68 datasets found
  1. E

    Simple maps for Schools

    • find.data.gov.scot
    • dtechtive.com
    xml, zip
    Updated Feb 22, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Edinburgh (2017). Simple maps for Schools [Dataset]. http://doi.org/10.7488/ds/1914
    Explore at:
    xml(0.0039 MB), zip(5.35 MB)Available download formats
    Dataset updated
    Feb 22, 2017
    Dataset provided by
    University of Edinburgh
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    This is a collection of simple maps in PDF format that are designed to be printed off and used in the classroom. The include maps of Great Britain that show the location of major rivers, cities and mountains as well as maps of continents and the World. There is very little information on the maps to allow teachers to download them and add their own content to fit with their lesson plans. Customise one print out then photocopy them for your lesson. data not available yet, holding data set (7th August). Other. This dataset was first accessioned in the EDINA ShareGeo Open repository on 2012-08-07 and migrated to Edinburgh DataShare on 2017-02-22.

  2. Present-day countries in the British Empire 1600-2000

    • statista.com
    Updated Aug 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Present-day countries in the British Empire 1600-2000 [Dataset]. https://www.statista.com/statistics/1070352/number-current-countries-in-british-empire/
    Explore at:
    Dataset updated
    Aug 12, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United Kingdom
    Description

    In the century between Napoleon's defeat and the outbreak of the First World War (known as the "Pax Britannica"), the British Empire grew to become the largest and most powerful empire in the world. At its peak in the 1910s and 1920s, it encompassed almost one quarter of both the world's population and its land surface, and was known as "the empire on which the sun never sets". The empire's influence could be felt across the globe, as Britain could use its position to affect trade and economies in all areas of the world, including many regions that were not part of the formal empire (for example, Britain was able to affect trading policy in China for over a century, due to its control of Hong Kong and the neighboring colonies of India and Burma). Some historians argue that because of its economic, military, political and cultural influence, nineteenth century Britain was the closest thing to a hegemonic superpower that the world ever had, and possibly ever will have. "Rule Britannia" Due to the technological and logistical restrictions of the past, we will never know the exact borders of the British Empire each year, nor the full extent of its power. However, by using historical sources in conjunction with modern political borders, we can gain new perspectives and insights on just how large and influential the British Empire actually was. If we transpose a map of all former British colonies, dominions, mandates, protectorates and territories, as well as secure territories of the East India Trading Company (EIC) (who acted as the precursor to the British Empire) onto a current map of the world, we can see that Britain had a significant presence in at least 94 present-day countries (approximately 48 percent). This included large territories such as Australia, the Indian subcontinent, most of North America and roughly one third of the African continent, as well as a strategic network of small enclaves (such as Gibraltar and Hong Kong) and islands around the globe that helped Britain to maintain and protect its trade routes. The sun sets... Although the data in this graph does not show the annual population or size of the British Empire, it does give some context to how Britain has impacted and controlled the development of the world over the past four centuries. From 1600 until 1920, Britain's Empire expanded from a small colony in Newfoundland, a failing conquest in Ireland, and early ventures by the EIC in India, to Britain having some level of formal control in almost half of all present-day countries. The English language is an official language in all inhabited continents, its political and bureaucratic systems are used all over the globe, and empirical expansion helped Christianity to become the most practiced major religion worldwide. In the second half of the twentieth century, imperial and colonial empires were eventually replaced by global enterprises. The United States and Soviet Union emerged from the Second World War as the new global superpowers, and the independence movements in longstanding colonies, particularly Britain, France and Portugal, gradually succeeded. The British Empire finally ended in 1997 when it seceded control of Hong Kong to China, after more than 150 years in charge. Today, the United Kingdom consists of four constituent countries, and it is responsible for three crown dependencies and fourteen overseas territories, although the legacy of the British Empire can still be seen, and it's impact will be felt for centuries to come.

  3. GB Topographic

    • hub.arcgis.com
    Updated Apr 1, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri UK (2019). GB Topographic [Dataset]. https://hub.arcgis.com/maps/2d5a797a822b462e9aa5a6bdbf34bf2f
    Explore at:
    Dataset updated
    Apr 1, 2019
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri UK
    Area covered
    Description

    This style provides a detailed vector basemap for Great Britain using Open Data featuring the classic Esri topographic map style designed for use with a the GB Hillshade serviceThe vector tile layer is a similar style to the Esri World Topographic Map which is provided in Web Mercator projection.This service contains data supplied by the Ordnance Survey in their Zoomstack product (data last updated December 2024)The map projection is British National Grid.Customise this MapBecause this is a vector tile layer, you can customise the map to change its content and symbology. You are able to turn on and off layers and change their symbols. You can open this style in the vector tile style editor, make your changes and save a copy of your modified style to use yourself.Please send any feedback to VectorTiles@esriuk.com

  4. n

    Land Cover Map of Great Britain

    • cmr.earthdata.nasa.gov
    • access.earthdata.nasa.gov
    html
    Updated Apr 20, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Land Cover Map of Great Britain [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1214585797-SCIOPS
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Apr 20, 2017
    Time period covered
    Jan 1, 1970 - Present
    Area covered
    Description

    The Land Cover Map of Great Britain is a digital map derived from the classification of cloud-free satellite images from the American Landsat Thematic Mapper (TM).

