procedure provides a similar distribution of the sample EAs within each state as if one systematic sample of 60 EAs had been selected directly from the census frame of EAs.
A fresh listing of households was conducted in the EAs selected for the 2018/19 NLSS. Throughout the course of the listing, 139 of the selected EAs (or about 6%) were not able to be listed by the field teams. The primary reason the teams were not able to conduct the listing in these EAs was due to security issues in the country. The fieldwork period of the 2018/19 NLSS saw events related to the insurgency in the north east of the country, clashes between farmers and herdsman, and roving groups of bandits. These events made it impossible for the interviewers to visit the EAs in the villages and areas affected by these conflict events. In addition to security issues, some EAs had been demolished or abandoned since the 2006 census was conducted. In order to not compromise the sample size and thus the statistical power of the estimates, it was decided to replace these 139 EAs. Additional EAs from the same state and sector were randomly selected from the remaining NISH2 EAs to replace each EA that could not be listed by the field teams. This necessary exclusion of conflict affected areas implies that the sample is representative of areas of Nigeria that were accessible during the 2018/19 NLSS fieldwork period. The sample will not reflect conditions in areas that were undergoing conflict at that time. This compromise was necessary to ensure the safety of interviewers.
HOUSEHOLD SELECTION: Following the listing, the 10 households to be interviewed were selected from the listed households. These households were selected systemically after sorting by the order in which the households were listed. This systematic sampling helped to ensure that the selected households were well dispersed across the EA and thereby limit the potential for clustering of the selected households within an EA.
Occasionally, interviewers would encounter selected households that were not able to be interviewed (e.g. due to migration, refusal, etc.). In order to preserve the sample size and statistical power, households that could not be interviewed were replaced with an additional randomly selected household from the EA. Replacement households had to be requested by the field teams on a case-by-case basis and the replacement household was sent by the CAPI managers from NBS headquarters. Interviewers were required to submit a record for each household that was replaced, and justification given for their replacement. These replaced households are included in the disseminated data. However, replacements were relatively rare with only 2% of sampled households not able to be interviewed and replaced.
Although a sample was initially drawn for Borno state, the ongoing insurgency in the state presented severe challenges in conducting the survey there. The situation in the state made it impossible for the field teams to reach large areas of the state without compromising their safety. Given this limitation it was clear that a representative sample for Borno was not possible. However, it was decided to proceed with conducting the survey in areas that the teams could access in order to collect some information on the parts of the state that were accessible.
The limited area that field staff could safely operate in in Borno necessitated an alternative sample selection process from the other states. The EA selection occurred in several stages. Initially, an attempt was made to limit the frame to selected LGAs that were considered accessible. However, after selection of the EAs from the identified LGAs, it was reported by the NBS listing teams that a large share of the selected EAs were not safe for them to visit. Therefore, an alternative approach was adopted that would better ensure the safety of the field team but compromise further the representativeness of the sample. First, the list of 788 EAs in the LGA master sample for Borno were reviewed by NBS staff in Borno and the EAs they deemed accessible were identified. The team identified 359 EAs (46%) that were accessible. These 359 EAs served as the frame for the Borno sample and 60 EAs were randomly selected from this frame. However, throughout the course of the NLSS fieldwork, additional insurgency related events occurred which resulted in 7 of the 60 EAs being inaccessible when they were to be visited. Unlike for the main sample, these EAs were not replaced. Therefore, 53 EAs were ultimately covered from the Borno sample. The listing and household selection process that followed was the same as for the rest of the states.
Computer Assisted Personal Interview [capi]
Two sets of questionnaires – household and community – were used to collect information in the NLSS2018/19. The Household Questionnaire was administered to all households in the sample. The Community Questionnaire was administered to the community to collect information on the socio-economic indicators of the enumeration areas where the sample households reside.
Household Questionnaire: The Household Questionnaire provides information on demographics; education; health; labour; food and non-food expenditure; household nonfarm income-generating activities; food security and shocks; safety nets; housing conditions; assets; information and communication technology; agriculture and land tenure; and other sources of household income.
Community Questionnaire: The Community Questionnaire solicits information on access to transported and infrastructure; community organizations; resource management; changes in the community; key events; community needs, actions and achievements; and local retail price information.
