15 datasets found
  1. Calculation File Uploaded-AAJ_JS-14741.xlsx

    • figshare.com
    xlsx
    Updated Jun 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jayachandran A A (2023). Calculation File Uploaded-AAJ_JS-14741.xlsx [Dataset]. http://doi.org/10.6084/m9.figshare.23577831.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 26, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Jayachandran A A
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data contains 2022 world population data publised by the UN DESA for six most populous countries of the world. File also contains the analysis of decomposition of demographic indicators on population growth.

  2. Population of the world 10,000BCE-2100

    • statista.com
    Updated Aug 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population of the world 10,000BCE-2100 [Dataset]. https://www.statista.com/statistics/1006502/global-population-ten-thousand-bc-to-2050/
    Explore at:
    Dataset updated
    Aug 7, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    Until the 1800s, population growth was incredibly slow on a global level. The global population was estimated to have been around 188 million people in the year 1CE, and did not reach one billion until around 1803. However, since the 1800s, a phenomenon known as the demographic transition has seen population growth skyrocket, reaching eight billion people in 2023, and this is expected to peak at over 10 billion in the 2080s.

  3. c

    Gridded Population of the World, Version 4 (GPWv4): Land and Water Area,...

    • s.cnmilf.com
    • data.nasa.gov
    • +3more
    Updated Apr 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SEDAC (2025). Gridded Population of the World, Version 4 (GPWv4): Land and Water Area, Revision 11 [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/gridded-population-of-the-world-version-4-gpwv4-land-and-water-area-revision-11
    Explore at:
    Dataset updated
    Apr 24, 2025
    Dataset provided by
    SEDAC
    Area covered
    Earth, World
    Description

    The Gridded Population of the World, Version 4 (GPWv4): Land and Water Area, Revision 11 consists of two rasters that measure surface areas of land and water in square kilometers per pixel. The Land Area raster provides estimates of the land area, excluding permanent ice and water, within each pixel, and was used to calculate the population density rasters. The Water Area raster provides estimates of the water area (permanent ice and water) within each pixel. The sum of land area and water area of a pixel equals the total surface area of that pixel. The data files were produced as global rasters at 30 arc-second (~1 km at the equator) resolution. To enable faster global processing, and in support of research commUnities, the 30 arc-second data were aggregated to 2.5 arc-minute, 15 arc-minute, 30 arc-minute and 1 degree resolutions.

  4. World Population Data Sheet, 1994

    • archive.ciser.cornell.edu
    Updated Jan 5, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Population Reference Bureau (2020). World Population Data Sheet, 1994 [Dataset]. http://doi.org/10.6077/j5/mojefz
    Explore at:
    Dataset updated
    Jan 5, 2020
    Dataset authored and provided by
    Population Reference Bureauhttps://www.prb.org/
    Area covered
    World
    Variables measured
    GeographicUnit
    Description

    The Data Sheet lists all geopolitical entities with populations of 150,000 or more and all members of the UN. These include sovereign states, dependencies, overseas departments, and some territories whose status or boundaries may be undetermined or in dispute. Regional population totals are independently rounded and include small countries or areas not shown. Regional and world rates and percentages are weighted averages of countries for which data are available; regional averages are shown when data or estimates are available for at least three-quarters of the region's population. Variables include population, birth and death rate, rate of natural increase, population "doubling time", estimated population for 2010 and 2025, infant mortality rate, total fertility rate, population under age 15/over age 65, life expectancy at birth, urban population, contraceptive use, per capita GNP, and government view of current birth rate. NOTE: This file is a compilation of demographic data from various sources. The data values are the same as those published in PRB's World Data Sheet, but this file also contains some underlying population figures used to calculate the rates and percentages.

  5. Pocket Calculators Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Pocket Calculators Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/pocket-calculators-market
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Dec 3, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Pocket Calculators Market Outlook



    The global pocket calculators market size is projected to grow significantly, with an estimated CAGR of 6.2% from 2024 to 2032. In 2023, the market was valued at approximately $3.5 billion, and by 2032, it is expected to reach around $6.4 billion. This robust growth can be attributed to the continuous demand for calculators in education and business sectors, technological advancements in calculator functions, and the increasing prevalence of digital learning environments. The integration of advanced features and connectivity options in calculators is further expected to bolster market expansion during the forecast period.



