In 2023, the global population will reach approximately eight billion people. This is double what the population was just 48 years previously, in 1975, when it reached four billion people. When we compare growth rates over the selected periods, it took an average of 12 years per one billion people between 1975 and 2023, which is almost double the rate of the period between 1928 and 1975, and over ten times faster than growth between 1803 and 1928. Additionally, it took almost 700 years for the world population to increase by 250 million people during the Middle Ages, in contrast, an increase of 250 million has been observed every three to four years since the 1960s.
Until the 1800s, population growth was incredibly slow on a global level. The global population was estimated to have been around 188 million people in the year 1CE, and did not reach one billion until around 1803. However, since the 1800s, a phenomenon known as the demographic transition has seen population growth skyrocket, reaching eight billion people in 2023, and this is expected to peak at over 10 billion in the 2080s.
The Global Human Settlement Layer: Population and Built-Up Estimates, and Degree of Urbanization Settlement Model Grid data set provides gridded data on human population (GHS-POP), built-up area (GHS-BUILT), and degree of urbanization (GHS-SMOD) across four time periods: 1975, 1990, 2000, and 2014 (BUILT) or 2015 (POP, SMOD). GHS-BUILT describes the percent built-up area for each 30 arc-second grid cell (approximately 1 km at the equator) based on Landsat imagery from each of the four time periods. GHS-POP consists of census data from the 2010 round of global census from Gridded Population of the World, Version 4, Revision 10 (GPWv4.10) spatially-allocated within census Units based on the percent built-up areas from GHS-BUILT. GHS-SMOD uses GHS-BUILT and GHS-POP in order to develop a standardized classification of degree of urbanization grid. The original data from the Joint Research Centre of the European Commission (JRC-EC) has been combined into a single data package in GeoTIFF format and reprojected from Mollweide Equal Area into WGS84 at 9 arc-second and 30 arc-second horizontal resolutions in order to support integration with a variety of global raster data sets.
The United States Census Bureau’s international dataset provides estimates of country populations since 1950 and projections through 2050. Specifically, the dataset includes midyear population figures broken down by age and gender assignment at birth. Additionally, time-series data is provided for attributes including fertility rates, birth rates, death rates, and migration rates.
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.census_bureau_international.
What countries have the longest life expectancy? In this query, 2016 census information is retrieved by joining the mortality_life_expectancy and country_names_area tables for countries larger than 25,000 km2. Without the size constraint, Monaco is the top result with an average life expectancy of over 89 years!
SELECT
age.country_name,
age.life_expectancy,
size.country_area
FROM (
SELECT
country_name,
life_expectancy
FROM
bigquery-public-data.census_bureau_international.mortality_life_expectancy
WHERE
year = 2016) age
INNER JOIN (
SELECT
country_name,
country_area
FROM
bigquery-public-data.census_bureau_international.country_names_area
where country_area > 25000) size
ON
age.country_name = size.country_name
ORDER BY
2 DESC
/* Limit removed for Data Studio Visualization */
LIMIT
10
Which countries have the largest proportion of their population under 25? Over 40% of the world’s population is under 25 and greater than 50% of the world’s population is under 30! This query retrieves the countries with the largest proportion of young people by joining the age-specific population table with the midyear (total) population table.
SELECT
age.country_name,
SUM(age.population) AS under_25,
pop.midyear_population AS total,
ROUND((SUM(age.population) / pop.midyear_population) * 100,2) AS pct_under_25
FROM (
SELECT
country_name,
population,
country_code
FROM
bigquery-public-data.census_bureau_international.midyear_population_agespecific
WHERE
year =2017
AND age < 25) age
INNER JOIN (
SELECT
midyear_population,
country_code
FROM
bigquery-public-data.census_bureau_international.midyear_population
WHERE
year = 2017) pop
ON
age.country_code = pop.country_code
GROUP BY
1,
3
ORDER BY
4 DESC /* Remove limit for visualization*/
LIMIT
10
The International Census dataset contains growth information in the form of birth rates, death rates, and migration rates. Net migration is the net number of migrants per 1,000 population, an important component of total population and one that often drives the work of the United Nations Refugee Agency. This query joins the growth rate table with the area table to retrieve 2017 data for countries greater than 500 km2.