CAPI: The 2018/19 NLSS was conducted using the Survey Solutions Computer Assisted Person Interview (CAPI) platform. The Survey Solutions software was developed and maintained by the Development Economics Data Group (DECDG) at the World Bank. Each interviewer and supervisor was given a tablet
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Food price inflation is an important metric to inform economic policy but traditional sources of consumer prices are often produced with delay during crises and only at an aggregate level. This may poorly reflect the actual price trends in rural or poverty-stricken areas, where large populations reside in fragile situations. This data set includes food price estimates and is intended to help gain insight in price developments beyond what can be formally measured by traditional methods. The estimates are generated using a machine-learning approach that imputes ongoing subnational price surveys, often with accuracy similar to direct measurement of prices. The data set provides new opportunities to investigate local price dynamics in areas where populations are sensitive to localized price shocks and where traditional data are not available.
A dataset of monthly food price inflation estimates (aggregated for all food products available in the data) is also available for all countries covered by this modeling exercise.
The data cover the following sub-national areas: Badakhshan, Badghis, Baghlan, Balkh, Bamyan, Daykundi, Farah, Faryab, Paktya, Ghazni, Ghor, Hilmand, Hirat, Nangarhar, Jawzjan, Kabul, Kandahar, Kapisa, Khost, Kunar, Kunduz, Laghman, Logar, Wardak, Nimroz, Nuristan, Paktika, Panjsher, Parwan, Samangan, Sar-e-pul, Takhar, Uruzgan, Zabul, Market Average, Armavir, Ararat, Aragatsotn, Tavush, Gegharkunik, Shirak, Kotayk, Syunik, Lori, Vayotz Dzor, Yerevan, Kayanza, Ruyigi, Bubanza, Karuzi, Bujumbura Mairie, Muramvya, Gitega, Rumonge, Bururi, Kirundo, Cankuzo, Cibitoke, Muyinga, Rutana, Bujumbura Rural, Makamba, Ngozi, Mwaro, SAHEL, CASCADES, SUD-OUEST, EST, BOUCLE DU MOUHOUN, CENTRE-NORD, PLATEAU-CENTRAL, HAUTS-BASSINS, CENTRE, NORD, CENTRE-SUD, CENTRE-OUEST, CENTRE-EST, Khulna, Chittagong, Barisal, Rajshahi, Dhaka, Rangpur, Sylhet, Mymensingh, Ouaka, Mbomou, Bangui, Nana-Mambéré, Ouham, Sangha-Mbaéré, Ombella M'Poko, Mambéré-Kadéï, Vakaga, Ouham Pendé, Lobaye, Haute-Kotto, Kémo, Nana-Gribizi, Bamingui-Bangoran, Haut-Mbomou, Nord, Extrême-Nord, Ouest, Nord-Ouest, Adamaoua, Sud-Ouest, Est, Littoral, Centre, Haut-Uele, Nord-Kivu, Ituri, Tshopo, Kwilu, Kasai, Sud-Kivu, Kongo-Central, Nord-Ubangi, Sud-Ubangi, Kasai-Central, Bas-Uele, Tanganyika, Lualaba, Kasai-Oriental, Kwango, Haut-Lomami, Haut-Katanga, Maniema, Kinshasa, Equateur, Lomami, Likouala, Brazzaville, Point-Noire, Pool, Bouenza, Cuvette, Lekoumou, Nzerekore, Boke, Kindia, Kankan, Faranah, Mamou, Labe, Kanifing Municipal Council, Central River, Upper River, West Coast, North Bank, Lower River, Bafata, Tombali, Cacheu, Sector Autonomo De Bissau, Biombo, Oio, Gabu, Bolama, Quinara, North, South, Artibonite, South-East, Grande'Anse, North-East, West, North-West, SULAWESI UTARA, SUMATERA UTARA, KALIMANTAN UTARA, JAWA BARAT, NUSA TENGGARA BARAT, NUSA TENGGARA TIMUR, SULAWESI SELATAN, JAMBI, JAWA