World Imagery provides one meter or better satellite and aerial imagery for most of the world’s landmass and lower resolution satellite imagery worldwide. The map is currently comprised of the following sources:Worldwide 15-m resolution TerraColor imagery at small and medium map scales.Maxar imagery basemap products around the world: Vivid Premium at 15-cm HD resolution for select metropolitan areas, Vivid Advanced 30-cm HD for more than 1,000 metropolitan areas, and Vivid Standard from 1.2-m to 0.6-cm resolution for the most of the world, with 30-cm HD across the United States and parts of Western Europe. More information on the Maxar products is included below. High-resolution aerial photography contributed by the GIS User Community. This imagery ranges from 30-cm to 3-cm resolution. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program.Maxar Basemap ProductsVivid PremiumProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product provides 15-cm HD resolution imagery.Vivid AdvancedProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product includes a mix of native 30-cm and 30-cm HD resolution imagery.Vivid StandardProvides a visually consistent and continuous image layer over large areas through advanced image mosaicking techniques, including tonal balancing and seamline blending across thousands of image strips. Available from 1.2-m down to 30-cm HD. More on Maxar HD.Updates and CoverageYou can use the World Imagery Updates app to learn more about recent updates and map coverage.CitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop or the ArcGIS Online Map Viewer you can see imagery citations. Citations returned apply only to the available imagery at that location and scale. You may need to zoom in to view the best available imagery. Citations can also be accessed in the World Imagery with Metadata web map.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid web map.FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.
World Imagery provides one meter or better satellite and aerial imagery in many parts of the world and lower resolution satellite imagery worldwide. The map includes 15m TerraColor imagery at small and mid-scales (~1:591M down to ~1:72k) and 2.5m SPOT Imagery (~1:288k to ~1:72k) for the world. The map features 0.5m resolution imagery in the continental United States and parts of Western Europe from DigitalGlobe. Additional DigitalGlobe sub-meter imagery is featured in many parts of the world. In the United States, 1 meter or better resolution NAIP imagery is available in some areas. In other parts of the world, imagery at different resolutions has been contributed by the GIS User Community. In select communities, very high resolution imagery (down to 0.03m) is available down to ~1:280 scale. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program. View the list of Contributors for the World Imagery Map.CoverageView the links below to learn more about recent updates and map coverage:What's new in World ImageryWorld coverage mapCitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop or the ArcGIS Online Map Viewer you can see imagery citations. Citations returned apply only to the available imagery at that location and scale. You may need to zoom in to view the best available imagery. Citations can also be accessed in the World Imagery with Metadata web map.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid web map. A similar raster web map, Imagery with Labels, is also available.FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.
World Imagery provides one meter or better satellite and aerial imagery in many parts of the world and lower resolution satellite imagery worldwide. The map includes 15-meter TerraColor imagery at small and mid-scales (~1:591M down to ~1:288k) for the world. The map features Maxar imagery at 0.3-meter resolution for select metropolitan areas around the world, 0.5-meter resolution across the United States and parts of Western Europe, and 0.6-meter resolution imagery across the rest of the world. In addition to commercial sources, the World Imagery map features high-resolution aerial photography contributed by the GIS User Community. This imagery ranges from 0.3-meter to 0.03-meter resolution, down to ~1:280 in select communities. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program.Updates and CoverageYou can use the World Imagery Updates app to learn more about recent updates and map coverage.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid (WGS84) web map.FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.Precise Tile RegistrationThe World Imagery map uses the improved tiling scheme “WGS84 Geographic, Version 2” to ensure proper tile positioning at higher resolutions (neighborhood level and beyond). The new tiling scheme is much more precise than tiling schemes of the legacy basemaps Esri released years ago. We recommend that you start using this new basemap for any new web maps in WGS84 that you plan to author. Due to the number of differences between the old and new tiling schemes, some web clients will not be able to overlay tile layers in the old and new tiling schemes in one web map.
World Imagery provides one meter or better satellite and aerial imagery for most of the world’s landmass and lower resolution satellite imagery worldwide. The map is currently comprised of the following sources:Worldwide 15-m resolution TerraColor imagery at small and medium map scales.Maxar imagery basemap products around the world: Vivid Premium at 15-cm HD resolution for select metropolitan areas, Vivid Advanced 30-cm HD for more than 1,000 metropolitan areas, and Vivid Standard from 1.2-m to 0.6-cm resolution for the most of the world, with 30-cm HD across the United States and parts of Western Europe. More information on the Maxar products is included below. High-resolution aerial photography contributed by the GIS User Community. This imagery ranges from 30-cm to 3-cm resolution. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program.Maxar Basemap ProductsVivid PremiumProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product provides 15-cm HD resolution imagery.Vivid AdvancedProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product includes a mix of native 30-cm and 30-cm HD resolution imagery.Vivid StandardProvides a visually consistent and continuous image layer over large areas through advanced image mosaicking techniques, including tonal balancing and seamline blending across thousands of image strips. Available from 1.2-m down to 30-cm HD. More on Maxar HD.Updates and CoverageYou can use the World Imagery Updates app to learn more about recent updates and map coverage.CitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop or the ArcGIS Online Map Viewer you can see imagery citations. Citations returned apply only to the available imagery at that location and scale. You may need to zoom in to view the best available imagery. Citations can also be accessed in the World Imagery with Metadata web map.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid web map.FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.
