100+ datasets found
  1. Population of the world 10,000BCE-2100

    • statista.com
    Updated Nov 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Population of the world 10,000BCE-2100 [Dataset]. https://www.statista.com/statistics/1006502/global-population-ten-thousand-bc-to-2050/
    Explore at:
    Dataset updated
    Nov 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    Until the 1800s, population growth was incredibly slow on a global level. The global population was estimated to have been around 188 million people in the year 1CE, and did not reach one billion until around 1803. However, since the 1800s, a phenomenon known as the demographic transition has seen population growth skyrocket, reaching eight billion people in 2023, and this is expected to peak at over 10 billion in the 2080s.

  2. Global population 1800-2100, by continent

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Global population 1800-2100, by continent [Dataset]. https://www.statista.com/statistics/997040/world-population-by-continent-1950-2020/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The world's population first reached one billion people in 1805, and reached eight billion in 2022, and will peak at almost 10.2 billion by the end of the century. Although it took thousands of years to reach one billion people, it did so at the beginning of a phenomenon known as the demographic transition; from this point onwards, population growth has skyrocketed, and since the 1960s the population has increased by one billion people every 12 to 15 years. The demographic transition sees a sharp drop in mortality due to factors such as vaccination, sanitation, and improved food supply; the population boom that follows is due to increased survival rates among children and higher life expectancy among the general population; and fertility then drops in response to this population growth. Regional differences The demographic transition is a global phenomenon, but it has taken place at different times across the world. The industrialized countries of Europe and North America were the first to go through this process, followed by some states in the Western Pacific. Latin America's population then began growing at the turn of the 20th century, but the most significant period of global population growth occurred as Asia progressed in the late-1900s. As of the early 21st century, almost two-thirds of the world's population lives in Asia, although this is set to change significantly in the coming decades. Future growth The growth of Africa's population, particularly in Sub-Saharan Africa, will have the largest impact on global demographics in this century. From 2000 to 2100, it is expected that Africa's population will have increased by a factor of almost five. It overtook Europe in size in the late 1990s, and overtook the Americas a few years later. In contrast to Africa, Europe's population is now in decline, as birth rates are consistently below death rates in many countries, especially in the south and east, resulting in natural population decline. Similarly, the population of the Americas and Asia are expected to go into decline in the second half of this century, and only Oceania's population will still be growing alongside Africa. By 2100, the world's population will have over three billion more than today, with the vast majority of this concentrated in Africa. Demographers predict that climate change is exacerbating many of the challenges that currently hinder progress in Africa, such as political and food instability; if Africa's transition is prolonged, then it may result in further population growth that would place a strain on the region's resources, however, curbing this growth earlier would alleviate some of the pressure created by climate change.

  3. Historical population of the continents 10,000BCE-2000CE

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Historical population of the continents 10,000BCE-2000CE [Dataset]. https://www.statista.com/statistics/1006557/global-population-per-continent-10000bce-2000ce/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    The earliest point where scientists can make reasonable estimates for the population of global regions is around 10,000 years before the Common Era (or 12,000 years ago). Estimates suggest that Asia has consistently been the most populated continent, and the least populated continent has generally been Oceania (although it was more heavily populated than areas such as North America in very early years). Population growth was very slow, but an increase can be observed between most of the given time periods. There were, however, dips in population due to pandemics, the most notable of these being the impact of plague in Eurasia in the 14th century, and the impact of European contact with the indigenous populations of the Americas after 1492, where it took almost four centuries for the population of Latin America to return to its pre-1500 level. The world's population first reached one billion people in 1803, which also coincided with a spike in population growth, due to the onset of the demographic transition. This wave of growth first spread across the most industrially developed countries in the 19th century, and the correlation between demographic development and industrial or economic maturity continued until today, with Africa being the final major region to begin its transition in the late-1900s.

  4. census-bureau-international

    • kaggle.com
    zip
    Updated May 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google BigQuery (2020). census-bureau-international [Dataset]. https://www.kaggle.com/bigquery/census-bureau-international
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    May 6, 2020
    Dataset provided by
    Googlehttp://google.com/
    BigQueryhttps://cloud.google.com/bigquery
    Authors
    Google BigQuery
    Description

    Context

    The United States Census Bureau’s international dataset provides estimates of country populations since 1950 and projections through 2050. Specifically, the dataset includes midyear population figures broken down by age and gender assignment at birth. Additionally, time-series data is provided for attributes including fertility rates, birth rates, death rates, and migration rates.

    Querying BigQuery tables

    You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.census_bureau_international.

    Sample Query 1

    What countries have the longest life expectancy? In this query, 2016 census information is retrieved by joining the mortality_life_expectancy and country_names_area tables for countries larger than 25,000 km2. Without the size constraint, Monaco is the top result with an average life expectancy of over 89 years!

    standardSQL

    SELECT age.country_name, age.life_expectancy, size.country_area FROM ( SELECT country_name, life_expectancy FROM bigquery-public-data.census_bureau_international.mortality_life_expectancy WHERE year = 2016) age INNER JOIN ( SELECT country_name, country_area FROM bigquery-public-data.census_bureau_international.country_names_area where country_area > 25000) size ON age.country_name = size.country_name ORDER BY 2 DESC /* Limit removed for Data Studio Visualization */ LIMIT 10

    Sample Query 2

    Which countries have the largest proportion of their population under 25? Over 40% of the world’s population is under 25 and greater than 50% of the world’s population is under 30! This query retrieves the countries with the largest proportion of young people by joining the age-specific population table with the midyear (total) population table.

    standardSQL

    SELECT age.country_name, SUM(age.population) AS under_25, pop.midyear_population AS total, ROUND((SUM(age.population) / pop.midyear_population) * 100,2) AS pct_under_25 FROM ( SELECT country_name, population, country_code FROM bigquery-public-data.census_bureau_international.midyear_population_agespecific WHERE year =2017 AND age < 25) age INNER JOIN ( SELECT midyear_population, country_code FROM bigquery-public-data.census_bureau_international.midyear_population WHERE year = 2017) pop ON age.country_code = pop.country_code GROUP BY 1, 3 ORDER BY 4 DESC /* Remove limit for visualization*/ LIMIT 10

    Sample Query 3

    The International Census dataset contains growth information in the form of birth rates, death rates, and migration rates. Net migration is the net number of migrants per 1,000 population, an important component of total population and one that often drives the work of the United Nations Refugee Agency. This query joins the growth rate table with the area table to retrieve 2017 data for countries greater than 500 km2.