    One of the primary growth factors driving the pocket calculators market is the enduring necessity for dedicated calculation devices in educational settings. Despite the proliferation of multifunctional devices like smartphones and tablets, pocket calculators remain indispensable in schools and universities due to their specialized functionalities and ease of use in examination settings. Calculators designed specifically for educational use, such as scientific and graphing calculators, are integral to curricula in mathematics and science courses worldwide. The emphasis on STEM education globally continues to create a substantial demand for calculators, as they provide students with essential tools for learning complex mathematical concepts.



    Another significant factor contributing to market growth is the advancements in calculator technology. Modern calculators now come with enhanced features such as programmable functions, connectivity with other devices, and cloud storage capabilities. These innovations have expanded the applications of calculators beyond traditional arithmetic functions to complex problem-solving tools used in various professional fields such as finance and engineering. The integration of graphing capabilities and data analysis functions has widened the appeal of calculators among professionals who require robust computational power on-the-go, further driving the market growth.



    The rise of digital learning and remote education platforms has also positively impacted the demand for pocket calculators. As educational institutions adopt digital tools to facilitate learning, the need for reliable, non-disruptive devices like calculators has increased. This trend is prominent in regions with advanced technological infrastructures, where digital literacy is a priority. In addition, the convenience and affordability of pocket calculators make them a preferred choice for students and educators alike. The market is expected to benefit from ongoing investments in educational technology, which frequently incorporate calculators as integral tools for effective learning experiences.



    Regionally, Asia Pacific is anticipated to witness the highest growth in the pocket calculators market. The region's rapid economic development, coupled with an expanding middle-class population, supports the growing demand for educational tools. Countries like China, India, and Japan are significant contributors to this growth, driven by large student populations and increasing investments in education. North America and Europe are also substantial markets due to their established education systems and consistent demand for educational aids. In contrast, the markets in Latin America and the Middle East & Africa are expected to experience moderate growth, influenced by their evolving educational landscapes and economic conditions.



    Product Type Analysis



    When dissecting the pocket calculators market by product type, it becomes evident that scientific calculators hold a significant share due to their extensive application in educational environments. Scientific calculators are indispensable tools for students and professionals dealing with subjects that require complex calculations such as physics, chemistry, and engineering. Their ability to perform a wide range of functions, including trigonometric, logarithmic, and exponential operations, makes them crucial in academic settings. The demand for scientific calculators is particularly high in regions with a strong emphasis on STEM education, and this segment is anticipated to continue its dominance over the forecast period.



    Graphing calculators represent another vital segment within the pocket calculators market, catering to advanced educational and professional needs. These calculators are equipped with the capability to plot graphs and solve simultaneous equations, making them essential in higher-level mathematics and engineering courses. Their extensive functionality is p

  6. Population of Japan 1800-2020

    • statista.com
    Updated Aug 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population of Japan 1800-2020 [Dataset]. https://www.statista.com/statistics/1066956/population-japan-historical/
    Explore at:
    Dataset updated
    Aug 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Japan
    Description

    In 1800, the population of Japan was just over 30 million, a figure which would grow by just two million in the first half of the 19th century. However, with the fall of the Tokugawa shogunate and the restoration of the emperor in the Meiji Restoration of 1868, Japan would begin transforming from an isolated feudal island, to a modernized empire built on Western models. The Meiji period would see a rapid rise in the population of Japan, as industrialization and advancements in healthcare lead to a significant reduction in child mortality rates, while the creation overseas colonies would lead to a strong economic boom. However, this growth would slow beginning in 1937, as Japan entered a prolonged war with the Republic of China, which later grew into a major theater of the Second World War. The war was eventually brought to Japan's home front, with the escalation of Allied air raids on Japanese urban centers from 1944 onwards (Tokyo was the most-bombed city of the Second World War). By the war's end in 1945 and the subsequent occupation of the island by the Allied military, Japan had suffered over two and a half million military fatalities, and over one million civilian deaths.

    The population figures of Japan were quick to recover, as the post-war “economic miracle” would see an unprecedented expansion of the Japanese economy, and would lead to the country becoming one of the first fully industrialized nations in East Asia. As living standards rose, the population of Japan would increase from 77 million in 1945, to over 127 million by the end of the century. However, growth would begin to slow in the late 1980s, as birth rates and migration rates fell, and Japan eventually grew to have one of the oldest populations in the world. The population would peak in 2008 at just over 128 million, but has consistently fallen each year since then, as the fertility rate of the country remains below replacement level (despite government initiatives to counter this) and the country's immigrant population remains relatively stable. The population of Japan is expected to continue its decline in the coming years, and in 2020, it is estimated that approximately 126 million people inhabit the island country.