This layer is a subset from the World Imagery to focus on the Pacific Region. You can access World Imagery from here. World Imagery provides one meter or better satellite and aerial imagery in many parts of the world and lower resolution satellite imagery worldwide. The map includes 15-meter TerraColor imagery at small and mid-scales (~1:591M down to ~1:288k) for the world. The map features Maxar imagery at 0.3-meter resolution for select metropolitan areas around the world, 0.5-meter resolution across the United States and parts of Western Europe, and 0.6-1.2-meter resolution imagery across the rest of the world. In addition to commercial sources, the World Imagery map features high-resolution aerial photography contributed by the GIS User Community. This imagery ranges from 0.3-meter to 0.03-meter resolution, down to ~1:280 in select communities. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program.Updates and CoverageYou can use the World Imagery Updates app to learn more about recent updates and map coverage.CitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop or the ArcGIS Online Map Viewer you can see imagery citations. Citations returned apply only to the available imagery at that location and scale. You may need to zoom in to view the best available imagery. Citations can also be accessed in the World Imagery with Metadata web map.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid web map.FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.
This layer includes Landsat GLS, Landsat 8, and Landsat 9 imagery for use in visualization and analysis. This layer is time enabled and includes a number band combinations and indices rendered on demand. The Landsat 8 and 9 imagery includes nine multispectral bands from the Operational Land Imager (OLI) and two bands from the Thermal Infrared Sensor (TIRS). It is updated daily with new imagery directly sourced from the USGS Landsat collection on AWS.Geographic CoverageGlobal Land Surface.Polar regions are available in polar-projected Imagery Layers: Landsat Arctic Views and Landsat Antarctic Views.Temporal CoverageThis layer is updated daily with new imagery.Working in tandem, Landsat 8 and 9 revisit each point on Earth's land surface every 8 days.Most images collected from January 2015 to present are included.Approximately 5 images for each path/row from 2013 and 2014 are also included.This layer also includes imagery from the Global Land Survey* (circa 2010, 2005, 2000, 1990, 1975).Product LevelThe Landsat 8 and 9 imagery in this layer is comprised of Collection 2 Level-1 data.The imagery has Top of Atmosphere (TOA) correction applied.TOA is applied using the radiometric rescaling coefficients provided the USGS.The TOA reflectance values (ranging 0 – 1 by default) are scaled using a range of 0 – 10,000.Image Selection/FilteringA number of fields are available for filtering, including Acquisition Date, Estimated Cloud Cover, and Product ID.To isolate and work with specific images, either use the ‘Image Filter’ to create custom layers or add a ‘Layer Filter’ to restrict the default layer display to a specified image or group of images.To isolate a specific mission, use the Layer Filter and the dataset_id or SensorName fields.Visual RenderingThe default rendering in this layer is Agriculture (bands 6,5,2) with Dynamic Range Adjustment (DRA). Brighter green indicates more vigorous vegetation.The DRA version of each layer enables visualization of the full dynamic range of the images.Rendering (or display) of band combinations and calculated indices is done on-the-fly from the source images via Raster Functions.Various pre-defined Raster Functions can be selected or custom functions can be created.Pre-defined functions: Natural Color with DRA, Agriculture with DRA, Geology with DRA, Color Infrared with DRA, Bathymetric with DRA, Short-wave Infrared with DRA, Normalized Difference Moisture Index Colorized, NDVI Raw, NDVI Colorized, NBR Raw15 meter Landsat Imagery Layers are also available: Panchromatic and Pansharpened.Multispectral Bands
Band
Description
Wavelength (µm)
Spatial Resolution (m)
1
Coastal aerosol
0.43 - 0.45
30
2
Blue
0.45 - 0.51
30
3
Green
0.53 - 0.59
30
4
Red
0.64 - 0.67
30
5
Near Infrared (NIR)
0.85 - 0.88
30
6
SWIR 1
1.57 - 1.65
30
7
SWIR 2
2.11 - 2.29
30
8
Cirrus (in OLI this is band 9)
1.36 - 1.38
30
9
QA Band (available with Collection 1)*
NA
30
*More about the Quality Assessment BandTIRS Bands
Band
Description
Wavelength (µm)
Spatial Resolution (m)
10
TIRS1
10.60 - 11.19
100 * (30)
11
TIRS2
11.50 - 12.51
100 * (30)
*TIRS bands are acquired at 100 meter resolution, but are resampled to 30 meter in delivered data product.Additional Usage NotesImage exports are limited to 4,000 columns x 4,000 rows per request.This dynamic imagery layer can be used in Web Maps and ArcGIS Pro as well as web and mobile applications using the ArcGIS REST APIs.WCS and WMS compatibility means this imagery layer can be consumed as WCS or WMS services.The Landsat Explorer App is another way to access and explore the imagery.Data SourceLandsat imagery is sourced from the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Data is hosted in Amazon Web Services as part of their Public Data Sets program.For information, see Landsat 8 and Landsat 9.*The Global Land Survey includes images from Landsat 1 through Landsat 7. Band numbers and band combinations differ from those of Landsat 8, but have been mapped to the most appropriate band as in the above table. For more information about the Global Land Survey, visit GLS.
