100+ datasets found
  1. World population by age and region 2024

    • statista.com
    • ai-chatbox.pro
    Updated Mar 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). World population by age and region 2024 [Dataset]. https://www.statista.com/statistics/265759/world-population-by-age-and-region/
    Explore at:
    Dataset updated
    Mar 11, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    Globally, about 25 percent of the population is under 15 years of age and 10 percent is over 65 years of age. Africa has the youngest population worldwide. In Sub-Saharan Africa, more than 40 percent of the population is below 15 years, and only three percent are above 65, indicating the low life expectancy in several of the countries. In Europe, on the other hand, a higher share of the population is above 65 years than the population under 15 years. Fertility rates The high share of children and youth in Africa is connected to the high fertility rates on the continent. For instance, South Sudan and Niger have the highest population growth rates globally. However, about 50 percent of the world’s population live in countries with low fertility, where women have less than 2.1 children. Some countries in Europe, like Latvia and Lithuania, have experienced a population decline of one percent, and in the Cook Islands, it is even above two percent. In Europe, the majority of the population was previously working-aged adults with few dependents, but this trend is expected to reverse soon, and it is predicted that by 2050, the older population will outnumber the young in many developed countries. Growing global population As of 2025, there are 8.1 billion people living on the planet, and this is expected to reach more than nine billion before 2040. Moreover, the global population is expected to reach 10 billions around 2060, before slowing and then even falling slightly by 2100. As the population growth rates indicate, a significant share of the population increase will happen in Africa.

  2. Global population 2000-2023, by gender

    • statista.com
    Updated May 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Global population 2000-2023, by gender [Dataset]. https://www.statista.com/statistics/1328107/global-population-gender/
    Explore at:
    Dataset updated
    May 30, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Over the past 23 years, there were constantly more men than women living on the planet. Of the 8.06 billion people living on the Earth in 2023, 4.05 billion were men and 4.01 billion were women. One-quarter of the world's total population in 2024 was below 15 years.

  3. GlobPOP: A 33-year (1990-2022) global gridded population dataset (Version...

    • zenodo.org
    tiff
    Updated Sep 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Luling Liu; Xin Cao; Xin Cao; Shijie Li; Na Jie; Luling Liu; Shijie Li; Na Jie (2024). GlobPOP: A 33-year (1990-2022) global gridded population dataset (Version 2.0-test-beta) [Dataset]. http://doi.org/10.5281/zenodo.11071404
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Sep 4, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Luling Liu; Xin Cao; Xin Cao; Shijie Li; Na Jie; Luling Liu; Shijie Li; Na Jie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data Usage Notice

    This version is not recommended for download. Please check the newest version.

    We would like to inform you that the updated GlobPOP dataset (2021-2022) have been available in version 2.0. The GlobPOP dataset (2021-2022) in the current version is not recommended for your work. The GlobPOP dataset (1990-2020) in the current version is the same as version 1.0.

    Thank you for your continued support of the GlobPOP.

    If you encounter any issues, please contact us via email at lulingliu@mail.bnu.edu.cn.

    Introduction

    Continuously monitoring global population spatial dynamics is essential for implementing effective policies related to sustainable development, such as epidemiology, urban planning, and global inequality.

    Here, we present GlobPOP, a new continuous global gridded population product with a high-precision spatial resolution of 30 arcseconds from 1990 to 2020. Our data-fusion framework is based on cluster analysis and statistical learning approaches, which intends to fuse the existing five products(Global Human Settlements Layer Population (GHS-POP), Global Rural Urban Mapping Project (GRUMP), Gridded Population of the World Version 4 (GPWv4), LandScan Population datasets and WorldPop datasets to a new continuous global gridded population (GlobPOP). The spatial validation results demonstrate that the GlobPOP dataset is highly accurate. To validate the temporal accuracy of GlobPOP at the country level, we have developed an interactive web application, accessible at https://globpop.shinyapps.io/GlobPOP/, where data users can explore the country-level population time-series curves of interest and compare them with census data.