  7. a

    Catholic CO2 Footprint FULL

    • hub.arcgis.com
    • catholic-geo-hub-cgisc.hub.arcgis.com
    Updated Sep 23, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    burhansm2 (2019). Catholic CO2 Footprint FULL [Dataset]. https://hub.arcgis.com/content/c35ebf2c09b34779b389524733c4b92c
    Explore at:
    Dataset updated
    Sep 23, 2019
    Dataset authored and provided by
    burhansm2
    License

    Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
    License information was derived automatically

    Area covered
    Description

    PerCapita_CO2_Footprint_InDioceses_FULLBurhans, Molly A., Cheney, David M., Gerlt, R.. . “PerCapita_CO2_Footprint_InDioceses_FULL”. Scale not given. Version 1.0. MO and CT, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2019.MethodologyThis is the first global Carbon footprint of the Catholic population. We will continue to improve and develop these data with our research partners over the coming years. While it is helpful, it should also be viewed and used as a "beta" prototype that we and our research partners will build from and improve. The years of carbon data are (2010) and (2015 - SHOWN). The year of Catholic data is 2018. The year of population data is 2016. Care should be taken during future developments to harmonize the years used for catholic, population, and CO2 data.1. Zonal Statistics: Esri Population Data and Dioceses --> Population per dioceses, non Vatican based numbers2. Zonal Statistics: FFDAS and Dioceses and Population dataset --> Mean CO2 per Diocese3. Field Calculation: Population per Diocese and Mean CO2 per diocese --> CO2 per Capita4. Field Calculation: CO2 per Capita * Catholic Population --> Catholic Carbon FootprintAssumption: PerCapita CO2Deriving per-capita CO2 from mean CO2 in a geography assumes that people's footprint accounts for their personal lifestyle and involvement in local business and industries that are contribute CO2. Catholic CO2Assumes that Catholics and non-Catholic have similar CO2 footprints from their lifestyles.Derived from:A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of resultshttp://ffdas.rc.nau.edu/About.htmlRayner et al., JGR, 2010 - The is the first FFDAS paper describing the version 1.0 methods and results published in the Journal of Geophysical Research.Asefi et al., 2014 - This is the paper describing the methods and results of the FFDAS version 2.0 published in the Journal of Geophysical Research.Readme version 2.2 - A simple readme file to assist in using the 10 km x 10 km, hourly gridded Vulcan version 2.2 results.Liu et al., 2017 - A paper exploring the carbon cycle response to the 2015-2016 El Nino through the use of carbon cycle data assimilation with FFDAS as the boundary condition for FFCO2."S. Asefi‐Najafabady P. J. Rayner K. R. Gurney A. McRobert Y. Song K. Coltin J. Huang C. Elvidge K. BaughFirst published: 10 September 2014 https://doi.org/10.1002/2013JD021296 Cited by: 30Link to FFDAS data retrieval and visualization: http://hpcg.purdue.edu/FFDAS/index.phpAbstractHigh‐resolution, global quantification of fossil fuel CO2 emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high‐resolution fossil fuel CO2 emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long‐term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long‐term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter‐term variations reveals the impact of the 2008–2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO2 emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO2 emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set."Global Diocesan Boundaries:Burhans, M., Bell, J., Burhans, D., Carmichael, R., Cheney, D., Deaton, M., Emge, T. Gerlt, B., Grayson, J., Herries, J., Keegan, H., Skinner, A., Smith, M., Sousa, C., Trubetskoy, S. “Diocesean Boundaries of the Catholic Church” [Feature Layer]. Scale not given. Version 1.2. Redlands, CA, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2016.Using: ArcGIS. 10.4. Version 10.0. Redlands, CA: Environmental Systems Research Institute, Inc., 2016.Boundary ProvenanceStatistics and Leadership DataCheney, D.M. “Catholic Hierarchy of the World” [Database]. Date Updated: August 2019. Catholic Hierarchy. Using: Paradox. Retrieved from Original Source.Catholic HierarchyAnnuario Pontificio per l’Anno .. Città del Vaticano :Tipografia Poliglotta Vaticana, Multiple Years.The data for these maps was extracted from the gold standard of Church data, the Annuario Pontificio, published yearly by the Vatican. The collection and data development of the Vatican Statistics Office are unknown. GoodLands is not responsible for errors within this data. We encourage people to document and report errant information to us at data@good-lands.org or directly to the Vatican.Additional information about regular changes in bishops and sees comes from a variety of public diocesan and news announcements.GoodLands’ polygon data layers, version 2.0 for global ecclesiastical boundaries of the Roman Catholic Church:Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, due to this being the first developed dataset of global ecclesiastical boundaries curated from many sources it may have a higher margin of error than established geopolitical administrative boundary maps. Boundaries need to be verified with appropriate Ecclesiastical Leadership. The current information is subject to change without notice. No parties involved with the creation of this data are liable for indirect, special or incidental damage resulting from, arising out of or in connection with the use of the information. We referenced 1960 sources to build our global datasets of ecclesiastical jurisdictions. Often, they were isolated images of dioceses, historical documents and information about parishes that were cross checked. These sources can be viewed here:https://docs.google.com/spreadsheets/d/11ANlH1S_aYJOyz4TtG0HHgz0OLxnOvXLHMt4FVOS85Q/edit#gid=0To learn more or contact us please visit: https://good-lands.org/Esri Gridded Population Data 2016DescriptionThis layer is a global estimate of human population for 2016. Esri created this estimate by modeling a footprint of where people live as a dasymetric settlement likelihood surface, and then assigned 2016 population estimates stored on polygons of the finest level of geography available onto the settlement surface. Where people live means where their homes are, as in where people sleep most of the time, and this is opposed to where they work. Another way to think of this estimate is a night-time estimate, as opposed to a day-time estimate.Knowledge of population distribution helps us understand how humans affect the natural world and how natural events such as storms and earthquakes, and other phenomena affect humans. This layer represents the footprint of where people live, and how many people live there.Dataset SummaryEach cell in this layer has an integer value with the estimated number of people likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Population Density Estimate 2016: this layer is represented as population density in units of persons per square kilometer.World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: http://doi.org/10.5334/dsj-2018-020.What can you do with this layer?This layer is unsuitable for mapping or cartographic use, and thus it does not include a convenient legend. Instead, this layer is useful for analysis, particularly for estimating counts of people living within watersheds, coastal areas, and other areas that do not have standard boundaries. Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the count of population within those zones. https://www.esri.com/arcgis-blog/products/arcgis-living-atlas/data-management/2016-world-population-estimate-services-are-now-available/