    SELECT growth.country_name, growth.net_migration, CAST(area.country_area AS INT64) AS country_area FROM ( SELECT country_name, net_migration, country_code FROM bigquery-public-data.census_bureau_international.birth_death_growth_rates WHERE year = 2017) growth INNER JOIN ( SELECT country_area, country_code FROM bigquery-public-data.census_bureau_international.country_names_area

    Update frequency

    Historic (none)

    Dataset source

    United States Census Bureau

    Terms of use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

    See the GCP Marketplace listing for more details and sample queries: https://console.cloud.google.com/marketplace/details/united-states-census-bureau/international-census-data

  5. Population of the United States 1500-2100

    • statista.com
    • botflix.ru
    • +1more
    Updated Nov 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Population of the United States 1500-2100 [Dataset]. https://www.statista.com/statistics/1067138/population-united-states-historical/
    Explore at:
    Dataset updated
    Nov 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In the past four centuries, the population of the Thirteen Colonies and United States of America has grown from a recorded 350 people around the Jamestown colony in Virginia in 1610, to an estimated 346 million in 2025. While the fertility rate has now dropped well below replacement level, and the population is on track to go into a natural decline in the 2040s, projected high net immigration rates mean the population will continue growing well into the next century, crossing the 400 million mark in the 2070s. Indigenous population Early population figures for the Thirteen Colonies and United States come with certain caveats. Official records excluded the indigenous population, and they generally remained excluded until the late 1800s. In 1500, in the first decade of European colonization of the Americas, the native population living within the modern U.S. borders was believed to be around 1.9 million people. The spread of Old World diseases, such as smallpox, measles, and influenza, to biologically defenseless populations in the New World then wreaked havoc across the continent, often wiping out large portions of the population in areas that had not yet made contact with Europeans. By the time of Jamestown's founding in 1607, it is believed the native population within current U.S. borders had dropped by almost 60 percent. As the U.S. expanded, indigenous populations were largely still excluded from population figures as they were driven westward, however taxpaying Natives were included in the census from 1870 to 1890, before all were included thereafter. It should be noted that estimates for indigenous populations in the Americas vary significantly by source and time period. Migration and expansion fuels population growth The arrival of European settlers and African slaves was the key driver of population growth in North America in the 17th century. Settlers from Britain were the dominant group in the Thirteen Colonies, before settlers from elsewhere in Europe, particularly Germany and Ireland, made a large impact in the mid-19th century. By the end of the 19th century, improvements in transport technology and increasing economic opportunities saw migration to the United States increase further, particularly from southern and Eastern Europe, and in the first decade of the 1900s the number of migrants to the U.S. exceeded one million people in some years. It is also estimated that almost 400,000 African slaves were transported directly across the Atlantic to mainland North America between 1500 and 1866 (although the importation of slaves was abolished in 1808). Blacks made up a much larger share of the population before slavery's abolition. Twentieth and twenty-first century The U.S. population has grown steadily since 1900, reaching one hundred million in the 1910s, two hundred million in the 1960s, and three hundred million in 2007. Since WWII, the U.S. has established itself as the world's foremost superpower, with the world's largest economy, and most powerful military. This growth in prosperity has been accompanied by increases in living standards, particularly through medical advances, infrastructure improvements, clean water accessibility. These have all contributed to higher infant and child survival rates, as well as an increase in life expectancy (doubling from roughly 40 to 80 years in the past 150 years), which have also played a large part in population growth. As fertility rates decline and increases in life expectancy slows, migration remains the largest factor in population growth. Since the 1960s, Latin America has now become the most common origin for migrants in the U.S., while immigration rates from Asia have also increased significantly. It remains to be seen how immigration restrictions of the current administration affect long-term population projections for the United States.

  6. n

    ISLSCP II Global Population of the World

    • access.earthdata.nasa.gov
    • search.dataone.org
    • +6more
    zip
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ISLSCP II Global Population of the World [Dataset]. http://doi.org/10.3334/ORNLDAAC/975
    Explore at:
    zipAvailable download formats
    Time period covered
    Jan 1, 1990 - Dec 31, 1995
    Area covered
    Earth
    Description

    Global Population of the World (GPW) translates census population data to a latitude-longitude grid so that population data may be used in cross-disciplinary studies. There are three data files with this data set for the reference years 1990 and 1995. Over 127,000 administrative units and population counts were collected and integrated from various sources to create the gridded data. In brief, GPW was created using the following steps:

    * Population data were estimated for the product reference years, 1990 and 1995, either by the data source or by interpolating or extrapolating the given estimates for other years.
    * Additional population estimates were created by adjusting the source population data to match UN national population estimates for the reference years.
    * Borders and coastlines of the spatial data were matched to the Digital Chart of the World where appropriate and lakes from the Digital Chart of the World were added.
    * The resulting data were then transformed into grids of UN-adjusted and unadjusted population counts for the reference years.
    * Grids containing the area of administrative boundary data in each cell (net of lakes) were created and used with the count grids to produce population densities.
    