The Terrain 3D layer provides global elevation surface to use in ArcGIS 3D applicationsWhat can you do with this layer?Use this layer to visualize your maps and layers in 3D using applications like the Scene Viewer in ArcGIS Online and ArcGIS Pro. Show me how1) Working with Scenes in ArcGIS Pro or ArcGIS Online Scene Viewer2) Select an appropriate basemap or use your own3) Add your unique 2D and 3D data layers to the scene. Your data are simply added on the elevation. If your data have defined elevation (z coordinates) this information will be honored in the scene4) Share your work as a Web Scene with others in your organization or the publicDataset Coverage To see the coverage and sources of various datasets comprising this elevation layer, view the Elevation Coverage Map. Additionally, this layer uses data from Maxar’s Precision 3D Digital Terrain Models for parts of the globe.This layer is part of a larger collection of elevation layers. For more information, see the Elevation Layers group on ArcGIS Online.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Geospatial data of the irrigation canals in the Treasure Valley of Idaho. Hawk Stone with the Idaho DEQ used an initial irrigation canal coverage and built the remaining network using aerial imagery, discussions with the irrigation entities, and substantial field verification. To increase usability of the spatial data Taylor Tatum and Bridget Bittmann updated the named features using diversion data, additional features were added using remote sensing (World Imagery on ArcGIS Pro, https://www.arcgis.com/home/item.html?id=10df2279f9684e4a9f6a7f08febac2a9) and features were categorized into classes to more easily sort the dataset.
This basemap was designed with the Vizzuality team for use in the Half-Earth Project globe. The saturated palette and rich landcover tones are meant to engage an audience and to provide the sense that the earth is a charming and beautiful place worthy of thoughtful stewardship. As you zoom in, the saturated basemap is slowly replaced by imagery.This basemap is the major component of the Vibrant Map. The Vibrant Map is configured to use these basemap tiles from global to regional extents, then transition to Esri's World Imagery basemap tiles for a seamless transition from small to large scale.Find more information about this basemap, and its contributing data, here: https://www.esri.com/arcgis-blog/products/arcgis-pro/mapping/creating-the-half-earth-vibrant-basemap/Learn more about the Half-Earth Project here and explore highlighted areas of biodiversity here.Happy Mapping! John
This layer represents CMIP6 future projections of the variation in monthly precipitation totals over the course of the year. This index is the ratio of the standard deviation of the monthly total precipitation to the mean monthly total precipitation (also known as the coefficient of variation) and is expressed as a percentage. The larger the percentage, the greater the variability of precipitation. In some regions the CV values exceed 100%. These regions, such as deserts, may have such little rainfall that any variation creates an extreme percentage. This layer can be used to compare with recent climate histories to better understand the potential impacts of future climate change.WorldClim produced this projection as part of a series of 19 bioclimate variables identified by the USGS and provides this description:"Bioclimatic variables are derived from the monthly temperature and rainfall values in order to generate more biologically meaningful variables. These are often used in species distribution modeling and related ecological modeling techniques. The bioclimatic variables represent annual trends (e.g., mean annual temperature, annual precipitation) seasonality (e.g., annual range in temperature and precipitation) and extreme or limiting environmental factors (e.g., temperature of the coldest and warmest month, and precipitation of the wet and dry quarters). A quarter is a period of three months (1/4 of the year)."Time Extent: averages from 2021-2040, 2041-2060, 2061-2080, 2081-2100Units: mmCell Size: 2.5 minutes (~5 km)Source Type: StretchedPixel Type: 32 Bit FloatData Projection: GCS WGS84Mosaic Projection: GCS WGS84Extent: GlobalSource: WorldClim CMIP6 BioclimateClimate ScenariosThe CMIP6 climate experiments use Shared Socioeconomic Pathways (SSPs) to model future climate scenarios. Each SSP pairs a human/community behavior component with the traditional RCP greenhouse gas forcing from the previous CMIP5. Three SSPs were chosen by Esri to be included in the service based on user requests: SSP2 4.5, SSP3 7.0 and SSP5 8.5.SSPScenarioEstimated warming(2041–2060)Estimated warming(2081–2100)Very likely range in °C(2081–2100)SSP2-4.5intermediate GHG emissions:CO2 emissions around current levels until 2050, then falling but not reaching net zero by 21002.0 °C2.7 °C2.1 – 3.5SSP3-7.0high GHG emissions:CO2 emissions double by 21002.1 °C3.6 °C2.8 – 4.6SSP5-8.5very high GHG emissions:CO2 emissions triple by 20752.4 °C4.4 °C3.3 – 5.7While the 8.5 scenario is no longer generally considered likely, SSP3 7.0 has been included and is considered the high end of possibilities. SSP5 8.5 has been retained since many organizations report to this threshold. The warming associated with SSP2 4.5 is equivalent to the global targets set at the 2021 United Nations COP26 meetings in Glasgow. Processing the Climate DataWorldClim provides 20-year averaged outputs for the various SSPs from 24 global climate models. A selection of 13 models were averaged for each variable and time based on Mahony et al 2022. These models included ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5, CNRM-ESM2-1, EC-Earth3-Veg, GFDL-ESM4, GISS-E2-1-G, INM-CM5-0, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL. GFDL-ESM4 