  8. U

    United States US: Survey Mean Consumption or Income per Capita: Bottom 40%...

    • ceicdata.com
    Updated Mar 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2023). United States US: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate [Dataset]. https://www.ceicdata.com/en/united-states/poverty/us-survey-mean-consumption-or-income-per-capita-bottom-40-of-population-annualized-average-growth-rate
    Explore at:
    Dataset updated
    Mar 15, 2023
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2016
    Area covered
    United States
    Description

    United States US: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data was reported at 1.310 % in 2016. United States US: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data is updated yearly, averaging 1.310 % from Dec 2016 (Median) to 2016, with 1 observations. United States US: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Poverty. The growth rate in the welfare aggregate of the bottom 40% is computed as the annualized average growth rate in per capita real consumption or income of the bottom 40% of the population in the income distribution in a country from household surveys over a roughly 5-year period. Mean per capita real consumption or income is measured at 2011 Purchasing Power Parity (PPP) using the PovcalNet (http://iresearch.worldbank.org/PovcalNet). For some countries means are not reported due to grouped and/or confidential data. The annualized growth rate is computed as (Mean in final year/Mean in initial year)^(1/(Final year - Initial year)) - 1. The reference year is the year in which the underlying household survey data was collected. In cases for which the data collection period bridged two calendar years, the first year in which data were collected is reported. The initial year refers to the nearest survey collected 5 years before the most recent survey available, only surveys collected between 3 and 7 years before the most recent survey are considered. The final year refers to the most recent survey available between 2011 and 2015. Growth rates for Iraq are based on survey means of 2005 PPP$. The coverage and quality of the 2011 PPP price data for Iraq and most other North African and Middle Eastern countries were hindered by the exceptional period of instability they faced at the time of the 2011 exercise of the International Comparison Program. See PovcalNet for detailed explanations.; ; World Bank, Global Database of Shared Prosperity (GDSP) circa 2010-2015 (http://www.worldbank.org/en/topic/poverty/brief/global-database-of-shared-prosperity).; ; The comparability of welfare aggregates (consumption or income) for the chosen years T0 and T1 is assessed for every country. If comparability across the two surveys is a major concern for a country, the selection criteria are re-applied to select the next best survey year(s). Annualized growth rates are calculated between the survey years, using a compound growth formula. The survey years defining the period for which growth rates are calculated and the type of welfare aggregate used to calculate the growth rates are noted in the footnotes.