SELECT
growth.country_name,
growth.net_migration,
CAST(area.country_area AS INT64) AS country_area
FROM (
SELECT
country_name,
net_migration,
country_code
FROM
bigquery-public-data.census_bureau_international.birth_death_growth_rates
WHERE
year = 2017) growth
INNER JOIN (
SELECT
country_area,
country_code
FROM
bigquery-public-data.census_bureau_international.country_names_area
Historic (none)
United States Census Bureau
Terms of use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
See the GCP Marketplace listing for more details and sample queries: https://console.cloud.google.com/marketplace/details/united-states-census-bureau/international-census-data
Throughout most of human history, global population growth was very low; between 10,000BCE and 1700CE, the average annual increase was just 0.04 percent. Therefore, it took several thousand years for the global population to reach one billion people, doing so in 1803. However, this period marked the beginning of a global phenomenon known as the demographic transition, from which point population growth skyrocketed. With the introduction of modern medicines (especially vaccination), as well as improvements in water sanitation, food supply, and infrastructure, child mortality fell drastically and life expectancy increased, causing the population to grow. This process is linked to economic and technological development, and did not take place concurrently across the globe; it mostly began in Europe and other industrialized regions in the 19thcentury, before spreading across Asia and Latin America in the 20th century. As the most populous societies in the world are found in Asia, the demographic transition in this region coincided with the fastest period of global population growth. Today, Sub-Saharan Africa is the region at the earliest stage of this transition. As population growth slows across the other continents, with the populations of the Americas, Asia, and Europe expected to be in decline by the 2070s, Africa's population is expected to grow by three billion people by the end of the 21st century.
The Gridded Population of the World, Version 4 (GPWv4): Administrative Unit Center Points with Population Estimates, Revision 11 consists of UN WPP-adjusted population estimates and densities for the years 2000, 2005, 2010, 2015 and 2020, as well as the basic demographic characteristics (age and sex) for the year 2010. The data set also includes administrative name, land and water area, and data context by administrative Unit center point (centroid) location. The center points are based on approximately 13.5 million input administrative Units used in GPWv4, therefore, these files require hardware and software that can read large amounts of data into memory.
Population of countries (1960 to 2023) dataset from World Bank.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a hybrid gridded dataset of demographic data for China from 1979 to 2100, given as 21 five-year age groups of population divided by gender every year at a 0.5-degree grid resolution.
The historical period (1979-2020) part of this dataset combines the NASA SEDAC Gridded Population of the World version 4 (GPWv4, UN WPP-Adjusted Population Count) with gridded population from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP, Histsoc gridded population data).
The projection (2010-2100) part of this dataset is resampled directly from Chen et al.’s data published in Scientific Data.
This dataset includes 31 provincial administrative districts of China, including 22 provinces, 5 autonomous regions, and 4 municipalities directly under the control of the central government (Taiwan, Hong Kong, and Macao were excluded due to missing data).
Method - demographic fractions by age and gender in 1979-2020
Age- and gender-specific demographic data by grid cell for each province in China are derived by combining historical demographic data in 1979-2020 with the national population census data provided by the National Statistics Bureau of China.
To combine the national population census data with the historical demographics, we constructed the provincial fractions of demographic in each age groups and each gender according to the fourth, fifth and sixth national population census, which cover the year of 1979-1990, 1991-2000 and 2001-2020, respectively. The provincial fractions can be computed as:
\(\begin{align*} \begin{split} f_{year,province,age,gender}= \left \{ \begin{array}{lr} POP_{1990,province,age,gender}^{4^{th}census}/POP_{1990,province}^{4^{th}census} & 1979\le\mathrm{year}\le1990\\ POP_{2000,province,age,gender}^{5^{th}census}/POP_{2000,province}^{5^{th}census} & 1991\le\mathrm{year}\le2000\\ POP_{2010,province,age,gender}^{6^{th}census}/POP_{2010,province}^{6^{th}census}, & 2001\le\mathrm{year}\le2020 \end{array} \right. \end{split} \end{align*}\)
Where:
- \( f_{\mathrm{year,province,age,gender}}\)is the fraction of population for a given age, a given gender in each province from the national census from 1979-2020.