    As with any global data set based on multiple data sources, the spatial and attribute precision of GPW is variable. The level of detail and accuracy, both in time and space, vary among the countries for which data were obtained.

  7. Population of India 1800-2020

    • statista.com
    Updated Aug 15, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2019). Population of India 1800-2020 [Dataset]. https://www.statista.com/statistics/1066922/population-india-historical/
    Explore at:
    Dataset updated
    Aug 15, 2019
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    India
    Description

    In 1800, the population of the region of present-day India was approximately 169 million. The population would grow gradually throughout the 19th century, rising to over 240 million by 1900. Population growth would begin to increase in the 1920s, as a result of falling mortality rates, due to improvements in health, sanitation and infrastructure. However, the population of India would see it’s largest rate of growth in the years following the country’s independence from the British Empire in 1948, where the population would rise from 358 million to over one billion by the turn of the century, making India the second country to pass the billion person milestone. While the rate of growth has slowed somewhat as India begins a demographics shift, the country’s population has continued to grow dramatically throughout the 21st century, and in 2020, India is estimated to have a population of just under 1.4 billion, well over a billion more people than one century previously. Today, approximately 18% of the Earth’s population lives in India, and it is estimated that India will overtake China to become the most populous country in the world within the next five years.

  8. Proportion of ancestry assigned to each Old World population (columns) in...

    • plos.figshare.com
    xls
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kaisa Thorell; Koji Yahara; Elvire Berthenet; Daniel J. Lawson; Jane Mikhail; Ikuko Kato; Alfonso Mendez; Cosmeri Rizzato; María Mercedes Bravo; Rumiko Suzuki; Yoshio Yamaoka; Javier Torres; Samuel K. Sheppard; Daniel Falush (2023). Proportion of ancestry assigned to each Old World population (columns) in the Old World painting that have a more recent common ancestor within the same subpopulation in the Global Painting. [Dataset]. http://doi.org/10.1371/journal.pgen.1006546.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Kaisa Thorell; Koji Yahara; Elvire Berthenet; Daniel J. Lawson; Jane Mikhail; Ikuko Kato; Alfonso Mendez; Cosmeri Rizzato; María Mercedes Bravo; Rumiko Suzuki; Yoshio Yamaoka; Javier Torres; Samuel K. Sheppard; Daniel Falush
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    Proportion of ancestry assigned to each Old World population (columns) in the Old World painting that have a more recent common ancestor within the same subpopulation in the Global Painting.

  9. o

    Geonames - All Cities with a population > 500

    • public.opendatasoft.com
    csv, excel, geojson +1
    Updated Mar 10, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Geonames - All Cities with a population > 500 [Dataset]. https://public.opendatasoft.com/explore/dataset/geonames-all-cities-with-a-population-500/
    Explore at:
    geojson, excel, json, csvAvailable download formats
    Dataset updated
    Mar 10, 2022
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    All cities with a population > 500 or seats of adm div (ca 135.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name

  10. a

    OCACS 2020 Social Characteristics for Census Tracts

    • hub.arcgis.com
    • data-ocpw.opendata.arcgis.com
    Updated May 5, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OC Public Works (2023). OCACS 2020 Social Characteristics for Census Tracts [Dataset]. https://hub.arcgis.com/datasets/facf94e9aca8465b8abf73605614a3b4
    Explore at:
    Dataset updated
    May 5, 2023
    Dataset authored and provided by
    OC Public Works
    Area covered
    Description

    US Census American Community Survey (ACS) 2020, 5-year estimates of the key social characteristics of Census Tract geographic level in Orange County, California. The data contains 500 fields for the variable groups S01: Households by type (universe: total households, table X11, 17 fields); S02: Relationship (universe: population in households, table X9, 19 fields); S03: Marital status (universe: population 15 years and over, table X12, 13 fields); S04: Fertility (universe: women 15-50 years who had birth in the past 12 months, table X13, 11 fields); S05: Grandparents (universe: grandparents living or responsible for own grandchildren under 18 years, table X10, 18 fields); S06: School enrollment (universe: population 3 years old and over enrolled in school, table X14, 17 fields); S07: Educational attainment (universe: population 25 years and over, table X15, 25 fields); S08: Veteran status (universe: civilian population 18 years and over, table X21, 2 fields); S09: Disability status and type by sex and age (universe: total civilian non-institutionalized population, table X18, 77 fields); S10: Disability status by age and health insurance coverage (universe: civilian non-institutionalized population, table X18, 16 fields); S11: Residence 1 year ago (universe: population 1 year and over, table X7, 6 fields); S12: Place of birth (universe: total population, table X5, 27 fields); S13: Citizenship status by nativity in the US (universe: total population, table X5, 6 fields); S14: Year of entry (universe: population born outside the US, table X5, 21 fields); S15: World region of birth of foreign born population (universe: foreign born population, excluding population born at sea, table X5, 25 fields); S16: Language spoken in households (universe: total households, table X16, 6 fields); S17: Language spoken at home (universe: population 5 years and over, table X16, 67 fields); S18: Ancestry (universe: total population reporting ancestry, table X4, 114 fields), and; S19: Computers and internet use (universe: total population in households and total households, table X28, 13 fields). The US Census geodemographic data are based on the 2020 TigerLines across multiple geographies. The spatial geographies were merged with ACS data tables. See full documentation at the OCACS project GitHub page (https://github.com/ktalexan/OCACS-Geodemographics).