  9. Food Insecurity Experience Scale (FIES) - Slovenia

    • microdata.worldbank.org
    • microdata.fao.org
    • +2more
    Updated Oct 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FAO Statistics Division (2024). Food Insecurity Experience Scale (FIES) - Slovenia [Dataset]. https://microdata.worldbank.org/index.php/catalog/6333
    Explore at:
    Dataset updated
    Oct 18, 2024
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    Authors
    FAO Statistics Division
    Time period covered
    2023
    Area covered
    Slovenia
    Description

    Abstract

    Sustainable Development Goal (SDG) target 2.1 commits countries to end hunger, ensure access by all people to safe, nutritious and sufficient food all year around. Indicator 2.1.2, “Prevalence of moderate or severe food insecurity based on the Food Insecurity Experience Scale (FIES)”, provides internationally-comparable estimates of the proportion of the population facing difficulties in accessing food. More detailed background information is available at http://www.fao.org/in-action/voices-of-the-hungry/fies/en/ .

    The FIES-based indicators are compiled using the FIES survey module, containing 8 questions. Two indicators can be computed:
    1. The proportion of the population experiencing moderate or severe food insecurity (SDG indicator 2.1.2), 2. The proportion of the population experiencing severe food insecurity.

    These data were collected by FAO through the Gallup World Poll. General information on the methodology can be found here: https://www.gallup.com/178667/gallup-world-poll-work.aspx. National institutions can also collect FIES data by including the FIES survey module in nationally representative surveys.

    Microdata can be used to calculate the indicator 2.1.2 at national level. Instructions for computing this indicator are described in the methodological document available in the downloads tab. Disaggregating results at sub-national level is not encouraged because estimates will suffer from substantial sampling and measurement error.

    Geographic coverage

    National

    Analysis unit

    Individuals

    Universe

    Individuals of 15 years or older with access to landline and/or mobile phones.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    With some exceptions, all samples are probability based and nationally representative of the resident adult population. The coverage area is the entire country including rural areas, and the sampling frame represents the entire civilian, non-institutionalized, aged 15 and older population. For more details on the overall sampling and data collection methodology, see the World poll methodology attached as a resource in the downloads tab. Specific sampling details for each country are also attached as technical documents in the downloads tab. Exclusions: NA Design effect: 1.55

    Mode of data collection

    Computer-Assisted Telephone Interviewing [CATI]

    Cleaning operations

    Statistical validation assesses the quality of the FIES data collected by testing their consistency with the assumptions of the Rasch model. This analysis involves the interpretation of several statistics that reveal 1) items that do not perform well in a given context, 2) cases with highly erratic response patterns, 3) pairs of items that may be redundant, and 4) the proportion of total variance in the population that is accounted for by the measurement model.

    Sampling error estimates

    The margin of error is estimated as 3.9. This is calculated around a proportion at the 95% confidence level. The maximum margin of error was calculated assuming a reported percentage of 50% and takes into account the design effect.

    Data appraisal

    The variable WHLDAY was not considered in the computation of the published FAO food insecurity indicator based on FIES due to the results of the validation process.

  10. f

    Table_1_Imminent Risk of Extirpation for Two Bottlenose Dolphin Communities...