was not available for SSP2 4.5 or SSP5 8.5. Accessing the Multidimensional InformationThe time and SSP scenario are built into the layer using a multidimensional raster. Enable the time slider to move across the 20-year average periods. In ArcGIS Online and Pro, use the Multidimensional Filter to select the SSP (SSP2 4.5 is the default). What can you do with this layer?These multidimensional imagery tiles support analysis using ArcGIS Online or Pro. Use the Bioclimate Baseline layer to see the difference in pixels and calculate change from the historic period into the future. Use the Multidimensional tab in ArcGIS Pro to access a variety of useful tools. Each layer or variable can be styled using the Image Display options. Known Quality IssuesEach model is downscaled from ~100km resolution to ~5km resolution by WorldClim. Some artifacts are inevitable, especially at a global scale. Some variables have distinct transitions, especially in Greenland. Also, SSP2 4.5 has missing data for several variables in Antarctica.Related LayersBioclimate 1 Annual Mean TemperatureBioclimate 2 Mean Diurnal RangeBioclimate 3 IsothermalityBioclimate 4 Temperature SeasonalityBioclimate 5 Max Temperature of Warmest MonthBioclimate 6 Min Temperature Of Coldest MonthBioclimate 7 Temperature Annual RangeBioclimate 8 Mean Temperature Of Wettest QuarterBioclimate 9 Mean Temperature Of Driest QuarterBioclimate 10 Mean Temperature Of Warmest QuarterBioclimate 11 Mean Temperature Of Coldest QuarterBioclimate 12 Annual PrecipitationBioclimate 13 Precipitation Of Wettest MonthBioclimate 14 Precipitation Of Driest MonthBioclimate 15 Precipitation SeasonalityBioclimate 16 Precipitation Of Wettest QuarterBioclimate 17 Precipitation Of Driest QuarterBioclimate 18 Precipitation Of Warmest QuarterBioclimate 19 Precipitation Of Coldest QuarterBioclimate Baseline 1970-2000
Soil is the foundation of life on earth. More living things by weight live in the soil than upon it. It determines what crops we can grow, what structures we can build, what forests can take root.This layer contains the chemical soil variable organic carbon density (ocd) which measures carbon mass in proportion to volume of soil (mass divided by volume.)From Agriculture Victoria: Soil carbon provides a source of nutrients through mineralisation, helps to aggregate soil particles (structure) to provide resilience to physical degradation, increases microbial activity, increases water storage and availability to plants, and protects soil from erosion.This layer is a general, medium scale global predictive soil layer suitable for global mapping and decision support. In many places samples of soils do not exist so this map represents a prediction of what is most likely in that location. The predictions are made in six depth ranges by soilgrids.org, funded by ISRIC based in Wageningen, Netherlands.Each 250m pixel contains a value predicted for that area by soilgrids.org from best available data worldwide. Data for organic carbon density are provided at six depth ranges from the surface to 2 meters below the surface. Each variable and depth range may be accessed in the layer's multidimensional properties.Dataset SummaryPhenomenon Mapped: Organic carbon density in kg/m³Cell Size: 250 metersPixel Type: 32 bit float, converted from online data that is 16 Bit Unsigned IntegerCoordinate System: Web Mercator Auxiliary Sphere, projected via nearest neighbor from goode's homolosine land (250m)Extent: World land area except AntarcticaVisible Scale: All scales are visibleNumber of Columns and Rows: 160300, 100498Source: Soilgrids.orgPublication Date: May 2020Data from the soilgrids.org mean predictions for ocd were used to create this layer. You may access organic carbon density values in one of six depth ranges. To select one choose the depth variable in the multidimensional selector in your map client.Mean depth (cm)Actual depth range of data-2.50-5cm depth range-105-15cm depth range-22.515-30cm depth range-4530-60cm depth range-8060-100cm depth range-150100-200cm depth rangeWhat can you do with this Layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map: In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "world soils soilgrids" in the search box and browse to the layer. Select the layer then click Add to Map. In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "world soils soilgrids" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.This layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.More information about soilgrids layersAnswers to many questions may be found at soilgrids.org (ISRIC) frequently asked questions (faq) page about the data.To make this layer, Esri reprojected the expected value of ISRIC soil grids from soilgrids' source projection (goode's land WKID 54052) to web mercator projection, nearest neighbor, to facilitate online mapping. The resolution in web mercator projection is the same as the original projection, 250m. But keep in mind that the original dataset has been reprojected to make this web mercator version.This multidimensional soil collection serves the mean or expected value for each soil variable as calculated by soilgrids.org. For all other distributions of the soil variable, be sure to download the data directly from soilgrids.org. The data are available in VRT format and may be converted to other image formats within ArcGIS Pro.Accessing this layer's companion uncertainty layerBecause data quality varies worldwide, the uncertainty of the predicted value varies worldwide. A companion uncertainty layer exists for this layer which you can use to qualify the values you see in this map for analysis. Choose a variable and depth in the multidimensional settings of your map client to access the companion uncertainty layer.