    With the availability of GlobPOP dataset in both population count and population density formats, researchers and policymakers can leverage our dataset to conduct time-series analysis of population and explore the spatial patterns of population development at various scales, ranging from national to city level.

    Data description

    The product is produced in 30 arc-seconds resolution(approximately 1km in equator) and is made available in GeoTIFF format. There are two population formats, one is the 'Count'(Population count per grid) and another is the 'Density'(Population count per square kilometer each grid)

    Each GeoTIFF filename has 5 fields that are separated by an underscore "_". A filename extension follows these fields. The fields are described below with the example filename:

    GlobPOP_Count_30arc_1990_I32

    Field 1: GlobPOP(Global gridded population)
    Field 2: Pixel unit is population "Count" or population "Density"
    Field 3: Spatial resolution is 30 arc seconds
    Field 4: Year "1990"
    Field 5: Data type is I32(Int 32) or F32(Float32)

    More information

    Please refer to the paper for detailed information:

    Liu, L., Cao, X., Li, S. et al. A 31-year (1990–2020) global gridded population dataset generated by cluster analysis and statistical learning. Sci Data 11, 124 (2024). https://doi.org/10.1038/s41597-024-02913-0.

    The fully reproducible codes are publicly available at GitHub: https://github.com/lulingliu/GlobPOP.

  4. o

    Geonames - All Cities with a population > 1000

    • public.opendatasoft.com
    • data.smartidf.services
    • +2more
    csv, excel, geojson +1
    Updated Mar 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Geonames - All Cities with a population > 1000 [Dataset]. https://public.opendatasoft.com/explore/dataset/geonames-all-cities-with-a-population-1000/
    Explore at:
    csv, json, geojson, excelAvailable download formats
    Dataset updated
    Mar 10, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name

  5. COVID-19 cases and deaths per million in 210 countries as of July 13, 2022

    • statista.com
    • ai-chatbox.pro
    Updated Nov 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). COVID-19 cases and deaths per million in 210 countries as of July 13, 2022 [Dataset]. https://www.statista.com/statistics/1104709/coronavirus-deaths-worldwide-per-million-inhabitants/
    Explore at:
    Dataset updated
    Nov 25, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

    The difficulties of death figures

    This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.

    Where are these numbers coming from?

    The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

  6. Burundi BI: Population: Total

    • ceicdata.com
    Updated Feb 20, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2018). Burundi BI: Population: Total [Dataset]. https://www.ceicdata.com/en/burundi/population-and-urbanization-statistics/bi-population-total
    Explore at:
    Dataset updated
    Feb 20, 2018
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2012 - Dec 1, 2023
    Area covered
    Burundi
    Variables measured
    Population
    Description

    Burundi BI: Population: Total data was reported at 13,238,559.000 Person in 2023. This records an increase from the previous number of 12,889,576.000 Person for 2022. Burundi BI: Population: Total data is updated yearly, averaging 5,570,814.000 Person from Dec 1960 (Median) to 2023, with 64 observations. The data reached an all-time high of 13,238,559.000 Person in 2023 and a record low of 2,746,628.000 Person in 1960. Burundi BI: Population: Total data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Burundi – Table BI.World Bank.WDI: Population and Urbanization Statistics. Total population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship. The values shown are midyear estimates.;(1) United Nations Population Division. World Population Prospects: 2022 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.;Sum;Relevance to gender indicator: disaggregating the population composition by gender will help a country in projecting its demand for social services on a gender basis.

  7. a

    Population Density (2000)

    • esri-california-office.hub.arcgis.com
    Updated Aug 31, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Nature Conservancy (2016). Population Density (2000) [Dataset]. https://esri-california-office.hub.arcgis.com/datasets/TNC::population-density-2000-1
    Explore at:
    Dataset updated
    Aug 31, 2016
    Dataset authored and provided by
    The Nature Conservancy
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    Description

    Human population density in 2000, by terrestrial ecoregion.

    We summarized human population density by ecoregion using the Gridded Population of the World database and projections for 2015 (CIESIN et al. 2005). The mean for each ecoregion was extracted using a zonal statistics algorithm.