    • frontiersin.figshare.com
    pdf
    Updated Jun 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fernando Félix; Santiago F. Burneo (2023). Table_1_Imminent Risk of Extirpation for Two Bottlenose Dolphin Communities in the Gulf of Guayaquil, Ecuador.pdf [Dataset]. http://doi.org/10.3389/fmars.2020.537010.s002
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    Frontiers
    Authors
    Fernando Félix; Santiago F. Burneo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Ecuador, Gulf of Guayaquil
    Description

    A long-term study of a common bottlenose dolphin (Tursiops truncatus) population inhabiting the Gulf of Guayaquil, Ecuador (2°33′ S, 79°20′W), has been carried out for almost 30 years. Similarly, as in other parts of the world, this population is structured socially and spatially in well-defined subunits or communities. Two of these communities, referred to as Posorja and El Morro, have been studied with major intensity in the last 10 years in the western inner estuary, among others to calculate population parameters that allow assessing their viability in time. Calculated parameters include annual abundance, age and sex composition, annual crude birth rate, calf survival, calf production interval, and average annual mortality/emigration. With these parameters and others derived from other better-studied populations, the trend of both subunits was modeled using the software Vortex. Results show that even under an optimistic scenery both communities will be extinct in the short (Posorja) and mid-term (El Morro), if current stressors continue. Most population parameters calculated in both communities show similar values as in populations elsewhere, but a very low calf survival in Posorja and high mortality/emigration ratios in adults, and probably in juveniles in both communities, contribute to this trend. Population deterioration seems to be the result of different human-induced threats such as fisheries, maritime traffic and others still not well assessed, as well as stochastic demographic events. We recommend taking actions in the short term to halt population decline addressing the major causes of mortality affecting these dolphin communities.

  11. Countries with the highest birth rate 2024

    • statista.com
    • ai-chatbox.pro
    Updated Jan 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries with the highest birth rate 2024 [Dataset]. https://www.statista.com/statistics/264704/ranking-of-the-20-countries-with-the-highest-birth-rate/
    Explore at:
    Dataset updated
    Jan 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Worldwide
    Description

    Niger had the highest birth rate in the world in 2024, with a birth rate of 46.6 births per 1,000 inhabitants. Angola, Benin, Mali, and Uganda followed. Except for Afghanistan, all the 20 countries with the highest birth rates in the world were located in Sub-Saharan Africa. High infant mortality The reasons behind the high birth rates in many Sub-Saharan African countries are manyfold, but a major reason is that infant mortality remains high on the continent, despite decreasing steadily over the past decades, resulting in high birth rates to counter death rates. Moreover, many nations in Sub-Saharan Africa are highly reliant on small-scale farming, meaning that more hands are of importance. Additionally, polygamy is not uncommon in the region, and having many children is often seen as a symbol of status. Fastest growing populations As the high fertility rates coincide with decreasing death rates, countries in Sub-Saharan Africa have the highest population growth rates in the world. As a result, with Africa's population forecast to increase from 1.4 billion in 2022 to over 3.9 billion by 2100.

  12. Indexes, description and calculate method of the primary health care.

    • plos.figshare.com
    xls
    Updated Jun 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Francisco Winter dos Santos Figueiredo; Tábata Cristina do Carmo Almeida; Jean Henri Maselli Schoueri; Caio Luisi; Fernando Adami (2023). Indexes, description and calculate method of the primary health care. [Dataset]. http://doi.org/10.1371/journal.pone.0200125.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 18, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Francisco Winter dos Santos Figueiredo; Tábata Cristina do Carmo Almeida; Jean Henri Maselli Schoueri; Caio Luisi; Fernando Adami
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Indexes, description and calculate method of the primary health care.

  13. COVID-19 death rates in 2020 countries worldwide as of April 26, 2022

    • statista.com
    Updated Apr 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). COVID-19 death rates in 2020 countries worldwide as of April 26, 2022 [Dataset]. https://www.statista.com/statistics/1105914/coronavirus-death-rates-worldwide/
    Explore at:
    Dataset updated
    Apr 15, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    COVID-19 rate of death, or the known deaths divided by confirmed cases, was over ten percent in Yemen, the only country that has 1,000 or more cases. This according to a calculation that combines coronavirus stats on both deaths and registered cases for 221 different countries. Note that death rates are not the same as the chance of dying from an infection or the number of deaths based on an at-risk population. By April 26, 2022, the virus had infected over 510.2 million people worldwide, and led to a loss of 6.2 million. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

    Where are these numbers coming from?