  11. n

    Global contemporary effective population sizes across taxonomic groups

    • data.niaid.nih.gov
    • datadryad.org
    zip
    Updated May 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shannon H. Clarke; Elizabeth R. Lawrence; Jean-Michel Matte; Sarah J. Salisbury; Sozos N. Michaelides; Ramela Koumrouyan; Daniel E. Ruzzante; James W. A. Grant; Dylan J. Fraser (2024). Global contemporary effective population sizes across taxonomic groups [Dataset]. http://doi.org/10.5061/dryad.p2ngf1vzm
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 3, 2024
    Dataset provided by
    Dalhousie University
    Concordia University
    Authors
    Shannon H. Clarke; Elizabeth R. Lawrence; Jean-Michel Matte; Sarah J. Salisbury; Sozos N. Michaelides; Ramela Koumrouyan; Daniel E. Ruzzante; James W. A. Grant; Dylan J. Fraser
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Effective population size (Ne) is a particularly useful metric for conservation as it affects genetic drift, inbreeding and adaptive potential within populations. Current guidelines recommend a minimum Ne of 50 and 500 to avoid short-term inbreeding and to preserve long-term adaptive potential, respectively. However, the extent to which wild populations reach these thresholds globally has not been investigated, nor has the relationship between Ne and human activities. Through a quantitative review, we generated a dataset with 4610 georeferenced Ne estimates from 3829 unique populations, extracted from 723 articles. These data show that certain taxonomic groups are less likely to meet 50/500 thresholds and are disproportionately impacted by human activities; plant, mammal, and amphibian populations had a <54% probability of reaching = 50 and a <9% probability of reaching = 500. Populations listed as being of conservation concern according to the IUCN Red List had a smaller median than unlisted populations, and this was consistent across all taxonomic groups. was reduced in areas with a greater Global Human Footprint, especially for amphibians, birds, and mammals, however relationships varied between taxa. We also highlight several considerations for future works, including the role that gene flow and subpopulation structure plays in the estimation of in wild populations, and the need for finer-scale taxonomic analyses. Our findings provide guidance for more specific thresholds based on Ne and help prioritize assessment of populations from taxa most at risk of failing to meet conservation thresholds. Methods Literature search, screening, and data extraction A primary literature search was conducted using ISI Web of Science Core Collection and any articles that referenced two popular single-sample Ne estimation software packages: LDNe (Waples & Do, 2008), and NeEstimator v2 (Do et al., 2014). The initial search included 4513 articles published up to the search date of May 26, 2020. Articles were screened for relevance in two steps, first based on title and abstract, and then based on the full text. For each step, a consistency check was performed using 100 articles to ensure they were screened consistently between reviewers (n = 6). We required a kappa score (Collaboration for Environmental Evidence, 2020) of ³ 0.6 in order to proceed with screening of the remaining articles. Articles were screened based on three criteria: (1) Is an estimate of Ne or Nb reported; (2) for a wild animal or plant population; (3) using a single-sample genetic estimation method. Further details on the literature search and article screening are found in the Supplementary Material (Fig. S1). We extracted data from all studies retained after both screening steps (title and abstract; full text). Each line of data entered in the database represents a single estimate from a population. Some populations had multiple estimates over several years, or from different estimation methods (see Table S1), and each of these was entered on a unique row in the database. Data on N̂e, N̂b, or N̂c were extracted from tables and figures using WebPlotDigitizer software version 4.3 (Rohatgi, 2020). A full list of data extracted is found in Table S2. Data Filtering After the initial data collation, correction, and organization, there was a total of 8971 Ne estimates (Fig. S1). We used regression analyses to compare Ne estimates on the same populations, using different estimation methods (LD, Sibship, and Bayesian), and found that the R2 values were very low (R2 values of <0.1; Fig. S2 and Fig. S3). Given this inconsistency, and the fact that LD is the most frequently used method in the literature (74% of our database), we proceeded with only using the LD estimates for our analyses. We further filtered the data to remove estimates where no sample size was reported or no bias correction (Waples, 2006) was applied (see Fig. S6 for more details). Ne is sometimes estimated to be infinity or negative within a population, which may reflect that a population is very large (i.e., where the drift signal-to-noise ratio is very low), and/or that there is low precision with the data due to small sample size or limited genetic marker resolution (Gilbert & Whitlock, 2015; Waples & Do, 2008; Waples & Do, 2010) We retained infinite and negative estimates only if they reported a positive lower confidence interval (LCI), and we used the LCI in place of a point estimate of Ne or Nb. We chose to use the LCI as a conservative proxy for in cases where a point estimate could not be generated, given its relevance for conservation (Fraser et al., 2007; Hare et al., 2011; Waples & Do 2008; Waples 2023). We also compared results using the LCI to a dataset where infinite or negative values were all assumed to reflect very large populations and replaced the estimate with an arbitrary large value of 9,999 (for reference in the LCI dataset only 51 estimates, or 0.9%, had an or > 9999). Using this 9999 dataset, we found that the main conclusions from the analyses remained the same as when using the LCI dataset, with the exception of the HFI analysis (see discussion in supplementary material; Table S3, Table S4 Fig. S4, S5). We also note that point estimates with an upper confidence interval of infinity (n = 1358) were larger on average (mean = 1380.82, compared to 689.44 and 571.64, for estimates with no CIs or with an upper boundary, respectively). Nevertheless, we chose to retain point estimates with an upper confidence interval of infinity because accounting for them in the analyses did not alter the main conclusions of our study and would have significantly decreased our sample size (Fig. S7, Table S5). We also retained estimates from populations that were reintroduced or translocated from a wild source (n = 309), whereas those from captive sources were excluded during article screening (see above). In exploratory analyses, the removal of these data did not influence our results, and many of these populations are relevant to real-world conservation efforts, as reintroductions and translocations are used to re-establish or support small, at-risk populations. We removed estimates based on duplication of markers (keeping estimates generated from SNPs when studies used both SNPs and microsatellites), and duplication of software (keeping estimates from NeEstimator v2 when studies used it alongside LDNe). Spatial and temporal replication were addressed with two separate datasets (see Table S6 for more information): the full dataset included spatially and temporally replicated samples, while these two types of replication were removed from the non-replicated dataset. Finally, for all populations included in our final datasets, we manually extracted their protection status according to the IUCN Red List of Threatened Species. Taxa were categorized as “Threatened” (Vulnerable, Endangered, Critically Endangered), “Nonthreatened” (Least Concern, Near Threatened), or “N/A” (Data Deficient, Not Evaluated). Mapping and Human Footprint Index (HFI) All populations were mapped in QGIS using the coordinates extracted from articles. The maps were created using a World Behrmann equal area projection. For the summary maps, estimates were grouped into grid cells with an area of 250,000 km2 (roughly 500 km x 500 km, but the dimensions of each cell vary due to distortions from the projection). Within each cell, we generated the count and median of Ne. We used the Global Human Footprint dataset (WCS & CIESIN, 2005) to generate a value of human influence (HFI) for each population at its geographic coordinates. The footprint ranges from zero (no human influence) to 100 (maximum human influence). Values were available in 1 km x 1 km grid cell size and were projected over the point estimates to assign a value of human footprint to each population. The human footprint values were extracted from the map into a spreadsheet to be used for statistical analyses. Not all geographic coordinates had a human footprint value associated with them (i.e., in the oceans and other large bodies of water), therefore marine fishes were not included in our HFI analysis. Overall, 3610 Ne estimates in our final dataset had an associated footprint value.