           Seventeen key land cover classes were identified throughout Britain and,
           of these, eight classes were subdivided into, for example, upland and lowland
           variants, giving a total of 25 cover types.
    
           The 25 land cover types include built-up areas, arable farmland, pastures
           and forestry, together with a variety of semi-natural vegetation types.
    
           The classes are mapped on a 25 m raster overlay of the complete land
           surface of Great Britain. The data are held in digital form as a 25 m raster
           overlay of the British National Grid and can be presented in a variety of
           digital exchange formats.
    
           They can be summarised by 1 km squares (or other resolutions) of the
           National Grid and summary data are also held as Oracle tables.
    
            There are a wide range of users of the Land Cover Map in organisations
           concerned with environmental impact assessments, pollution control, water
           resources management, policy and planning, and environmental management.
    
           Its greatest potential can be realised through integration with other
           data, such as geology, soils, climate, biological records, agricultural
           statistics, and population census for use in decision support systems and
           geographical information systems.
    
  5. Digital Geological Map Data of Great Britain - 50k (DiGMapGB-50) version 7

    • search.datacite.org
    Updated 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    British Geological Survey (2013). Digital Geological Map Data of Great Britain - 50k (DiGMapGB-50) version 7 [Dataset]. http://doi.org/10.5285/33054628-1276-4487-b9bd-cd5faa8a395c
    Explore at:
    Dataset updated
    2013
    Dataset provided by
    DataCitehttps://www.datacite.org/
    British Geological Survey
    Authors
    British Geological Survey
    Description

    Data identifying landscape areas (shown as polygons) attributed with geological names. The scale of the data is 1:50 000 scale. Onshore coverage is provided for all of England, Wales, Scotland and the Isle of Man. Data are supplied as five themes: bedrock, superficial deposits, mass movement, artificial ground and linear features. Bedrock geology describes the main mass of solid rocks forming the earth’s crust. Bedrock is present everywhere, whether exposed at surface in outcrops or concealed beneath superficial deposits or water bodies. Geological names are based on the lithostratigraphic or lithodemic hierarchy. The lithostratigraphic scheme arranges rock bodies into units based on rock-type and geological time of formation. Where rock-types do not fit into the lithostratigraphic scheme, for example intrusive, deformed rocks subjected to heat and pressure resulting in new or changed rock types; then their classification is based on their rock–type or lithological composition. This assesses visible features such as texture, structure, mineralogy. Superficial deposits are younger geological deposits formed during the most recent geological time; the Quaternary. These deposits rest on older rocks or deposits referred to as bedrock. The superficial deposits theme defines landscape areas (shown as polygons) attributed with a geological name and their deposit–type or lithological composition. Mass movement describes areas where deposits have moved down slope under gravity to form landslips. These landslips can affect bedrock, superficial or artificial ground. Mass movement deposits are described in the BGS Rock Classification Scheme Volume 4. However this data also includes foundered strata, where ground has collapsed due to subsidence (this is not described in the Rock Classification Scheme). Caution should be exercised with this data; historically BGS has not always recorded mass movement events and due to the dynamic nature of occurrence significant changes may have occurred since the data was released. Artificial (man-made) theme (shown as polygons) indicates areas where the ground surface has been significantly modified by human activity. Whilst artificial ground may not be considered as part of the 'real geology' of bedrock and superficial deposits it does affect them. Artificial ground impacts on the near surface ground conditions which are important to human activities and economic development. Due to the constantly changing nature of land use and re-use/redevelopment, caution must be exercised when using this data as it represents a snapshot in time rather than an evolving picture hence the data may become dated very rapidly. Linear features (shown as polylines) represent geological structural features e.g. faults, folds or landforms e.g. buried channels, glacial drainage channels at the ground or bedrock surface (beneath superficial deposits). Linear features are associated most closely with the bedrock theme either as an intrinsic part of it for example marine bands or affecting it in the case of faults. Landform elements are associated with both bedrock and superficial deposits. All five data themes are available in vector format (containing the geometry of each feature linked to a database record describing their attributes) as ESRI shapefiles and are available under BGS data licence.

  6. a

    India: Ocean Base

    • sdgs.amerigeoss.org
    • hub.arcgis.com
    Updated Mar 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS Online (2022). India: Ocean Base [Dataset]. https://sdgs.amerigeoss.org/maps/f9356a98369043e9979549522ed37fc8
    Explore at:
    Dataset updated
    Mar 24, 2022
    Dataset authored and provided by
    GIS Online
    Area covered
    Description