    These data were derived by The Nature Conservancy, and were displayed in a map published in The Atlas of Global Conservation (Hoekstra et al., University of California Press, 2010). More information at http://nature.org/atlas.

    Data derived from:

    Center for International Earth Science Information Network (CIESIN), Columbia University; and Centro Internacional de Agricultura Tropical (CIAT). 2005. Gridded Population of the World Version 3 (GPWv3). Socioeconomic Data and Applications Center (SEDAC), Columbia University Palisades, New York. Available at http://sedac.ciesin.columbia.edu/gpw. Digital media.

    United Nations Population Division (UNPD). 2007. Global population, largest urban agglomerations and cities of largest change. World Urbanization Prospects: The 2007 Revision Population Database. Available at http://esa.un.org/unup/index.asp.

    For more about The Atlas of Global Conservation check out the web map (which includes links to download spatial data and view metadata) at http://maps.tnc.org/globalmaps.html. You can also read more detail about the Atlas at http://www.nature.org/science-in-action/leading-with-science/conservation-atlas.xml, or buy the book at http://www.ucpress.edu/book.php?isbn=9780520262560

  8. M

    Russia Population (1950-2025)

    • macrotrends.net
    csv
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). Russia Population (1950-2025) [Dataset]. https://www.macrotrends.net/global-metrics/countries/rus/russia/population
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1950 - Dec 31, 2025
    Area covered
    Russia
    Description

    Historical chart and dataset showing total population for Russia by year from 1950 to 2025.

  9. Global number of internet users 2005-2024

    • statista.com
    Updated May 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Global number of internet users 2005-2024 [Dataset]. https://www.statista.com/statistics/273018/number-of-internet-users-worldwide/
    Explore at:
    Dataset updated
    May 6, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    As of 2024, the estimated number of internet users worldwide was 5.5 billion, up from 5.3 billion in the previous year. This share represents 68 percent of the global population. Internet access around the world Easier access to computers, the modernization of countries worldwide, and increased utilization of smartphones have allowed people to use the internet more frequently and conveniently. However, internet penetration often pertains to the current state of development regarding communications networks. As of January 2023, there were approximately 1.05 billion total internet users in China and 692 million total internet users in the United States. Online activities Social networking is one of the most popular online activities worldwide, and Facebook is the most popular online network based on active usage. As of the fourth quarter of 2023, there were over 3.07 billion monthly active Facebook users, accounting for well more than half of the internet users worldwide. Connecting with family and friends, expressing opinions, entertainment, and online shopping are amongst the most popular reasons for internet usage.

  10. COVID19 cases by Continent

    • kaggle.com
    zip
    Updated Jun 3, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Juok (2020). COVID19 cases by Continent [Dataset]. https://www.kaggle.com/dsv/1211964
    Explore at:
    zip(1325064 bytes)Available download formats
    Dataset updated
    Jun 3, 2020
    Authors
    Juok
    Description

    Context

    Late in December 2019, the World Health Organisation (WHO) China Country Office obtained information about severe pneumonia of an unknown cause, detected in the city of Wuhan in Hubei province, China. This later turned out to be the novel coronavirus disease (COVID-19), an infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) of the coronavirus family. The disease causes respiratory illness characterized by primary symptoms like cough, fever, and in more acute cases, difficulty in breathing. WHO later declared COVID-19 as a Pandemic because of its fast rate of spread across the Globe.

    Content

    The COVID-19 datasets organized by continent contain daily level information about the COVID-19 cases in the different continents of the world. It is a time-series data and the number of cases on any given day is cumulative. The original datasets can be found on this John Hopkins University Github repository. I will be updating the COVID-19 datasets on a daily basis, with every update from John Hopkins University. I have also included the World COVID-19 tests data scraped from Worldometer and 2020 world population also from [worldometer]((https://www.worldometers.info/world-population/population-by-country/).