  12. Total population of the European Union (EU) 2025

    • statista.com
    Updated Jul 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total population of the European Union (EU) 2025 [Dataset]. https://www.statista.com/statistics/253372/total-population-of-the-european-union-eu/
    Explore at:
    Dataset updated
    Jul 15, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    European Union
    Description

    This statistic shows the total population of the European Union from 2010 to 2025. The population is based on data from the most recent census adjusted by the components of population change produced since the last census, or based on population registers. At the beginning of 2025, the total population of the European Union amounted to approximately 450.38 million inhabitants. See figures for the total population by continent here. The global population The global population is rapidly increasing. Between 1990 and 2015, the global population has increased by around 2 billion people, and it is estimated to have increased by another 1 billion people by 2030. Asia is the continent in the world with the largest population, followed by Africa and Europe. Asia has the two most populous nations in the world: China and India. In 2014, the combined population in China and India amounted to more than 2.6 billion people. The total population in Europe is around 741 million people. As of 2014, about 10.2 percent of the global population lived in Europe. Europe is the continent with the second highest life expectancy at birth in the world. Born in 2013, the average European was estimated to live for around 78 years. Stable economies as well as developing and emerging markets in Europe provide for good living conditions for foreign nationals; seven of the top twenty countries in the world with the largest gross domestic product in 2024 are located in Europe.

  13. Countries with the highest population 1950-2100

    • statista.com
    Updated Jul 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Countries with the highest population 1950-2100 [Dataset]. https://www.statista.com/statistics/268107/countries-with-the-highest-population/
    Explore at:
    Dataset updated
    Jul 11, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    World
    Description

    From now until 2100, India and China will remain the most populous countries in the world, however China's population decline has already started, and it is on course to fall by around 50 percent in the 2090s; while India's population decline is projected to begin in the 2060s. Of the 10 most populous countries in the world in 2100, five will be located in Asia, four in Africa, as well as the United States. Rapid growth in Africa Rapid population growth across Africa will see the continent's population grow from around 1.5 billion people in 2024 to 3.8 billion in 2100. Additionally, unlike China or India, population growth in many of these countries is not expected to go into decline, and instead is expected to continue well into the 2100s. Previous estimates had projected these countries' populations would be much higher by 2100 (the 2019 report estimated Nigeria's population would exceed 650 million), yet the increased threat of the climate crisis and persistent instability is delaying demographic development and extending population growth. The U.S. as an outlier Compared to the nine other largest populations in 2100, the United States stands out as it is more demographically advanced, politically stable, and economically stronger. However, while most other so-called "advanced countries" are projected to see their population decline drastically in the coming decades, the U.S. population is projected to continue growing into the 2100s. This will largely be driven by high rates of immigration into the U.S., which will drive growth despite fertility rates being around 1.6 births per woman (below the replacement level of 2.1 births per woman), and the slowing rate of life expectancy. Current projections estimate the U.S. will have a net migration rate over 1.2 million people per year for the remainder of the century.

  14. B

    Data from: Resource selection and landscape change reveal mechanisms...

    • borealisdata.ca
    • search.dataone.org
    Updated May 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abdullahi H. Ali; Adam T. Ford; Jeffrey S. Evans; David P. Mallon; Matthew M. Hayes; Juliet King; Rajan Amin; Jacob R. Goheen (2021). Data from: Resource selection and landscape change reveal mechanisms suppressing population recovery for the world's most endangered antelope [Dataset]. http://doi.org/10.5683/SP2/TASG7F
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 19, 2021
    Dataset provided by
    Borealis
    Authors
    Abdullahi H. Ali; Adam T. Ford; Jeffrey S. Evans; David P. Mallon; Matthew M. Hayes; Juliet King; Rajan Amin; Jacob R. Goheen
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    World, Garissa, Eastern Kenya, Horn of Africa
    Description