    The map is designed to be used as a basemap by marine GIS professionals and as a reference map by anyone interested in ocean data. The basemap focuses on bathymetry. It also includes inland waters and roads, overlaid on land cover and shaded relief imagery.The Ocean Base map currently provides coverage for the world down to a scale of ~1:577k; coverage down to ~1:72k in United States coastal areas and various other areas; and coverage down to ~1:9k in limited regional areas.The World Ocean Reference is designed to be drawn on top of this map and provides selected city labels throughout the world. This web map lets you view the World Ocean Base with the Reference service drawn on top. Article in the Fall 2011 ArcUser about this basemap: "A Foundation for Ocean GIS".The map was compiled from a variety of best available sources from several data providers, including General Bathymetric Chart of the Oceans GEBCO_08 Grid version 20100927 and IHO-IOC GEBCO Gazetteer of Undersea Feature Names August 2010 version (https://www.gebco.net), National Oceanic and Atmospheric Administration (NOAA) and National Geographic for the oceans; and Garmin, HERE, and Esri for topographic content. You can contribute your bathymetric data to this service and have it served by Esri for the benefit of the Ocean GIS community. For details on the users who contributed bathymetric data for this map via the Community Maps Program, view the list of Contributors for the Ocean Basemap. The basemap was designed and developed by Esri. The GEBCO_08 Grid is largely based on a database of ship-track soundings with interpolation between soundings guided by satellite-derived gravity data. In some areas, data from existing grids are included. The GEBCO_08 Grid does not contain detailed information in shallower water areas, information concerning the generation of the grid can be found on GEBCO's website: https://www.gebco.net/data_and_products/gridded_bathymetry_data/. The GEBCO_08 Grid is accompanied by a Source Identifier (SID) Grid which indicates which cells in the GEBCO_08 Grid are based on soundings or existing grids and which have been interpolated. The latest version of both grids and accompanying documentation is available to download, on behalf of GEBCO, from the British Oceanographic Data Centre (BODC) https://www.bodc.ac.uk/data/online_delivery/gebco/.The names of the IHO (International Hydrographic Organization), IOC (intergovernmental Oceanographic Commission), GEBCO (General Bathymetric Chart of the Oceans), NERC (Natural Environment Research Council) or BODC (British Oceanographic Data Centre) may not be used in any way to imply, directly or otherwise, endorsement or support of either the Licensee or their mapping system.Tip: Here are some famous oceanic locations as they appear this map. Each URL launches this map at a particular location via parameters specified in the URL: Challenger Deep, Galapagos Islands, Hawaiian Islands, Maldive Islands, Mariana Trench, Tahiti, Queen Charlotte Sound, Notre Dame Bay, Labrador Trough, New York Bight, Massachusetts Bay, Mississippi Sound

  7. e

    Great Britain Non-gas Map

    • earth.org.uk
    Updated 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UK BEIS (2014). Great Britain Non-gas Map [Dataset]. https://www.earth.org.uk/bibliography/NGMdataset.html
    Explore at:
    Dataset updated
    2014
    Dataset provided by
    UK BEIS
    Description

    The non-gas map is a detailed map of Great Britain showing the distribution of properties without a gas grid connection across local authorities, LSOAs (lower-level super output areas) and, for registered users, postcodes. It also provided a wealth of other information about each properties and residents, from the type of house or flat to the type of heating and tenure.

  8. International Boundaries Coastalines - UNmap (2018)

    • datacore-gn.unepgrid.ch
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Geospatial Information Section, United Nations (UN-GIS), International Boundaries Coastalines - UNmap (2018) [Dataset]. https://datacore-gn.unepgrid.ch/geonetwork/srv/api/records/25db6f28-a0e7-491f-9975-eae2e6b65ed2
    Explore at:
    www:link-1.0-http--linkAvailable download formats
    Dataset provided by
    United Nationshttp://un.org/
    Time period covered
    2015
    Area covered
    Description

    United Nations map (known as UNmap) is a worldwide geospatial database consisting of country and geographic name information on a global scale. The data is designed for the production of cartographic documents and maps, including their dissemination via public electronic networks, for the Secretariat of the United Nations.The United Nations maintains the Data as a courtesy to those who may choose to access the Data. The Data is provided “as is”, without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose and non-infringement.

    Disclaimers: - The boundaries and names shown and the designations used on this map do not imply official endorsement or acceptance by the United Nations. - The designations employed and the presentation of material on this map do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. - Dotted line represents approximately the Line of Control in Jammu and Kashmir agreed upon by India and Pakistan. - The final status of Jammu and Kashmir has not yet been agreed upon by the parties. - Final boundary between the Republic of Sudan and the Republic of South Sudan has not yet been determined. - Final status of the Abyei area is not yet determined. - A dispute exists between the Governments of Argentina and the United Kingdom of Great Britain and Northern Ireland concerning sovereignty over the Falkland Islands (Malvinas).

    Generalization parametrisation for the data is developed based on the work of Douglas and Peucker (1973), Wang (1996) and the Polynomial Approximation with Exponential Kernel algorithm.The adequate generalized data should be used for the intended dissemination scale and not rely on software or platform-automated generalization as some specific geographic features are removed at scales. For instance, the region of Abyei is not included at the scale of 1:25 million but is included at lower scales.

    Maps produced using this layer should be featured with the appropriate disclaimer depending on the shown area.