- \(\mathrm{PO}\mathrm{P}_{\mathrm{year,province,age,gender}}^{X^{\mathrm{th}}\mathrm{census} }\) is the total population for a given age, a given gender in each province from the Xth national census.
- \(\mathrm{PO}\mathrm{P}_{\mathrm{year,province}}^{X^{\mathrm{th}}\mathrm{census} }\) is the total population for all ages and both genders in each province from the Xth national census.
Method - demographic totals by age and gender in 1979-2020
The yearly grid population for 1979-1999 are from ISIMIP Histsoc gridded population data, and for 2000-2020 are from the GPWv4 demographic data adjusted by the UN WPP (UN WPP-Adjusted Population Count, v4.11, https://beta.sedac.ciesin.columbia.edu/data/set/gpw-v4-population-count-adjusted-to-2015-unwpp-country-totals-rev11), which combines the spatial distribution of demographics from GPWv4 with the temporal trends from the UN WPP to improve accuracy. These two gridded time series are simply joined at the cut-over date to give a single dataset - historical demographic data covering 1979-2020.
Next, historical demographic data are mapped onto the grid scale to obtain provincial data by using gridded provincial code lookup data and name lookup table. The age- and gender-specific fraction were multiplied by the historical demographic data at the provincial level to obtain the total population by age and gender for per grid cell for china in 1979-2020.
Method - demographic totals and fractions by age and gender in 2010-2100
The grid population count data in 2010-2100 under different shared socioeconomic pathway (SSP) scenarios are drawn from Chen et al. published in Scientific Data with a resolution of 1km (~ 0.008333 degree). We resampled the data to 0.5 degree by aggregating the population count together to obtain the future population data per cell.
This previously published dataset also provided age- and gender-specific population of each provinces, so we calculated the fraction of each age and gender group at provincial level. Then, we multiply the fractions with grid population count to get the total population per age group per cell for each gender.
Note that the projected population data from Chen’s dataset covers 2010-2020, while the historical population in our dataset also covers 2010-2020. The two datasets of that same period may vary because the original population data come from different sources and are calculated based on different methods.
Disclaimer
This dataset is a hybrid of different datasets with independent methodologies. Spatial or temporal consistency across dataset boundaries cannot be guaranteed.
The spatial raster dataset depicts the distribution of population, expressed as the number of people per cell. Residential population estimates between 1975 and 2020 in 5 years intervals and projections to 2025 and 2030 derived from CIESIN GPWv4.11 were disaggregated from census or administrative units to grid cells, informed by the distribution, density, and classification of built-up as mapped in the Global Human Settlement Layer (GHSL) global layer per corresponding epoch. This dataset is an update of the product released in 2022. Major improvements are the following: use of built-up volume maps (GHS-BUILT-V R2022A); use of more recent and detailed population estimates derived from GPWv4.11 integrating both UN World Population Prospects 2022 country population data and World Urbanisation Prospects 2018 data on Cities; revision of GPWv4.11 population growthrates by convergence to upper administrative level growthrates; systematic improvement of census coastlines; systematic revision of census units declared as unpopulated; integration of non-residential built-up volume information (GHS-BUILT-V_NRES R2023A); spatial resolution of 100m Mollweide (and 3 arcseconds in WGS84); projections to 2030.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data Update Notice 数据更新通知
We are pleased to announce that the GlobPOP dataset for the years 2021-2022 has undergone a comprehensive quality check and has now been updated accordingly. Following the established methodology that ensures the high precision and reliability, these latest updates allow for even more comprehensive time-series analysis. The updated GlobPOP dataset remains available in GeoTIFF format for easy integration into your existing workflows.