    The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. Note that Statista aims to also provide domestic source material for a more complete picture, and not to just look at one particular source. Examples are these statistics on the confirmed coronavirus cases in Russia or the COVID-19 cases in Italy, both of which are from domestic sources. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

    A word on the flaws of numbers like this

    People are right to ask whether these numbers are at all representative or not for several reasons. First, countries worldwide decide differently on who gets tested for the virus, meaning that comparing case numbers or death rates could to some extent be misleading. Germany, for example, started testing relatively early once the country’s first case was confirmed in Bavaria in January 2020, whereas Italy tests for the coronavirus postmortem. Second, not all people go to see (or can see, due to testing capacity) a doctor when they have mild symptoms. Countries like Norway and the Netherlands, for example, recommend people with non-severe symptoms to just stay at home. This means not all cases are known all the time, which could significantly alter the death rate as it is presented here. Third and finally, numbers like this change very frequently depending on how the pandemic spreads or the national healthcare capacity. It is therefore recommended to look at other (freely accessible) content that dives more into specifics, such as the coronavirus testing capacity in India or the number of hospital beds in the UK. Only with additional pieces of information can you get the full picture, something that this statistic in its current state simply cannot provide.

  14. Life expectancy by continent and gender 2024

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Life expectancy by continent and gender 2024 [Dataset]. https://www.statista.com/statistics/270861/life-expectancy-by-continent/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Worldwide
    Description

    In 2024, the average life expectancy in the world was 71 years for men and 76 years for women. The lowest life expectancies were found in Africa, while Oceania and Europe had the highest. What is life expectancy?Life expectancy is defined as a statistical measure of how long a person may live, based on demographic factors such as gender, current age, and most importantly the year of their birth. The most commonly used measure of life expectancy is life expectancy at birth or at age zero. The calculation is based on the assumption that mortality rates at each age were to remain constant in the future. Life expectancy has changed drastically over time, especially during the past 200 years. In the early 20th century, the average life expectancy at birth in the developed world stood at 31 years. It has grown to an average of 70 and 75 years for males and females respectively, and is expected to keep on growing with advances in medical treatment and living standards continuing. Highest and lowest life expectancy worldwide Life expectancy still varies greatly between different regions and countries of the world. The biggest impact on life expectancy is the quality of public health, medical care, and diet. As of 2022, the countries with the highest life expectancy were Japan, Liechtenstein, Switzerland, and Australia, all at 84–83 years. Most of the countries with the lowest life expectancy are mostly African countries. The ranking was led by the Chad, Nigeria, and Lesotho with 53–54 years.

  15. Total population of South Africa 2024, by age group

    • statista.com
    Updated Jun 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total population of South Africa 2024, by age group [Dataset]. https://www.statista.com/statistics/1116077/total-population-of-south-africa-by-age-group/
    Explore at:
    Dataset updated
    Jun 3, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    South Africa
    Description

    As of 2024, South Africa's population increased, counting approximately 63 million inhabitants. Of these, roughly 27.5 million were aged 0-24, while 654,000 people were 80 years or older. Gauteng and Cape Town are the most populated South Africa’s yearly population growth has been fluctuating since 2013, with the growth rate dropping below the world average in 2024. The majority of people lived in the borders of Gauteng, the smallest of the nine provinces in terms of land area. The number of people residing there amounted to 16.6 million in 2023. Although the Western Cape was the third-largest province, the city of Cape Town had the highest number of inhabitants in the country, at 3.4 million. An underemployed younger population South Africa has a large population under 14, who will be looking for job opportunities in the future. However, the country's labor market has had difficulty integrating these youngsters. Specifically, as of the fourth quarter of 2024, the unemployment rate reached close to 60 percent and 384 percent among people aged 15-24 and 25–34 years, respectively. In the same period, some 27 percent of the individuals between 15 and 24 years were economically active, while the labor force participation rate was higher among people aged 25 to 34, at 74.3 percent.

  16. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Jayachandran A A (2023). Calculation File Uploaded-AAJ_JS-14741.xlsx [Dataset]. http://doi.org/10.6084/m9.figshare.23577831.v1
Organization logo

Calculation File Uploaded-AAJ_JS-14741.xlsx

Explore at:
xlsxAvailable download formats
Dataset updated
Jun 26, 2023
Dataset provided by
Figsharehttp://figshare.com/
Authors
Jayachandran A A
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Data contains 2022 world population data publised by the UN DESA for six most populous countries of the world. File also contains the analysis of decomposition of demographic indicators on population growth.

Search
Clear search
Close search
Google apps
Main menu