    Source: United Nations International and Administrative Boundaries Resources

  9. Historic Maps Collection

    • metadata.bgs.ac.uk
    • cloud.csiss.gmu.edu
    • +2more
    http
    Updated 2000
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    British Geological Survey (2000). Historic Maps Collection [Dataset]. https://metadata.bgs.ac.uk/geonetwork/srv/api/records/9df8df51-6409-37a8-e044-0003ba9b0d98
    Explore at:
    httpAvailable download formats
    Dataset updated
    2000
    Dataset authored and provided by
    British Geological Surveyhttps://www.bgs.ac.uk/
    License

    http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1dhttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1d

    Time period covered
    1880 - 1940
    Area covered
    Description

    This dataset comprises 2 collections of maps. The facsmile collection contains all the marginalia information from the original map as well as the map itself, while the georectified collection contains just the map with an associated index for locating them. Each collection comprises approximately 101 000 monochrome images at 6-inch (1:10560) scale. Each image is supplied in .tiff format with appropriate ArcView and MapInfo world files, and shows the topography for all areas of England, Wales and Scotland as either quarter or, in some cases, full sheets. The images will cover the approximate epochs 1880's, 1900's, 1910's, 1920's and 1930's, but note that coverage is not countrywide for each epoch. The data was purchased by BGS from Sitescope, who obtained it from three sources - Royal Geographical Society, Trinity College Dublin and the Ordnance Survey. The data is for internal use by BGS staff on projects, and is available via a customised application created for the network GDI enabling users to search for and load the maps of their choice. The dataset will have many uses across all the geoscientific disciplines across which BGS operates, and should be viewed as a valuable addition to the BGS archive. There has been a considerable amount of work done during 2005, 2006 and 2007 to improve the accuracy of the OS Historic Map Collection. All maps should now be located to +- 50m or better. This is the best that can be achieved cost effectively. There are a number of reasons why the maps are inaccurate. Firstly, the original maps are paper and many are over 100 years old. They have not been stored in perfect condition. The paper has become distorted to varying degrees over time. The maps were therefore not accurate before scanning. Secondly, different generations of maps will have used different surveying methods and different spatial referencing systems. The same geographical object will not necessarily be in the same spatial location on subsequent editions. Thirdly, we are discussing maps, not plans. There will be cartographic generalisations which will affect the spatial representation and location of geographic objects. Finally, the georectification was not done in BGS but by the company from whom we purchased the maps. The company no longer exists. We do not know the methodology used for georectification.

  10. e

    Global Roads from OSM

    • covid19.esriuk.com
    Updated Aug 28, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Wide Fund for Nature (2017). Global Roads from OSM [Dataset]. https://covid19.esriuk.com/maps/9ac9ee3e7ac1429a888d57991585d5f5
    Explore at:
    Dataset updated
    Aug 28, 2017
    Dataset authored and provided by
    World Wide Fund for Nature
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Area covered
    Description

    DescriptionThe Highway key is a label from OpenStreetMap which aims to map and document any kind of road, street or path. More information on the tag here. LimitationsBear in mind that OpenStreetMap (OSM) is a digital map database of the world built through crowdsourced volunteered geographic information (VGI). Therefore, there is no systematic quality check performed on the data, and the detail, precision and accuracy varies across space. AttributesOBJECTID: Assigned by WWF. Unique identifierhighway: Type of road facility (motorway, trunk, primary, secondary, tertiary)name: Name of the road facilitysource: Source of the Feature (Landsat, Bing, GPS, Yahoo)surface: Type of surface (paved, unpaved, asphalt, ground) oneway: Direction of flow in only one direction (N: No, Y: Yes).maxspeed: Maximum speed allowed (km/h)lanes: Number of traffic lanes for general purpose traffic, also for buses and other specific classes of vehicleservice: Other type of facilities in the road (alley, driveway, parking_aisle)source: Source of the feature (Landsat, Bing)

  11. d

    Geospatial Data | Global Map data | Administrative boundaries | Global...

    • datarade.ai
    .json, .xml
    Updated Jul 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2024). Geospatial Data | Global Map data | Administrative boundaries | Global coverage | 245k Polygons [Dataset]. https://datarade.ai/data-products/geopostcodes-geospatial-data-global-map-data-administrati-geopostcodes-a4bf
    Explore at:
    .json, .xmlAvailable download formats
    Dataset updated
    Jul 4, 2024
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    United States, United Kingdom
    Description

    Overview

    Empower your location data visualizations with our edge-matched polygons, even in difficult geographies.

    Our self-hosted geospatial data cover administrative and postal divisions with up to 5 precision levels. All levels follow a seamless hierarchical structure with no gaps or overlaps.

    The geospatial data shapes are offered in high-precision and visualization resolution and are easily customized on-premise.

    Use cases for the Global Administrative Boundaries Database (Geospatial data, Map data)

    • In-depth spatial analysis

    • Clustering

    • Geofencing

    • Reverse Geocoding

    • Reporting and Business Intelligence (BI)

    Product Features

    • Coherence and precision at every level

    • Edge-matched polygons

    • High-precision shapes for spatial analysis

    • Fast-loading polygons for reporting and BI

    • Multi-language support

    For additional insights, you can combine the map data with:

    • Population data: Historical and future trends

    • UNLOCODE and IATA codes

    • Time zones and Daylight Saving Time (DST)

    Data export methodology

    Our location data packages are offered in variable formats, including - .shp - .gpkg - .kml - .shp - .gpkg - .kml - .geojson

    All geospatial data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.