Important Note: This item is in mature support as of April 2024 and will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.The combined processes of evaporation and transpiration, known as evapotranspiration (ET), plays a key role in the water cycle. Precipitation that falls on land can either run off in streams and rivers, soak into the ground, or return to the atmosphere through evapotranspiration. Water that evaporates returns directly to the atmosphere while water that is transpired is taken up by plant roots and lost to the atmosphere through the leaves.Evapotranspiration data can be used to calculate regional water and energy balance and soil water status and provides key information for water resource management. Potential evapotranspiration, the amount of ET that would occur if soil moisture were not limited, is a purely meteorological characteristic, based on air temperature, solar radiation, and wind speed. Actual evapotranspiration also depends on water availability, so it might occur at very close to the potential rate in a rainforest, but be much lower in a desert despite the higher potential there.Dataset SummaryPhenomenon Mapped: EvapotranspirationUnits: Millimeters per yearCell Size: 927.6623821756539 metersSource Type: ContinuousPixel Type: 16-bit unsigned integerData Coordinate System: Web Mercator Auxiliary SphereExtent: Global Source: University of Montana Numerical Terradynamic Simulation GroupPublication Date: March 10, 2015ArcGIS Server URL: https://landscape6.arcgis.com/arcgis/This layer provides access to a 1km cell sized raster of average annual evaporative loss from the land surface, measured in mm/year. Data are from the MOD16 Global Evapotranspiration Product, which is derived from MODIS imagery by a team of researchers at the University of Montana. This algorithm, which involves estimating land surface temperature and albedo and using them to solve the Penman-Monteith equation, is not valid over urban or barren land so these are shown as NoData, as is any open water. For all other pixels, the algorithm was used to estimate evapotranspiration for every 8-day period from 2000 to 2014 and these estimates have been averaged together to come up with the annual normal. You can also get access to the monthly totals using the MODIS Toolbox.What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "evapotranspiration" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "evapotranspiration" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.
The combined processes of evaporation and transpiration, known as evapotranspiration (ET), plays a key role in the water cycle. Precipitation that falls on land can either run off in streams and rivers, soak into the ground, or return to the atmosphere through evapotranspiration. Water that evaporates returns directly to the atmosphere while water that is transpired is taken up by plant roots and lost to the atmosphere through the leaves.Evapotranspiration data can be used to calculate regional water and energy balance and soil water status and provides key information for water resource management. Potential evapotranspiration, the amount of ET that would occur if soil moisture were not limited, is a purely meteorological characteristic, based on air temperature, solar radiation, and wind speed. Actual evapotranspiration also depends on water availability, so it might occur at very close to the potential rate in a rainforest, but be much lower in a desert despite the higher potential there.Dataset SummaryPhenomenon Mapped: EvapotranspirationUnits: Millimeters per yearCell Size: 927.6623821756539 metersSource Type: ContinuousPixel Type: 16-bit unsigned integerData Coordinate System: Web Mercator Auxiliary SphereExtent: Global Source: University of Montana Numerical Terradynamic Simulation GroupPublication Date: March 10, 2015ArcGIS Server URL: https://landscape6.arcgis.com/arcgis/This layer provides access to a 1km cell sized raster of average annual evaporative loss from the land surface, measured in mm/year. Data are from the MOD16 Global Evapotranspiration Product, which is derived from MODIS imagery by a team of researchers at the University of Montana. This algorithm, which involves estimating land surface temperature and albedo and using them to solve the Penman-Monteith equation, is not valid over urban or barren land so these are shown as NoData, as is any open water. For all other pixels, the algorithm was used to estimate evapotranspiration for every 8-day period from 2000 to 2014 and these estimates have been averaged together to come up with the annual normal. You can also get access to the monthly totals using the MODIS Toolbox.What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "evapotranspiration" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "evapotranspiration" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.