    AbstractUnderstanding how bottom-up and top-down forces affect resource selection can inform restoration efforts. With a global population size of <500 individuals, the hirola Beatragus hunteri is the world's most endangered antelope, with a declining population since the 1970s. While the underlying mechanisms are unclear, some combination of habitat loss and predation are thought to be responsible for low abundances of contemporary populations. Efforts to conserve hirola are hindered by a lack of understanding as to why population density remains low, despite eradication of the viral disease, rinderpest. To elucidate factors underlying chronically low numbers, we examined resource selection and landscape change within the hirola's native range. Because hirola are grazers, we hypothesized that the availability of open areas would be linked both to forage and safety from predators. We quantified: (1) changes in tree cover across the hirola's historical range in eastern Kenya over the past 27 years; (2) how tree cover has influenced resource selection by hirola; and (3) interactions between tree cover and predation. Between 1985 and 2012, tree cover increased by 251% across the historical range of hirola. Tree encroachment was associated with a 98% decline of hirola and elephant Loxodonta africana populations, a 74% decline in cattle Bos indicus, an increase in browsing livestock by 327%, and a reduction in rainfall. Although hirola avoided tree cover, we found no evidence that predation on hirola increased with increasing tree cover. Synthesis and applications. Hirola may qualify as a refugee species, in which contemporary populations are restricted to suboptimal habitat and exhibit low survival, reproduction, or both. The extinction of hirola would be the first of a mammalian genus on the African continent in modern history. We conclude that contemporary low numbers of hirola are due at least partly to habitat loss via tree encroachment, triggered by some combination of elephant extirpation, overgrazing, drought, and perhaps fire suppression. We recommend a combination of rangeland restoration efforts (including conservation of elephants, manual clearing of trees, and grass seeding), increased enforcement of an existing protected area (Arawale National Reserve), and reintroductions to enhance recovery for this endangered species. These efforts will rely on enhanced support from the international conservation community and the cooperation of pastoralist communities with which the hirola coexist. Usage notesLivestock, Cattle, elephants abundance in hirola's range_77_2011This is aerial survey data from the Department of Resource Survey and Remote Sensing Kenya from 1977 to 2011 to give historical estimates wildlife and livestock abundances. We estimated the trends of livestock, hirola, elephants abundances from this data.Masalani_daily rainfallThe rainfall data file contains daily rainfall observations for Masalani station in the centre of hirola's geographic range for the period from 1970-2009.Hirolacollardatamay2nd 2015The hirola collar data contains the telemetry data of collared hirola individuals within the hirola's geographic range. Note: due to the sensitive nature of the data, GPS location information for the critically endangered Beatragus hunteri have been removed from the dataset.Imagery analysisP166R61zip contains details of the imagery analysis (1985 and 2012) for the hirola's geographic range.P166R61_zip.zipHirolakillsites_2015Hirola kill sites data contains observed hirola kill sites collected by network of scouts within the hirola's geographic range. Note: due to the sensitive nature of the data, GPS location information for the critically endangered Beatragus hunteri have been removed from the dataset.

  15. Population of Europe 1950-2024

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Population of Europe 1950-2024 [Dataset]. https://www.statista.com/statistics/1106711/population-of-europe/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Europe
    Description

    The population of Europe was estimated to be 745 million in 2024, an increase of around 4 million when compared with 2012. Over 35 years between 1950 and 1985, the population of Europe grew by approximately 157.8 million. But 35 years after 1985 it was estimated to have only increased by around 38.7 million. Since the 1960s, population growth in Europe has fallen quite significantly and was even negative during the mid-1990s. While population growth has increased slightly since the low of -0.07 percent in 1998, the growth rate for 2020 was just 0.04 percent. Which European country has the biggest population? As of 2024, the population of Russia was estimated to be approximately 144.8 million and was by far Europe's largest country in terms of population, with Turkey being the second-largest at over 87 million. While these two countries both have territory in Europe, however, they are both only partially in Europe, with the majority of their landmasses being in Asia. In terms of countries wholly located on the European continent, Germany had the highest population at 84.5 million, and was followed by the United Kingdom and France at 69.1 million and 66.5 million respectively. Characteristics of Europe's population There are approximately 384.6 million females in Europe, compared with 359.5 million males, a difference of around 25 million. In 1950, however, the male population has grown faster than the female one, with the male population growing by 104.7 million, and the female one by 93.6 million. As of 2024, the single year of age with the highest population was 37, at 10.6 million, while in the same year there were estimated to be around 136 thousand people aged 100 or over.

  16. High Frequency Phone Survey for Displaced Population 2021-2022 - Somalia

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Jan 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank (2024). High Frequency Phone Survey for Displaced Population 2021-2022 - Somalia [Dataset]. https://microdata.worldbank.org/index.php/catalog/6109
    Explore at:
    Dataset updated
    Jan 3, 2024
    Dataset provided by
    World Bank Grouphttp://www.worldbank.org/
    Authors
    World Bank
    Time period covered
    2021 - 2022
    Area covered
    Somalia
    Description

    Abstract

    High Frequency Phone Survey for Displaced Population in Somalia helps to fill the important data and knowledge gaps on displaced populations and host communities to support timely and evidence-informed decisions that can improve the lives of one of the most vulnerable groups in Somalia. Displaced population including IDPs, refugees and returnees are recognized as among the most vulnerable groups in the Somalia National Development Plan, but the paucity of data makes it difficult to adequately prescribe policy recommendations that will improve their lives. Humanitarian partners, including UNHCR and the International Organization for Migration, benefit from the information generated to better target their responses in times of crisis. It will also be used by the World Bank to support country dialogue, inform operations, and expand the knowledge base on displacement in Somalia. The time-series nature of the survey will enable the tracking of the impact of shocks on specific socio-economic indicators to allow for better timing of interventions.

    Two survey rounds conducted from November 2021 to August 2022 yield samples for five population groups: host communities for IDPs, IDPs in and out of settlements, refugees and asylum seekers and refugee returnees. Implemented by the World Bank in collaboration with the United Nations High Commissioner for Refugees (UNHCR) and the National Bureau of Statistics (NBS) in Somalia, this cost-effective phone-based survey aimed to follow the same respondents over a period of time.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Individual

    Universe

    Households with access to phones.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample consists of five strata: (i) host communities; (ii) IDPs living in settlements; (iii) IDPs living outside settlements; (iv) refugees; and (v) refugee returnees. Each stratum consisted of about 500 households, making up the total sample of around 2,500 respondents.