    Why companies choose our map data

    • Precision at every level

    • Coverage of difficult geographies

    • No gaps, nor overlaps

    Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.

  12. UK Parliamentary Constituency boundaries for the island of Ireland,...

    • zenodo.org
    bin
    Updated Oct 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Charlton Martin; Charlton Martin; Eoin McLaughlin; Eoin McLaughlin; Jack Kavanagh; Jack Kavanagh (2024). UK Parliamentary Constituency boundaries for the island of Ireland, 1885-1918 [Dataset]. http://doi.org/10.5281/zenodo.13993331
    Explore at:
    binAvailable download formats
    Dataset updated
    Oct 25, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Charlton Martin; Charlton Martin; Eoin McLaughlin; Eoin McLaughlin; Jack Kavanagh; Jack Kavanagh
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2017
    Area covered
    Ireland, United Kingdom
    Description

    The 1885 UK parliamentary constituencies for Ireland were re-created in 2017 as part of a conference paper delivered at the Southern Irish Loyalism in Context conference at Maynooth University. The intial map only included the territory of the Irish Free State and was created by Martin Charlton and Jack Kavanagh. The remaining six counties of Ulster were completed by Eoin McLaughlin in 2018-19, the combined result is a GIS map of all the parliamentary constituecies across the island of Ireland for the period 1885-1918. The map is available in both ESRI Shapefile format and as a GeoPackage (GPKG). The methodology for creating the constituencies is outlined in detail below.

    Methodology

    A map showing the outlines of the 1855 – 1918 Constituency boundaries can be found on page 401 of Parliamentary Elections in Ireland, 1801-1922 (Dublin, 1978) by Brian Walker. This forms the basis for the creation of a set of digital boundaries which can then be used in a GIS. The general workflow involves allocating an 1885 Constituency identifier to each of the 309 Electoral Divisions present in the boundaries made available for the 2011 Census of Population data release by CSO. The ED boundaries are available in ‘shapefile’ format (a de facto standard for spatial data transfer). Once a Constituency identifier has been given to each ED, the GIS operation known as ‘dissolve’ is used to remove the boundaries between EDs in the same Constituency. To begin with Walker’s map was scanned at 1200 dots per inch in JPEG form. A scanned map cannot be linked to other spatial data without undergoing a process known as georeferencing. The CSO boundaries are available with spatial coordinates in the Irish National Grid system. The goal of georeferencing is to produce a rectified version of the map together with a world file. Rectification refers to the process of recomputing the pixel positions in the scanned map so that they are oriented with the ING coordinate system; the world file contains the extent in both the east-west and north-south directions of each pixel (in metres) and the coordinates of the most north-westerly pixel in the rectified image.

    Georeferencing involves the identification of Ground Control Points – these are locations on the scanned map for which the spatial coordinates in ING are known. The Georeferencing option in ArcGIS 10.4 makes this a reasonably pain free task. For this map 36 GCPs were required for a local spline transformation. The Redistribution of Seats Act 1885 provides the legal basis for the constituencies to be used for future elections in England, Wales, Scotland and Ireland. Part III of the Seventh Schedule of the Act defines the Constituencies in terms of Baronies, Parishes (and part Parishes) and Townlands for Ireland. Part III of the Sixth Schedule provides definitions for the Boroughs of Belfast and Dublin.

    The CSO boundary collection also includes a shapefile of Barony boundaries. This makes it possible code a barony in two ways: (i) allocated completely to a Division or (ii) split between two Divisions. For the first type, the code is just the division name, and for the second the code includes both (or more) division names. Allocation of these names to the data in the ED shapefile is accomplished by a spatial join operation. Recoding the areas in the split Baronies is done interactively using the GIS software’s editing option. EDs or groups of EDs can be selected on the screen, and the correct Division code updated in the attribute table. There are a handful of cases where an ED is split between divisions, so a simple ‘majority’ rule was used for the allocation. As the maps are to be used at mainly for displaying data at the national level, a misallocation is unlikely to be noticed. The final set of boundaries was created using the dissolve operation mentioned earlier. There were a dozen ED that had initially escaped being allocated a code, but these were quickly updated. Similarly, a few of the EDs in the split divisions had been overlooked; again updating was painless. This meant that the dissolve had to be run a few more times before all the errors have been corrected.

    For the Northern Ireland districts, a slightly different methodology was deployed which involved linking parishes and townlands along side baronies, using open data sources from the OSM Townlands.ie project and OpenData NI.