TIMUR, KALIMANTAN SELATAN, BALI, BANTEN, JAWA TENGAH, RIAU, SUMATERA BARAT, KEPULAUAN RIAU, PAPUA, SULAWESI BARAT, BENGKULU, MALUKU UTARA, DAERAH ISTIMEWA YOGYAKARTA, KALIMANTAN BARAT, KALIMANTAN TENGAH, PAPUA BARAT, SUMATERA SELATAN, MALUKU, KEPULAUAN BANGKA BELITUNG, ACEH, DKI JAKARTA, SULAWESI TENGGARA, KALIMANTAN TIMUR, LAMPUNG, GORONTALO, SULAWESI TENGAH, Anbar, Babil, Baghdad, Basrah, Diyala, Dahuk, Erbil, Ninewa, Kerbala, Kirkuk, Missan, Muthanna, Najaf, Qadissiya, Salah al-Din, Sulaymaniyah, Thi-Qar, Wassit, Coast, North Eastern, Nairobi, Rift Valley, , Eastern, Central, Nyanza, Attapeu, Bokeo, Bolikhamxai, Champasack, Houaphan, Khammouan, Louangphabang, Louangnamtha, Oudomxai, Phongsaly, Salavan, Savannakhet, Sekong, Vientiane Capital, Vientiane, Xaignabouly, Xiengkhouang, Akkar, Mount Lebanon, Baalbek-El Hermel, Beirut, Bekaa, El Nabatieh, Nimba, Grand Kru, Grand Cape Mount, Gbarpolu, Grand Bassa, Rivercess, Montserrado, River Gee, Lofa, Bomi, Bong, Sinoe, Maryland, Margibi, Grand Gedeh, East, North Central, Uva, Western, Sabaragamuwa, Southern, Northern, North Western, Kidal, Gao, Tombouctou, Bamako, Kayes, Koulikoro, Mopti, Segou, Sikasso, Yangon, Rakhine, Shan (North), Kayin, Kachin, Shan (South), Mon, Tanintharyi, Mandalay, Kayah, Shan (East), Chin, Magway, Sagaing, Zambezia, Cabo_Delgado, Tete, Manica, Sofala, Maputo, Gaza, Niassa, Inhambane, Maputo City, Nampula, Hodh Ech Chargi, Hodh El Gharbi, Brakna, Adrar, Assaba, Guidimakha, Gorgol, Trarza, Tagant, Dakhlet-Nouadhibou, Nouakchott, Tiris-Zemmour, Central Region, Southern Region, Northern Region, Tillaberi, Tahoua, Agadez, Zinder, Dosso, Niamey, Maradi, Diffa, Abia, Borno, Yobe, Katsina, Kano, Kaduna, Gombe, Jigawa, Kebbi, Oyo, Sokoto, Zamfara, Lagos, Adamawa, Cordillera Administrative region, Region XIII, Region VI, Region V, Region III, Autonomous region in Muslim Mindanao, Region IV-A, Region VIII, Region VII, Region X, Region II, Region IV-B, Region XII, Region XI, Region I, National Capital region, Region IX, North Darfur, Blue Nile, Nile, Eastern Darfur, West Kordofan, Gedaref, West Darfur, North Kordofan, South Kordofan, Kassala, Khartoum, White Nile, South Darfur, Red Sea, Sennar, Al Gezira, Central Darfur, Tambacounda, Diourbel, Ziguinchor, Kaffrine, Dakar, Saint Louis, Fatick, Kolda, Louga, Kaolack, Kedougou, Matam, Thies, Sedhiou, Shabelle Hoose, Juba Hoose, Bay, Banadir, Shabelle Dhexe, Gedo, Hiraan, Woqooyi Galbeed, Awdal, Bari, Juba Dhexe, Togdheer, Nugaal, Galgaduud, Bakool, Sanaag, Mudug, Sool, Warrap, Unity, Jonglei, Northern Bahr el Ghazal, Upper Nile, Eastern Equatoria, Central Equatoria, Western Bahr el Ghazal, Western Equatoria, Lakes, Aleppo, Dar'a, Quneitra, Homs, Deir-ez-Zor, Damascus, Ar-Raqqa, Al-Hasakeh, Hama, As-Sweida, Rural Damascus, Tartous, Idleb, Lattakia, Ouaddai, Salamat, Wadi Fira, Sila, Ennedi Est, Batha, Tibesti, Logone Oriental, Logone Occidental, Guera, Hadjer Lamis, Lac, Mayo Kebbi Est, Chari Baguirmi, Ennedi Ouest, Borkou, Tandjile, Mandoul, Moyen Chari, Mayo Kebbi Ouest, Kanem, Barh El Gazal, Ndjaména, Al Dhale'e, Aden, Al Bayda, Al Maharah, Lahj, Al Jawf, Raymah, Al Hudaydah, Hajjah, Amran, Shabwah, Dhamar, Ibb, Sana'a, Al Mahwit, Marib, Hadramaut, Sa'ada, Amanat Al Asimah, Socotra, Taizz, Abyan