The Digital Geomorphic-GIS Map of the Shackleford Banks, North Carolina (1:10,000 scale 2012 imagery) is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (shkb_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (shkb_geomorphology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (calo_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (calo_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (shkb_geomorphology_metadata_faq.pdf). Please read the calo_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: East Carolina University. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (shkb_geomorphology_metadata.txt or shkb_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:10,000 and United States National Map Accuracy Standards features are within (horizontally) 8.5 meters or 27.8 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Important Note: This item is in mature support as of June 2024 and will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.In the United States, areas that are protected from development and managed for biodiversity conservation include Wilderness Areas, National Parks, National Wildlife Refuges, and Wild & Scenic Rivers. Understanding the geographic distribution of these protected areas and their level of protection is an important part of landscape-scale planning. The Protected Areas Database of the United States classifies lands into four GAP Status classes. This layer displays the two highest levels of protection GAP Status 1 and 2. These two classes are commonly referred to as protected areas.Dataset SummaryPhenomenon Mapped: Areas protected from development and managed to maintain biodiversity (GAP Status 1 and 2)Units: MetersCell Size: 30.92208102 metersSource Type: ThematicPixel Type: 8-bit unsigned integerData Coordinate System: WGS 1984Mosaic Projection: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, the US Virgin Islands, Guam, Northern Mariana Islands and American Samoa.Source: USGS National Gap Analysis Program PAD-US version 3.0Publication Date: July 2022ArcGIS Server URL: https://landscape10.arcgis.com/arcgis/This layer displays protected areas from the Protected Areas Database of the United States version 3.0 created by the USGS National Gap Analysis Program. This layer displays GAP Status 1, areas managed for biodiversity where natural disturbances are allowed to proceed or are mimicked by management, and GAP Status 2, areas managed for biodiversity where natural disturbance is suppressed. The source data for this layer are available here. A feature layer published from this dataset is also available. The polygon vector layer was converted to raster layers using the Polygon to Raster Tool using the National Elevation Dataset 1 arc second product as a snap raster.The service behind this layer was published with 8 functions allowing the user to select different views of the service. Other layers created from this service using functions include:USA Protected from Land Cover ConversionUSA Unprotected AreasUSA Protected Areas - Gap Status 1-4USA Protected Areas - Gap Status 1USA Protected Areas - Gap Status 2USA Protected Areas - Gap Status 3USA Protected Areas - Gap Status 4What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "Protected Areas" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "Protected Areas" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.
Important Note: This item is in mature support as of June 2024 and will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.The Protected Areas Database of the United States provides a comprehensive map of lands protected by government agencies and private land owners. This database combines federal lands with information on state and local government lands and conservation easements on private lands to create a powerful resource for land-use planning.Dataset SummaryPhenomenon Mapped: Areas mapped in the Protected Areas Data base of the United States (GAP Status 1-4)Units: MetersCell Size: 30.92208102 metersSource Type: ThematicPixel Type: 8-bit unsigned integerData Coordinate System: WGS 1984Mosaic Projection: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, the US Virgin Islands, Guam, Northern Mariana Islands and American Samoa.Source: USGS National Gap Analysis Program PAD-US version 3.0Publication Date: July 2022ArcGIS Server URL: https://landscape10.arcgis.com/arcgis/This layer displays lands mapped in Protected Areas Database of the United States version 3.0 created by the USGS National Gap Analysis Program. This layer displays all four GAP Status classes: GAP Status 1 - Areas managed for biodiversity where natural disturbances are allowed to proceedGAP Status 2 - Areas managed for biodiversity where natural disturbance is suppressedGAP Status 3 - Areas protected from land cover conversion but subject to extractive uses such as logging and miningGAP Status 4 - Areas with no known mandate for protectionThe source data for this layer are available here. A feature layer published from this dataset is also available. The polygon vector layer was converted to raster layers using the Polygon to Raster Tool using the National Elevation Dataset 1 arc second product as a snap raster.The service behind this layer was published with 8 functions allowing the user to select different views of the service. Other layers created from this service using functions include:USA Protected AreasUSA Protected from Land Cover ConversionUSA Unprotected AreasUSA Protected Areas - Gap Status 1USA Protected Areas - Gap Status 2USA Protected Areas - Gap Status 3USA Protected Areas - Gap Status 4What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "Protected Areas" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "Protected Areas" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.