  13. a

    World Imagery

    • hub.arcgis.com
    Updated Jul 26, 2010
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    chan_cole (2010). World Imagery [Dataset]. https://hub.arcgis.com/maps/65c6038176a24aa6a3cb8a7e9e9bb9cf
    Explore at:
    Dataset updated
    Jul 26, 2010
    Dataset authored and provided by
    chan_cole
    Area covered
    Description

    This map presents low-resolution imagery for the world and high-resolution imagery for the United States and other areas around the world. The map includes NASA Blue Marble: Next Generation 500m resolution imagery at small scales (above 1:1,000,000), i-cubed 15m eSAT imagery at medium-to-large scales (down to 1:70,000) for the world, and USGS 15m Landsat imagery for Antarctica. The map features i-cubed Nationwide Prime 1m or better resolution imagery for the contiguous United States, Getmapping 1m resolution imagery for Great Britain, AeroGRID 1m to 2m resolution imagery for several countries in Europe, IGP 1m resolution imagery for Portugal, and GeoEye IKONOS 1m resolution imagery for Hawaii, parts of Alaska, and several hundred metropolitan areas around the world. i-cubed Nationwide Prime is a seamless, color mosaic of various commercial and government imagery sources, including Aerials Express 0.3 to 0.6m resolution imagery for metropolitan areas and the best available United States Department of Agriculture (USDA) National Agriculture Imagery Program (NAIP) imagery and enhanced versions of United States Geological Survey (USGS) Digital Ortho Quarter Quad (DOQQ) imagery for other areas. For more information on this map, visit us online.

  14. Data from: Stress Map of Great Britain and Ireland 2022

    • dataservices.gfz-potsdam.de
    Updated Feb 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrew Kingdon; John Williams; Mark Fellgett; Naomi Rettelbach; Oliver Heidbach; Naomi Rettelbach (2022). Stress Map of Great Britain and Ireland 2022 [Dataset]. http://doi.org/10.5880/wsm.greatbritainireland2022
    Explore at:
    Dataset updated
    Feb 8, 2022
    Dataset provided by
    DataCitehttps://www.datacite.org/
    GFZ German Research Center for Geosciences
    Authors
    Andrew Kingdon; John Williams; Mark Fellgett; Naomi Rettelbach; Oliver Heidbach; Naomi Rettelbach
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Stress maps show the orientation of the current maximum horizontal stress (SHmax) in the earth's crust. Assuming that the vertical stress (SV) is a principal stress, SHmax defines the orientation of the 3D stress tensor; the minimum horizontal stress Shmin is than perpendicular to SHmax. In stress maps SHmax orientations are represented as lines of different lengths. The length of the line is a measure of the quality of data and the symbol shows the stress indicator and the color the stress regime. The stress data are freely available and part of the World Stress Map (WSM) project. For more information about the data and criteria of data analysis and quality mapping are plotted along the WSM website at http://www.world-stress-map.org. The stress map of Great Britain and Ireland 2022 is based on the WSM database release 2016. All data records have been checked and we added a number of new data from earthquake focal mechanisms from the national earthquake catalog and borehole data. The number of data records has increased from n=377 in the WSM 2016 to n=474 in this map. Some locations and assigned quality of WSM 2016 data were corrected due to new information. The digital version of the map is a layered pdf generated with GMT (Wessel et al., 2019) using the topography of Tozer et al. (2019). We also provide on a regular 0.1° grid values of the mean SHmax orientation which have a standard deviation < 25°. The mean SHmax orientation is estimated using the tool stress2grid of Ziegler and Heidbach (2019). For this estimation we used only data records with A-C quality and applied weights according to data quality and distance to the grid points. The stress map is available at the landing page of the GFZ Data Services at http://doi.org/10.5880/WSM.GreatBritainIreland2022 where further information is provided.

  15. n

    Small Scale Maps Of Britain

    • cmr.earthdata.nasa.gov
    Updated Apr 20, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Small Scale Maps Of Britain [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1214595383-SCIOPS
    Explore at:
    Dataset updated
    Apr 20, 2017
    Time period covered
    Jan 1, 1970 - Present
    Area covered
    Description

    A series of small scale maps, showing broad categories of geology, soils, climate, etc.; including locations of sample sites and other data sources.

  16. u

    Accessibility To Cities 2015

    • datacore-gn.unepgrid.ch
    Updated May 16, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Accessibility To Cities 2015 (2018). Accessibility To Cities 2015 [Dataset]. https://datacore-gn.unepgrid.ch/geonetwork/srv/api/records/dd9da394-1f82-423a-a290-24744ba79a78
    Explore at:
    ogc:wms-1.3.0-http-get-map, www:link-1.0-http--linkAvailable download formats
    Dataset updated
    May 16, 2018
    Dataset provided by
    Accessibility To Cities 2015
    Time period covered
    Jan 1, 2015 - Dec 31, 2015
    Area covered
    Description