2021-2022 年的 GlobPOP 数据集经过全面的质量检查,现已进行相应更新。 遵循确保高精度和可靠性的原有方法,本次更新允许进行更全面的时间序列分析。 更新后的 GlobPOP 数据集仍以 GeoTIFF 格式提供,以便轻松集成到您现有的工作流中。
To reflect these updates, our interactive web application has also been refreshed. Users can now explore the updated national population time-series curves from 1990 to 2022. This can be accessed via the same link: https://globpop.shinyapps.io/GlobPOP/. Thank you for your continued support of the GlobPOP, and we hope that the updated data will further enhance your research and policy analysis endeavors.
交互式网页反映了人口最新动态,用户现在可以探索感兴趣的国家1990 年至 2022 年人口时间序列曲线,并将其与人口普查数据进行比较。感谢您对 GlobPOP 的支持,我们希望更新的数据将进一步加强您的研究和政策分析工作。
If you encounter any issues, please contact us via email at lulingliu@mail.bnu.edu.cn.
如果您遇到任何问题,请通过电子邮件联系我们。
Introduction
Continuously monitoring global population spatial dynamics is essential for implementing effective policies related to sustainable development, such as epidemiology, urban planning, and global inequality. 持续监测全球人口空间动态对于实施与可持续发展相关的有效政策至关重要,例如流行病学、城市规划和全球不平等。
Here, we present GlobPOP, a new continuous global gridded population product with a high-precision spatial resolution of 30 arcseconds from 1990 to 2022. Our data-fusion framework is based on cluster analysis and statistical learning approaches, which intends to fuse the existing five products(Global Human Settlements Layer Population (GHS-POP), Global Rural Urban Mapping Project (GRUMP), Gridded Population of the World Version 4 (GPWv4), LandScan Population datasets and WorldPop datasets to a new continuous global gridded population (GlobPOP). The temporal and spatial validation results demonstrate that the GlobPOP dataset is highly accurate. GlobPOP是一套新的连续全球网格人口产品,时间跨度为从 1990 年到 2022 年,空间分辨率为 30 弧秒。数据生产融合框架基于聚类分析和统计学习方法,旨在融合现有的五个 产品(GHS-POP、GRUMP、GPWv4、LandScan和WorldPop)。时空验证结果表明GlobPOP 数据集高度准确。
With the availability of GlobPOP dataset in both population count and population density formats, researchers and policymakers can leverage our dataset to conduct time-series analysis of population and explore the spatial patterns of population development at various scales, ranging from national to city level. 通过人口计数和人口密度格式的 GlobPOP 数据集,研究人员和政策制定者可以利用该数据集对人口进行时间序列分析,并探索不同尺度的人口发展时空模式。
Data description
The product is produced in 30 arc-seconds resolution(approximately 1km in equator) and is made available in GeoTIFF format. There are two population formats, one is the 'Count'(Population count per grid) and another is the 'Density'(Population count per square kilometer each grid)
Each GeoTIFF filename has 5 fields that are separated by an underscore "_". A filename extension follows these fields. The fields are described below with the example filename:
GlobPOP_Count_30arc_1990_I32
Field 1: GlobPOP(Global gridded population)Field 2: Pixel unit is population "Count" or population "Density"Field 3: Spatial resolution is 30 arc secondsField 4: Year "1990"Field 5: Data type is I32(Int 32) or F32(Float32)
More information
本数据相关论文已发表在Scientific Data,代码可在GitHub获取。
Please refer to the paper for detailed information:
Liu, L., Cao, X., Li, S. et al. A 31-year (1990–2020) global gridded population dataset generated by cluster analysis and statistical learning. Sci Data 11, 124 (2024). https://doi.org/10.1038/s41597-024-02913-0.
The fully reproducible codes are publicly available at GitHub: https://github.com/lulingliu/GlobPOP.
Copy of https://www.kaggle.com/datasets/kisoibo/countries-databasesqlite
Updated the name of the table from 'countries of the world' to 'countries', for ease of writing queries.