    Samples for the host communities and IDPs living outside settlements were selected from the previous national phone survey (Somalia high frequency phone survey - SHFPS) conducted by the World Bank in Somalia from June 2020 until October 2021. The sample for host communities was selected on the basis of frequency of interaction with IDP populations, with households that reported that they had had interacted with the IDPs at least once a month collected for the sample. For IDPs living in the settlements, phone numbers were collected by UNHCR from the settlements in Bay and Banadir, while those for refugees and refugee returnees were provided from the UNHCR database.

    Except for IDPs in settlements, the majority of the displacement-affected households surveyed live in urban areas. The majority of the refugees in Somalia are either from Ethiopia (54 percent) and Yemen (41 percent). Therefore, this survey focused on these two refugee groups. The refugee households mostly live in Somaliland (53 percent) with a considerable number in Puntland (28 percent) and Banadir (15 percent). In the case of refugee returnees, about 11,606 households were registered in the UNHCR database at the time of sample selection, mostly coming from Kenya (97 percent) and Yemen (2 percent). Both these groups were included in the sample proportionally to their population share. The majority of the sampled refugee returnees live in Jubaland (78 percent). As for settlement-based IDPs, two main regions—Banadir and Bay—which host almost 50 percent of the settlement-based IDPs in Somalia were focused.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Cleaning operations

    At the end of data collection, the raw dataset was cleaned by the Research team. This included formatting, and correcting results based on monitoring issues, enumerator feedback and survey changes.

    Only households that consented to being interviewed were kept in the dataset, and all personal information and internal survey variables were dropped from the clean dataset.

  17. a

    OCACS 2021 Social Characteristics for Orange County

    • hub.arcgis.com
    Updated May 5, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OC Public Works (2023). OCACS 2021 Social Characteristics for Orange County [Dataset]. https://hub.arcgis.com/datasets/8ebb738f63824b83bfde2db0e17ccff6
    Explore at:
    Dataset updated
    May 5, 2023
    Dataset authored and provided by
    OC Public Works
    Area covered
    Description

    US Census American Community Survey (ACS) 2021, 5-year estimates of the key social characteristics for Orange County, California. The data contains 500 fields for the variable groups S01: Households by type (universe: total households, table X11, 17 fields); S02: Relationship (universe: population in households, table X9, 19 fields); S03: Marital status (universe: population 15 years and over, table X12, 13 fields); S04: Fertility (universe: women 15-50 years who had birth in the past 12 months, table X13, 11 fields); S05: Grandparents (universe: grandparents living or responsible for own grandchildren under 18 years, table X10, 18 fields); S06: School enrollment (universe: population 3 years old and over enrolled in school, table X14, 17 fields); S07: Educational attainment (universe: population 25 years and over, table X15, 25 fields); S08: Veteran status (universe: civilian population 18 years and over, table X21, 2 fields); S09: Disability status and type by sex and age (universe: total civilian non-institutionalized population, table X18, 77 fields); S10: Disability status by age and health insurance coverage (universe: civilian non-institutionalized population, table X18, 16 fields); S11: Residence 1 year ago (universe: population 1 year and over, table X7, 6 fields); S12: Place of birth (universe: total population, table X5, 27 fields); S13: Citizenship status by nativity in the US (universe: total population, table X5, 6 fields); S14: Year of entry (universe: population born outside the US, table X5, 21 fields); S15: World region of birth of foreign born population (universe: foreign born population, excluding population born at sea, table X5, 25 fields); S16: Language spoken in households (universe: total households, table X16, 6 fields); S17: Language spoken at home (universe: population 5 years and over, table X16, 67 fields); S18: Ancestry (universe: total population reporting ancestry, table X4, 114 fields), and; S19: Computers and internet use (universe: total population in households and total households, table X28, 13 fields). The US Census geodemographic data are based on the 2021 TigerLines across multiple geographies. The spatial geographies were merged with ACS data tables. See full documentation at the OCACS project GitHub page (https://github.com/ktalexan/OCACS-Geodemographics).

  18. a

    OCACS 2019 Social Characteristics for Census Tracts

    • maps-cadoc.opendata.arcgis.com
    • hub.arcgis.com
    • +1more
    Updated Sep 14, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OC Public Works (2021). OCACS 2019 Social Characteristics for Census Tracts [Dataset]. https://maps-cadoc.opendata.arcgis.com/maps/OCPW::ocacs-2019-social-characteristics-for-census-tracts/about
    Explore at:
    Dataset updated
    Sep 14, 2021
    Dataset authored and provided by
    OC Public Works
    Area covered
    Description