    This global accessibility map enumerates land-based travel time to the nearest densely-populated area for all areas between 85 degrees north and 60 degrees south for a nominal year 2015. Densely-populated areas are defined as contiguous areas with 1,500 or more inhabitants per square kilometre or a majority of built-up land cover types coincident with a population centre of at least 50,000 inhabitants. This map was produced through a collaboration between MAP (University of Oxford), Google, the European Union Joint Research Centre (JRC), and the University of Twente, Netherlands.The underlying datasets used to produce the map include roads (comprising the first ever global-scale use of Open Street Map and Google roads datasets), railways, rivers, lakes, oceans, topographic conditions (slope and elevation), landcover types, and national borders. These datasets were each allocated a speed or speeds of travel in terms of time to cross each pixel of that type. The datasets were then combined to produce a "friction surface"; a map where every pixel is allocated a nominal overall speed of travel based on the types occurring within that pixel. Least-cost-path algorithms (running in Google Earth Engine and, for high-latitude areas, in R) were used in conjunction with this friction surface to calculate the time of travel from all locations to the nearest (in time) city. The cities dataset used is the high-density-cover product created by the Global Human Settlement Project. Each pixel in the resultant accessibility map thus represents the modelled shortest time from that location to a city. Authors: D.J. Weiss, A. Nelson, H.S. Gibson, W. Temperley, S. Peedell, A. Lieber, M. Hancher, E. Poyart, S. Belchior, N. Fullman, B. Mappin, U. Dalrymple, J. Rozier, T.C.D. Lucas, R.E. Howes, L.S. Tusting, S.Y. Kang, E. Cameron, D. Bisanzio, K.E. Battle, S. Bhatt, and P.W. Gething. A global map of travel time to cities to assess inequalities in accessibility in 2015. (2018). Nature. doi:10.1038/nature25181

    Processing notes: Data were processed from numerous sources including OpenStreetMap, Google Maps, Land Cover mapping, and others, to generate a global friction surface of average land-based travel speed. This accessibility surface was then derived from that friction surface via a least-cost-path algorithm finding at each location the closest point from global databases of population centres and densely-populated areas. Please see the associated publication for full details of the processing.

    Source: https://map.ox.ac.uk/research-project/accessibility_to_cities/

  17. d

    Map Data | 164M+ Points | Global and Local Map Data

    • datarade.ai
    Updated Apr 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    InfobelPRO (2025). Map Data | 164M+ Points | Global and Local Map Data [Dataset]. https://datarade.ai/data-products/map-data-164m-points-global-and-local-map-data-infobelpro
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Apr 14, 2025
    Dataset authored and provided by
    InfobelPRO
    Area covered
    Guinea-Bissau, Brunei Darussalam, Finland, Gabon, New Caledonia, Belarus, Malta, French Polynesia, Timor-Leste, Iceland
    Description

    Unlock precise, high-quality Map data covering 164M+ verified locations across 220+ countries. With 50+ enriched attributes including coordinates, building structures, and spatial geometry our dataset provides the granularity and accuracy needed for in-depth spatial analysis. Powered by AI-driven enrichment and deduplication, and backed by 30+ years of expertise, our GIS solutions support industries ranging from mapping and navigation to urban planning and market analysis, helping businesses and organizations make smarter, data-driven decisions.

    Key use cases of GIS Data helping our customers :

    1. Optimize Mapping & Spatial Analysis : Use GIS data to analyse landscapes, urban infrastructure, and competitor locations, ensuring data-driven planning and decision-making.
    2. Enhance Navigation & Location-Based Services : Improve real-time route planning, asset tracking, and EV charging station discovery for seamless location-based experiences.
    3. Identify Strategic Sites for Business Expansion : Leverage GIS intelligence to select optimal retail sites, franchise locations, and warehouses with precision.
    4. Improve Logistics & Address Accuracy : Streamline delivery networks, validate addresses, and optimize courier routes to boost efficiency and customer satisfaction.
    5. Support Environmental & Urban Development Initiatives : Utilize GIS insights for disaster preparedness, sustainable city planning, and land-use management.
  18. n

    QESDI: Ecosystem map

    • data-search.nerc.ac.uk
    • catalogue.ceda.ac.uk
    Updated May 31, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). QESDI: Ecosystem map [Dataset]. https://data-search.nerc.ac.uk/geonetwork/srv/search?keyword=ecosystems
    Explore at:
    Dataset updated
    May 31, 2021
    Description

    QUEST projects both used and produced an immense variety of global data sets that needed to be shared efficiently between the project teams. These global synthesis data sets are also a key part of QUEST's legacy, providing a powerful way of communicating the results of QUEST among and beyond the UK Earth System research community. This dataset contains a map of a ecosystem. This map depicts the 825 terrestrial ecoregions of the globe. Ecoregions are relatively large units of land contain ing distinct assemblages of natural communities and species, with boundaries that approximate the original extent of natural communities prior to major land-use change. This comprehensive, global map provides a useful framework for conducting biogeographical or macroecological research, for identifying areas of outstanding biodiversity and conse rvation priority, for assessing the representation and gaps in conservation efforts worldwide, and for communicating the global distribution of natural communities on earth.

  19. Digital Map Market Analysis, Size, and Forecast 2025-2029: North America (US...

    • technavio.com
    Updated Jun 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Digital Map Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, and UK), APAC (China, India, Indonesia, Japan, and South Korea), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/digital-map-market-industry-analysis
    Explore at:
    Dataset updated
    Jun 18, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Canada, United States, Global
    Description

    Snapshot img

    Digital Map Market Size 2025-2029

    The digital map market size is forecast to increase by USD 31.95 billion at a CAGR of 31.3% between 2024 and 2029.