This data represents a land use survey of San Joaquin County conducted by the California Department of Water Resources, North Central Region Office staff. Land use field boundaries were digitized with ArcGIS 10.5.1 using 2016 NAIP as the base, and Google Earth and Sentinel-2 imagery website were used as reference as well. Agricultural fields were delineated by following actual field boundaries instead of using the centerlines of roads to represent the field borders. Field boundaries were not drawn to represent legal parcel (ownership) boundaries and are not meant to be used as parcel boundaries. The field work for this survey was conducted from July 2017 through August 2017. Images, land use boundaries and ESRI ArcMap software were loaded onto Surface Pro tablet PCs that were used as the field data collection tools. Staff took these Surface Pro tablet into the field and virtually all agricultural fields were visited to identify the land use. Global positioning System (GPS) units connected to the laptops were used to confirm the surveyor's location with respect to the fields. Land use codes were digitized in the field using dropdown selections from defined domains. Agricultural fields the staff were unable to access were designated 'E' in the Class field for Entry Denied in accordance with the 2016 Land Use Legend. The areas designated with 'E' were also interpreted using a combination of Google Earth, Sentinel-2 Imagery website, Land IQ (LIQ) 2017 Delta Survey, and the county of San Joaquin 2017 Agriculture GIS feature class. Upon completion of the survey, a Python script was used to convert the data table into the standard land use format. ArcGIS geoprocessing tools and topology rules were used to locate errors for quality control. The primary focus of this land use survey is mapping agricultural fields. Urban residences and other urban areas were delineated using aerial photo interpretation. Some urban areas may have been missed. Rural residential land use was delineated by drawing polygons to surround houses and other buildings along with some of the surrounding land. These footprint areas do not represent the entire footprint of urban land. Water source information was not collected for this land use survey. Therefore, the water source has been designated as Unknown. Before final processing, standard quality control procedures were performed jointly by staff at DWR’s North Central Region, and at DRA's headquarters office under the leadership of Muffet Wilkerson, Senior Land and Water Use Supervisor. After quality control procedures were completed, the data was finalized. The positional accuracy of the digital line work, which is based upon the orthorectified NAIP imagery, is approximately 6 meters. The land use attribute accuracy for agricultural fields is high, because almost every delineated field was visited by a surveyor. The accuracy is 95 percent because some errors may have occurred. Possible sources of attribute errors are: a) Human error in the identification of crop types, b) Data entry errors. The 2017 San Joaquin County land use survey data was developed by the State of California, Department of Water Resources (DWR) through its Division of Regional Assistance (DRA). Land use boundaries were digitized, and land use was mapped by staff of DWR’s North Central Region using 2016 United States Department of Agriculture (USDA) National Agriculture Imagery Program (NAIP) one-meter resolution digital imagery, Sentinel-2 satellite imagery, and the Google Earth website. Land use polygons in agricultural areas were mapped in greater detail than areas of urban or native vegetation. Quality control procedures were performed jointly by staff at DWR’s DRA headquarters, and North Central Region. This data was developed to aid DWR’s ongoing efforts to monitor land use for the main purpose of determining current and projected water uses.
The .kmz file was created using the XTools Pro extension (12.0.1745) in ArcGIS 10.3. It utilises background imagery from an orthophoto created by Dr Arko Lucieer of TerraLuma (http://www.terraluma.net/) and the University of Tasmania for the Terrestrial and Nearshore Ecosystems research group at the Australian Antarctic Division (TNE/AAD). See the metadata record 'UAV_Biopiles_SABspill_ortho_1cm_ITRF2000' with ID 'casey_biopiles_ortho2013'.
The .kmz file also includes two vector layers which show: 1) The location of the excavation conducted in 2010/11 and 2011/12 to remove hydrocarbon contaminated soil associated with the Casey Main Power House spill (July, 1999); and 2) The location of the Permeable Reactive Barrier (PRB) funnel and gate used to control and treat hydrocarbon impacted melt waters from within the contaminated zone.
The product is associated with Australian Antarctic Science Project 4036: Remediation of petroleum contaminants in the Antarctic and subantarctic, and was produced as a visual aid for the publication 'On site remediation of a fuel spill and soil reuse in Antarctica' http://www.sciencedirect.com/science/article/pii/S0048969716315303
This layer represents CMIP6 future projections of mean temperature during the three coldest months of the year. This layer can be used to compare with recent climate histories to better understand the potential impacts of future climate change.WorldClim produced this projection as part of a series of 19 bioclimate variables identified by the USGS and provides this description:"Bioclimatic variables are derived from the monthly temperature and rainfall values in order to generate more biologically meaningful variables. These are often used in species distribution modeling and related ecological modeling techniques. The bioclimatic variables represent annual trends (e.g., mean annual temperature, annual precipitation) seasonality (e.g., annual range in temperature and precipitation) and extreme or limiting environmental factors (e.g., temperature of the coldest and warmest month, and precipitation of the wet and dry quarters). A quarter is a period of three months (1/4 of the year)."Time Extent: averages from 2021-2040, 2041-2060, 2061-2080, 2081-2100Units: deg CCell Size: 2.5 minutes (~5 km)Source Type: StretchedPixel Type: 32 Bit FloatData Projection: GCS WGS84Mosaic Projection: GCS WGS84Extent: GlobalSource: WorldClim CMIP6 BioclimateClimate ScenariosThe CMIP6 climate experiments use Shared Socioeconomic Pathways (SSPs) to model future climate scenarios. Each SSP pairs a human/community behavior component with the traditional RCP greenhouse gas forcing from the previous