Info about the dataset:
Table Total Rows Total Columns countries of the world **0 ** ** 20** Country, Region, Population, Area (sq. mi.), Pop. Density (per sq. mi.), Coastline (coast/area ratio), Net migration, Infant mortality (per 1000 births), GDP ($ per capita), Literacy (%), Phones (per 1000), Arable (%), Crops (%), Other (%), Climate, Birthrate, Deathrate, Agriculture, Industry, Service
Acknowledgements Source: All these data sets are made up of data from the US government. Generally they are free to use if you use the data in the US. If you are outside of the US, you may need to contact the US Govt to ask. Data from the World Factbook is public domain. The website says "The World Factbook is in the public domain and may be used freely by anyone at anytime without seeking permission." https://www.cia.gov/library/publications/the-world-factbook/docs/faqs.html
When making visualisations related to countries, sometimes it is interesting to group them by attributes such as region, or weigh their importance by population, GDP or other variables.
The world population data sourced from Facebook Data for Good is some of the most accurate population density data in the world. The data is accumulated using highly accurate technology to identify buildings from satellite imagery and can be viewed at up to 30-meter resolution. This building data is combined with publicly available census data to create the most accurate population estimates. This data is used by a wide range of nonprofit and humanitarian organizations, for example, to examine trends in urbanization and climate migration or discover the impact of a natural disaster on a region. This can help to inform aid distribution to reach communities most in need. There is both country and region-specific data available. The data also includes demographic estimates in addition to the population density information. This population data can be accessed via the Humanitarian Data Exchange website.
This layer shares SEDAC's population projections for U.S. counties for 2020-2100 in increments of 5 years, for each of five population projection scenarios known as Shared Socioeconomic Pathways (SSPs). This layer supports mapping, data visualizations, analysis and data exports.Before using this layer, read:The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview by Keywan Riahi, Detlef P. van Vuuren, Elmar Kriegler, Jae Edmonds, Brian C. O’Neill, Shinichiro Fujimori, Nico Bauer, Katherine Calvin, Rob Dellink, Oliver Fricko, Wolfgang Lutz, Alexander Popp, Jesus Crespo Cuaresma, Samir KC, Marian Leimbach, Leiwen Jiang, Tom Kram, Shilpa Rao, Johannes Emmerling, Kristie Ebi, Tomoko Hasegawa, Petr Havlik, Florian Humpenöder, Lara Aleluia Da Silva, Steve Smith, Elke Stehfest, Valentina Bosetti, Jiyong Eom, David Gernaat, Toshihiko Masui, Joeri Rogelj, Jessica Strefler, Laurent Drouet, Volker Krey, Gunnar Luderer, Mathijs Harmsen, Kiyoshi Takahashi, Lavinia Baumstark, Jonathan C. Doelman, Mikiko Kainuma, Zbigniew Klimont, Giacomo Marangoni, Hermann Lotze-Campen, Michael Obersteiner, Andrzej Tabeau, Massimo Tavoni. Global Environmental Change, Volume 42, 2017, Pages 153-168, ISSN 0959-3780, https://doi.org/10.1016/j.gloenvcha.2016.05.009.From the 2017 paper: "The SSPs are part of a new scenario framework, established by the climate change research community in order to facilitate the integrated analysis of future climate impacts, vulnerabilities, adaptation, and mitigation. The pathways were developed over the last years as a joint community effort and describe plausible major global developments that together would lead in the future to different challenges for mitigation and adaptation to climate change. The SSPs are based on five narratives describing alternative socio-economic developments, including sustainable development, regional rivalry, inequality, fossil-fueled development, and middle-of-the-road development. The long-term demographic and economic projections of the SSPs depict a wide uncertainty range consistent with the scenario literature."According to SEDAC, the purpose of this data is:"To provide subnational (county) population projection scenarios for the United States essential for understanding long-term demographic changes, planning for the future, and decision-making in a variety of applications."According to Francesco Bassetti of Foresight, "The SSP’s baseline worlds are useful because they allow us to see how different socioeconomic factors impact climate change. They include: a world of sustainability-focused growth and equality (SSP1); a “middle of the road” world where trends broadly follow their historical patterns (SSP2); a fragmented world of “resurgent nationalism” (SSP3); a world of ever-increasing inequality (SSP4);a world of rapid and unconstrained growth in economic output and energy use (SSP5).There are seven sublayers, each with county boundaries and an identical