    The market is driven by the increasing adoption of intelligent Personal Digital Assistants (PDAs) and the availability of location-based services. PDAs, such as smartphones and smartwatches, are becoming increasingly integrated with digital map technologies, enabling users to navigate and access real-time information on-the-go. The integration of Internet of Things (IoT) enables remote monitoring of cars and theft recovery. Location-based services, including mapping and navigation apps, are a crucial component of this trend, offering users personalized and convenient solutions for travel and exploration. However, the market also faces significant challenges.
    Ensuring the protection of sensitive user information is essential for companies operating in this market, as trust and data security are key factors in driving user adoption and retention. Additionally, the competition in the market is intense, with numerous players vying for market share. Companies must differentiate themselves through innovative features, user experience, and strong branding to stand out in this competitive landscape. Security and privacy concerns continue to be a major obstacle, as the collection and use of location data raises valid concerns among consumers.
    

    What will be the Size of the Digital Map Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free Sample

    In the market, cartographic generalization and thematic mapping techniques are utilized to convey complex spatial information, transforming raw data into insightful visualizations. Choropleth maps and dot density maps illustrate distribution patterns of environmental data, economic data, and demographic data, while spatial interpolation and predictive modeling enable the estimation of hydrographic data and terrain data in areas with limited information. Urban planning and land use planning benefit from these tools, facilitating network modeling and location intelligence for public safety and emergency management.

    Spatial regression and spatial autocorrelation analyses provide valuable insights into urban development trends and patterns. Network analysis and shortest path algorithms optimize transportation planning and logistics management, enhancing marketing analytics and sales territory optimization. Decision support systems and fleet management incorporate 3D building models and real-time data from street view imagery, enabling effective resource management and disaster response. The market in the US is experiencing robust growth, driven by the integration of Geographic Information Systems (GIS), Global Positioning Systems (GPS), and advanced computer technology into various industries.

    How is this Digital Map Industry segmented?

    The digital map industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Application
    
      Navigation
      Geocoders
      Others
    
    
    Type
    
      Outdoor
      Indoor
    
    
    Solution
    
      Software
      Services
    
    
    Deployment
    
      On-premises
      Cloud
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        UK
    
    
      APAC
    
        China
        India
        Indonesia
        Japan
        South Korea
    
    
      Rest of World (ROW)
    

    By Application Insights

    The navigation segment is estimated to witness significant growth during the forecast period. Digital maps play a pivotal role in various industries, particularly in automotive applications for driver assistance systems. These maps encompass raster data, aerial photography, government data, and commercial data, among others. Open-source data and proprietary data are integrated to ensure map accuracy and up-to-date information. Map production involves the use of GPS technology, map projections, and GIS software, while map maintenance and quality control ensure map accuracy. Location-based services (LBS) and route optimization are integral parts of digital maps, enabling real-time navigation and traffic data.

    Data validation and map tiles ensure data security. Cloud computing facilitates map distribution and map customization, allowing users to access maps on various devices, including mobile mapping and indoor mapping. Map design, map printing, and reverse geocoding further enhance the user experience. Spatial analysis and data modeling are essential for data warehousing and real-time navigation. The automotive industry's increasing adoption of connected cars and long-term evolution (LTE) technologies have fueled the demand for digital maps. These maps enable driver assistance app

  20. e

    Global Railways from OSM

    • covid19.esriuk.com
    Updated Aug 23, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Wide Fund for Nature (2017). Global Railways from OSM [Dataset]. https://covid19.esriuk.com/maps/panda::global-railways-from-osm
    Explore at:
    Dataset updated
    Aug 23, 2017
    Dataset authored and provided by
    World Wide Fund for Nature
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Area covered
    Description

    DescriptionThe railway key is a label from OpenStreetMap which aims to map and document all types of railways including light rail, mainline railways, metros, monorails and trams. More information on the tag here. LimitationsBear in mind that OpenStreetMap (OSM) is a digital map database of the world built through crowdsourced volunteered geographic information (VGI). Therefore, there is no systematic quality check performed on the data, and the detail, precision and accuracy varies across space.AttributesOBJECTID: Assigned by WWF. Unique identifierrailway: Type or status of railway facility (platform, subway, rail)electrified: Source of electricity (contact_line: a power line over the train head, rail: a third rail near the track supplying the train with power, yes: electrified track, but no details available, no: track with no power supply)Gauge: Voltage used for the railway facility operation (W)

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
University of Edinburgh (2017). Simple maps for Schools [Dataset]. http://doi.org/10.7488/ds/1914

Simple maps for Schools

Explore at:
xml(0.0039 MB), zip(5.35 MB)Available download formats
Dataset updated
Feb 22, 2017
Dataset provided by
University of Edinburgh
License

ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically

Description

This is a collection of simple maps in PDF format that are designed to be printed off and used in the classroom. The include maps of Great Britain that show the location of major rivers, cities and mountains as well as maps of continents and the World. There is very little information on the maps to allow teachers to download them and add their own content to fit with their lesson plans. Customise one print out then photocopy them for your lesson. data not available yet, holding data set (7th August). Other. This dataset was first accessioned in the EDINA ShareGeo Open repository on 2012-08-07 and migrated to Edinburgh DataShare on 2017-02-22.

Search
Clear search
Close search
Google apps
Main menu