CMIP5. Three SSPs were chosen by Esri to be included in the service based on user requests: SSP2 4.5, SSP3 7.0 and SSP5 8.5.SSPScenarioEstimated warming(2041–2060)Estimated warming(2081–2100)Very likely range in °C(2081–2100)SSP2-4.5intermediate GHG emissions:CO2 emissions around current levels until 2050, then falling but not reaching net zero by 21002.0 °C2.7 °C2.1 – 3.5SSP3-7.0high GHG emissions:CO2 emissions double by 21002.1 °C3.6 °C2.8 – 4.6SSP5-8.5very high GHG emissions:CO2 emissions triple by 20752.4 °C4.4 °C3.3 – 5.7While the 8.5 scenario is no longer generally considered likely, SSP3 7.0 has been included and is considered the high end of possibilities. SSP5 8.5 has been retained since many organizations report to this threshold. The warming associated with SSP2 4.5 is equivalent to the global targets set at the 2021 United Nations COP26 meetings in Glasgow. Processing the Climate DataWorldClim provides 20-year averaged outputs for the various SSPs from 24 global climate models. A selection of 13 models were averaged for each variable and time based on Mahony et al 2022. These models included ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5, CNRM-ESM2-1, EC-Earth3-Veg, GFDL-ESM4, GISS-E2-1-G, INM-CM5-0, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL. GFDL-ESM4 was not available for SSP2 4.5 or SSP5 8.5. Accessing the Multidimensional InformationThe time and SSP scenario are built into the layer using a multidimensional raster. Enable the time slider to move across the 20-year average periods. In ArcGIS Online and Pro, use the Multidimensional Filter to select the SSP (SSP2 4.5 is the default). What can you do with this layer?These multidimensional imagery tiles support analysis using ArcGIS Online or Pro. Use the Bioclimate Baseline layer to see the difference in pixels and calculate change from the historic period into the future. Use the Multidimensional tab in ArcGIS Pro to access a variety of useful tools. Each layer or variable can be styled using the Image Display options. Known Quality IssuesEach model is downscaled from ~100km resolution to ~5km resolution by WorldClim. Some artifacts are inevitable, especially at a global scale. Some variables have distinct transitions, especially in Greenland. Also, SSP2 4.5 has missing data for several variables in Antarctica.Related LayersBioclimate 1 Annual Mean TemperatureBioclimate 2 Mean Diurnal RangeBioclimate 3 IsothermalityBioclimate 4 Temperature SeasonalityBioclimate 5 Max Temperature of Warmest MonthBioclimate 6 Min Temperature Of Coldest MonthBioclimate 7 Temperature Annual RangeBioclimate 8 Mean Temperature Of Wettest QuarterBioclimate 9 Mean Temperature Of Driest QuarterBioclimate 10 Mean Temperature Of Warmest QuarterBioclimate 11 Mean Temperature Of Coldest QuarterBioclimate 12 Annual PrecipitationBioclimate 13 Precipitation Of Wettest MonthBioclimate 14 Precipitation Of Driest MonthBioclimate 15 Precipitation SeasonalityBioclimate 16 Precipitation Of Wettest QuarterBioclimate 17 Precipitation Of Driest QuarterBioclimate 18 Precipitation Of Warmest QuarterBioclimate 19 Precipitation Of Coldest QuarterBioclimate Baseline 1970-2000
This web map is a subset of World Imagery Layer. World Imagery provides one meter or better satellite and aerial imagery in many parts of the world and lower resolution satellite imagery worldwide. The map includes 15-meter TerraColor imagery at small and mid-scales (~1:591M down to ~1:288k) for the world. The map features Maxar imagery at 0.3-meter resolution for select metropolitan areas around the world, 0.5-meter resolution across the United States and parts of Western Europe, and 0.6-1.2-meter resolution imagery across the rest of the world. In addition to commercial sources, the World Imagery map features high-resolution aerial photography contributed by the GIS User Community. This imagery ranges from 0.3-meter to 0.03-meter resolution, down to ~1:280 in select communities. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program.Updates and CoverageYou can use the World Imagery Updates app to learn more about recent updates and map coverage.CitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop or the ArcGIS Online Map Viewer you can see imagery citations. Citations returned apply only to the available imagery at that location and scale. You may need to zoom in to view the best available imagery. Citations can also be accessed in the World Imagery with Metadata web map.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid web map.FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.
World Imagery provides one meter or better satellite and aerial imagery for most of the world’s landmass and lower resolution satellite imagery worldwide. The map is currently comprised of the following sources:Worldwide 15-m resolution TerraColor imagery at small and medium map scales.Maxar imagery basemap products around the world: Vivid Premium at 15-cm HD resolution for select metropolitan areas, Vivid Advanced 30-cm HD for more than 1,000 metropolitan areas, and Vivid Standard from 1.2-m to 0.6-cm resolution for the most of the world, with 30-cm HD across the United States and parts of Western Europe. More information on the Maxar products is included below. High-resolution aerial photography contributed by the GIS User Community. This imagery ranges from 30-cm to 3-cm resolution. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program.Maxar Basemap ProductsVivid PremiumProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product provides 15-cm HD resolution imagery.Vivid AdvancedProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product includes a mix of native 30-cm and 30-cm HD resolution imagery.Vivid StandardProvides a visually consistent and continuous image layer over large areas through advanced image mosaicking techniques, including tonal balancing and seamline blending across thousands of image strips. Available from 1.2-m down to 30-cm HD. More on Maxar HD.Updates and CoverageYou can use the World Imagery Updates app to learn more about recent updates and map coverage.CitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop or the ArcGIS Online Map Viewer you can see imagery citations. Citations returned apply only to the available imagery at that location and scale. You may need to zoom in to view the best available imagery. Citations can also be accessed in the World Imagery with Metadata web map.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid web map.FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.