    US Census American Community Survey (ACS) 2019, 5-year estimates of the key social characteristics of Census Tract geographic level in Orange County, California. The data contains 500 fields for the variable groups S01: Households by type (universe: total households, table X11, 17 fields); S02: Relationship (universe: population in households, table X9, 19 fields); S03: Marital status (universe: population 15 years and over, table X12, 13 fields); S04: Fertility (universe: women 15-50 years who had birth in the past 12 months, table X13, 11 fields); S05: Grandparents (universe: grandparents living or responsible for own grandchildren under 18 years, table X10, 18 fields); S06: School enrollment (universe: population 3 years old and over enrolled in school, table X14, 17 fields); S07: Educational attainment (universe: population 25 years and over, table X15, 25 fields); S08: Veteran status (universe: civilian population 18 years and over, table X21, 2 fields); S09: Disability status and type by sex and age (universe: total civilian non-institutionalized population, table X18, 77 fields); S10: Disability status by age and health insurance coverage (universe: civilian non-institutionalized population, table X18, 16 fields); S11: Residence 1 year ago (universe: population 1 year and over, table X7, 6 fields); S12: Place of birth (universe: total population, table X5, 27 fields); S13: Citizenship status by nativity in the US (universe: total population, table X5, 6 fields); S14: Year of entry (universe: population born outside the US, table X5, 21 fields); S15: World region of birth of foreign born population (universe: foreign born population, excluding population born at sea, table X5, 25 fields); S16: Language spoken in households (universe: total households, table X16, 6 fields); S17: Language spoken at home (universe: population 5 years and over, table X16, 67 fields); S18: Ancestry (universe: total population reporting ancestry, table X4, 114 fields), and; S19: Computers and internet use (universe: total population in households and total households, table X28, 13 fields). The US Census geodemographic data are based on the 2019 TigerLines across multiple geographies. The spatial geographies were merged with ACS data tables. See full documentation at the OCACS project github page (https://github.com/ktalexan/OCACS-Geodemographics).

  19. Population of Italy's largest cities at the beginning of each century...

    • statista.com
    Updated Dec 31, 2006
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2006). Population of Italy's largest cities at the beginning of each century 1500-1800 [Dataset]. https://www.statista.com/statistics/1281933/population-italy-largest-cities-historical/
    Explore at:
    Dataset updated
    Dec 31, 2006
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Italy
    Description

    Throughout the early modern period, the largest city in Italy was Naples. The middle ages saw many metropolitan areas along the Mediterranean grow to become the largest in Europe, as they developed into meeting ports for merchants travelling between the three continents. Italy, throughout this time, was not a unified country, but rather a collection of smaller states that had many cultural similarities, and political control of these cities regularly shifted over the given period. Across this time, the population of each city generally grew between each century, but a series of plague outbreaks in the 1600s devastated the populations of Italy's metropolitan areas, which can be observed here. Naples At the beginning of the 1500s, the Kingdom of Naples was taken under the control of the Spanish crown, where its capital grew to become the largest city in the newly-expanding Spanish Empire. Prosperity then grew in the 16th and 17th centuries, before the city's international importance declined in the 18th century. There is also a noticeable dip in Naples' population size between 1600 and 1700, due to an outbreak of plague in 1656 that almost halved the population. Today, Naples is just the third largest city in Italy, behind Rome and Milan. Rome Over 2,000 years ago, Rome became the first city in the world to have a population of more than one million people, and in 2021, it was Italy's largest city with a population of 2.8 million; however it did go through a period of great decline in the middle ages. After the Fall of the Western Roman Empire in 476CE, Rome's population dropped rapidly, below 100,000 inhabitants in 500CE. 1,000 years later, Rome was an important city in Europe as it was the seat of the Catholic Church, and it had a powerful banking sector, but its population was just 55,000 people as it did not have the same appeal for merchants or migrants held by the other port cities. A series of reforms by the Papacy in the late-1500s then saw significant improvements to infrastructure, housing, and sanitation, and living standards rose greatly. Over the following centuries, the Papacy consolidated its power in the center of the Italian peninsula, which brought stability to the region, and the city of Rome became a cultural center. Across this period, Rome's population grew almost three times larger, which was the highest level of growth of these cities.

  20. Total population of China 1980-2030

    • statista.com
    Updated Oct 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total population of China 1980-2030 [Dataset]. https://www.statista.com/statistics/263765/total-population-of-china/
    Explore at:
    Dataset updated
    Oct 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    China
    Description

    According to latest figures, the Chinese population decreased by 1.39 million to around 1.408 billion people in 2024. After decades of rapid growth, China arrived at the turning point of its demographic development in 2022, which was earlier than expected. The annual population decrease is estimated to remain at moderate levels until around 2030 but to accelerate thereafter. Population development in China China had for a long time been the country with the largest population worldwide, but according to UN estimates, it has been overtaken by India in 2023. As the population in India is still growing, the country is very likely to remain being home of the largest population on earth in the near future. Due to several mechanisms put into place by the Chinese government as well as changing circumstances in the working and social environment of the Chinese people, population growth has subsided over the past decades, displaying an annual population growth rate of -0.1 percent in 2024. Nevertheless, compared to the world population in total, China held a share of about 17 percent of the overall global population in 2024. China's aging population In terms of demographic developments, the birth control efforts of the Chinese government had considerable effects on the demographic pyramid in China. Upon closer examination of the age distribution, a clear trend of an aging population becomes visible. In order to curb the negative effects of an aging population, the Chinese government abolished the one-child policy in 2015, which had been in effect since 1979, and introduced a three-child policy in May 2021. However, many Chinese parents nowadays are reluctant to have a second or third child, as is the case in most of the developed countries in the world. The number of births in China varied in the years following the abolishment of the one-child policy, but did not increase considerably. Among the reasons most prominent for parents not having more children are the rising living costs and costs for child care, growing work pressure, a growing trend towards self-realization and individualism, and changing social behaviors.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Population of the world 10,000BCE-2100 [Dataset]. https://www.statista.com/statistics/1006502/global-population-ten-thousand-bc-to-2050/
Organization logo

Population of the world 10,000BCE-2100

Explore at:
18 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Nov 28, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
World
Description

Until the 1800s, population growth was incredibly slow on a global level. The global population was estimated to have been around 188 million people in the year 1CE, and did not reach one billion until around 1803. However, since the 1800s, a phenomenon known as the demographic transition has seen population growth skyrocket, reaching eight billion people in 2023, and this is expected to peak at over 10 billion in the 2080s.

Search
Clear search
Close search
Google apps
Main menu