set of attribute fields containing projections for these seven groupings across the five SSPs and nine decades.Total PopulationBlack Non-Hispanic PopulationWhite Non-Hispanic PopulationOther Non-Hispanic PopulationHispanic PopulationMale PopulationFemale PopulationMethodology: Documentation for the Georeferenced U.S. County-Level Population Projections, Total and by Sex, Race and Age, Based on the SSPs, v1 (2020 – 2100)Data currency: This layer was created from a shapefile downloaded April 18, 2023 from SEDAC's Georeferenced U.S. County-Level Population Projections, Total and by Sex, Race and Age, Based on the SSPs, v1 (2020 – 2100)Enhancements found in this layer: Every field was given a field alias and field description created from SEDAC's Data Dictionary downloaded April 18, 2023. Citation: Hauer, M., and Center for International Earth Science Information Network - CIESIN - Columbia University. 2021. Georeferenced U.S. County-Level Population Projections, Total and by Sex, Race and Age, Based on the SSPs, 2020-2100. Palisades, New York: NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/dv72-s254. Accessed 18 April 2023.Hauer, M. E. 2019. Population Projections for U.S. Counties by Age, Sex, and Race Controlled to Shared Socioeconomic Pathway. Scientific Data 6: 190005. https://doi.org/10.1038/sdata.2019.5.Distribution Liability: CIESIN follows procedures designed to ensure that data disseminated by CIESIN are of reasonable quality. If, despite these procedures, users encounter apparent errors or misstatements in the data, they should contact SEDAC User Services at +1 845-465-8920 or via email at ciesin.info@ciesin.columbia.edu. Neither CIESIN nor NASA verifies or guarantees the accuracy, reliability, or completeness of any data provided. CIESIN provides this data without warranty of any kind whatsoever, either expressed or implied. CIESIN shall not be liable for incidental, consequential, or special damages arising out of the use of any data provided by CIESIN.
This data base contains gridded (one degree by one degree) information on the world-wide distribution of the population for 1990 and country-specific information on the percentage of the country's population present in each grid cell (Li, 1996a). Secondly, the data base contains the percentage of a country's total area in a grid cell and the country's percentage of the grid cell that is terrestrial (Li, 1996b). Li (1996b) also developed an indicator signifying how many countries are represented in a grid cell and if a grid cell is part of the sea; this indicator is only relevant for the land, countries, and sea-partitioning information of the grid cell. Thirdly, the data base includes the latitude and longitude coordinates of each grid cell; a grid code number, which is a translation of the latitude/longitude value and is used in the Global Emission Inventory Activity (GEIA) data bases; the country or region's name; and the United Nations three-digit country code that represents that name. For access to the data files, click this link to the CDIAC data transition website: http://cdiac.ess-dive.lbl.gov/ftp/db1016/
Data includes Total Population and Women of reproductive age (15-49 years) population (thousands by province.)The world population data sourced from Facebook Data for Good is some of the most accurate population density data in the world. The data is accumulated using highly accurate technology to identify buildings from satellite imagery and can be viewed at up to 30-meter resolution. This building data is combined with publicly available census data to create the most accurate population estimates. This data is used by a wide range of nonprofit and humanitarian organizations, for example, to examine trends in urbanization and climate migration or discover the impact of a natural disaster on a region. This can help to inform aid distribution to reach communities most in need. There is both country and region-specific data available. The data also includes demographic estimates in addition to the population density information. This population data can be accessed via the Humanitarian Data Exchange website.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
General Information
The Pop-AUT database was developed for the DISCC-AT project, which required subnational population projections for Austria consistent with the updated Shared Socio-Economic Pathways (SSPs). For this database, the most recent version of the nationwide SSP population projections (IIASA-WiC POP 2023) are spatially downscaled, offering a detailed perspective at the subnational level in Austria. Recognizing the relevance of this information for a wider audience, the data has been made publicly accessible through an interactive dashboard. There, users are invited to explore how the Austrian population is projected to evolve under different SSP scenarios until the end of this century.
Methodology
The downscaling process of the nationwide Shared Socioeconomic Pathways (SSP) population projections is a four-step procedure developed to obtain subnational demographic projections for Austria. In the first step, population potential surfaces for Austria are derived. These indicate the attractiveness of a location in terms of habitability and are obtained using machine learning techniques, specifically random forest models, along with geospatial information such as land use, roads, elevation, distance to cities, and elevation (see, e.g., Wang et al. 2023).
The population potential surfaces play a crucial role in distributing the Austrian population effectively across the country. Calculations are based on the 1×1 km spatial resolution database provided by Wang et al. (2023), covering all SSPs in 5-year intervals from 2020 to 2100.
Moving to the second step, the updated nationwide SSP population projections for Austria (IIASA-WiC POP 2023) are distributed to all 1×1 km grid cells within the country. This distribution is guided by the previously computed grid cell-level population potential surfaces, ensuring a more granular representation of demographic trends.
The base year for all scenarios is 2015, obtained by downscaling the UN World Population Prospects 2015 count for Austria using the WorldPop (2015) 1×1 km population count raster.
In the third step, the 1×1 km population projections are temporally interpolated to obtain yearly projections for all SSP scenarios spanning the period from 2015 to 2100.
The final step involves the spatial aggregation of the gridded SSP-consistent population projections to the administrative levels of provinces (Bundesländer), districts (Bezirke), and municipalities (Gemeinden).
Dashboard
The data can be explored interactively through a dashboard.
Data Inputs
Updated nationwide SSP population projections: IIASA-WiC POP (2023) (https://zenodo.org/records/7921989)
Population potential surfaces: Wang, X., Meng, X., & Long, Y. (2022). Projecting 1 km-grid population distributions from 2020 to 2100 globally under shared socioeconomic pathways. Scientific Data, 9(1), 563.
Shapefiles: data.gv.at
WorldPop 2015: WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00647
Version
This is version 1.0, built upon the Review-Phase 2 version of the updated nationwide SSP population projections (IIASA-WiC POP 2023). Once these projections are revised, this dataset will be accordingly updated.
File Organization
The SSP-consistent population projections for Austria are accessible in two formats: .csv files for administrative units (provinces = Bundesländer, districts = Politische Bezirke, municipalities = Gemeinden) and 1×1 km raster files in GeoTIFF and NetCDF formats. All files encompass annual population counts spanning from 2015 to 2100.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A look-up table with formatting for population-density categoriesUsed here:https://github.com/michaeldgarber/global-ndvi-pop/blob/main/scripts/figures-main-text.Rhttps://github.com/michaeldgarber/global-ndvi-pop/blob/main/scripts/figures-main-text.R
The world population data sourced from Facebook Data for Good is some of the most accurate population density data in the world. The data is accumulated using highly accurate technology to identify buildings from satellite imagery and can be viewed at up to 30-meter resolution. This building data is combined with publicly available census data to create the most accurate population estimates. This data is used by a wide range of nonprofit and humanitarian organizations, for example, to examine trends in urbanization and climate migration or discover the impact of a natural disaster on a region. This can help to inform aid distribution to reach communities most in need. There is both country and region-specific data available. The data also includes demographic estimates in addition to the population density information. This population data can be accessed via the Humanitarian Data Exchange website.
The NWL POP table holds the NWL registered patients and key demographic information about them i.e. age, gender, ethinicity etc.
Population ranking table.
In 2023, the global population will reach approximately eight billion people. This is double what the population was just 48 years previously, in 1975, when it reached four billion people. When we compare growth rates over the selected periods, it took an average of 12 years per one billion people between 1975 and 2023, which is almost double the rate of the period between 1928 and 1975, and over ten times faster than growth between 1803 and 1928. Additionally, it took almost 700 years for the world population to increase by 250 million people during the Middle Ages, in contrast, an increase of 250 million has been observed every three to four years since the 1960s.