    The datasets

    COVID-19 cases covid19_world.csv. It contains the cumulative number of COVID-19 cases from around the world since January 22, 2020, as compiled by John Hopkins University. covid19_asia.csv, covid19_africa.csv, covid19_europe.csv, covid19_northamerica.csv, covid19.southamerica.csv, covid19_oceania.csv, and covid19_others.csv. These contain the cumulative number of COVID-19 cases organized by the continent.

    Field description - ObservationDate: Date of observation in YY/MM/DD - Country_Region: name of Country or Region - Province_State: name of Province or State - Confirmed: the number of COVID-19 confirmed cases - Deaths: the number of deaths from COVID-19 - Recovered: the number of recovered cases - Active: the number of people still infected with COVID-19 Note: Active = Confirmed - (Deaths + Recovered)

    COVID-19 tests `covid19_tests.csv. It contains the cumulative number of COVID tests data from worldometer conducted since the onset of the pandemic. Data available from June 01, 2020.

    Field description Date: date in YY/MM/DD Country, Other: Country, Region, or dependency TotalTests: cumulative number of tests up till that date Population: population of Country, Region, or dependency Tests/1M pop: tests per 1 million of the population 1 Testevery X ppl: 1 test for every X number of people

    2020 world population world_population(2020).csv. It contains the 2020 world population as reported by woldometer.

    Field description Country (or dependency): Country or dependency Population (2020): population in 2020 Yearly Change: yearly change in population as a percentage Net Change: the net change in population Density(P/km2): population density Land Area(km2): land area Migrants(net): net number of migrants Fert. Rate: Fertility Rate Med. Age: median age Urban pop: urban population World Share: share of the world population as a percentage

    Acknowledgements

    1. John Hopkins University for making COVID-19 datasets available to the public: https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data/csse_covid_19_daily_reports
    2. John Hopkins University COVID-19 Dashboard: https://coronavirus.jhu.edu/map.html
    3. COVID-19 Africa dashboard: http://covid-19-africa.sen.ovh/
    4. Worldometer: https://www.worldometers.info/
    5. SRk for uploading a global COVID-19 dataset on Kaggle: https://www.kaggle.com/sudalairajkumar/novel-corona-virus-2019-dataset#covid_19_data.csv
    6. United Nations Department of General Assembly and Conference Management: https://www.un.org/depts/DGACM/RegionalGroups.shtml
    7. wallpapercave.com: https://wallpapercave.com/covid-19-wallpapers

    Inspiration

    Possible Insights 1. The current number of COVID-19 cases in Africa 2. The current number of COVID-19 cases by country 3. The number of COVID-19 cases in Africa / African country(s) by May 30, 2020 (Any future date)

  11. Population of the United States 1610-2020

    • statista.com
    Updated Aug 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population of the United States 1610-2020 [Dataset]. https://www.statista.com/statistics/1067138/population-united-states-historical/
    Explore at:
    Dataset updated
    Aug 12, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In the past four centuries, the population of the United States has grown from a recorded 350 people around the Jamestown colony of Virginia in 1610, to an estimated 331 million people in 2020. The pre-colonization populations of the indigenous peoples of the Americas have proven difficult for historians to estimate, as their numbers decreased rapidly following the introduction of European diseases (namely smallpox, plague and influenza). Native Americans were also omitted from most censuses conducted before the twentieth century, therefore the actual population of what we now know as the United States would have been much higher than the official census data from before 1800, but it is unclear by how much. Population growth in the colonies throughout the eighteenth century has primarily been attributed to migration from the British Isles and the Transatlantic slave trade; however it is also difficult to assert the ethnic-makeup of the population in these years as accurate migration records were not kept until after the 1820s, at which point the importation of slaves had also been illegalized. Nineteenth century In the year 1800, it is estimated that the population across the present-day United States was around six million people, with the population in the 16 admitted states numbering at 5.3 million. Migration to the United States began to happen on a large scale in the mid-nineteenth century, with the first major waves coming from Ireland, Britain and Germany. In some aspects, this wave of mass migration balanced out the demographic impacts of the American Civil War, which was the deadliest war in U.S. history with approximately 620 thousand fatalities between 1861 and 1865. The civil war also resulted in the emancipation of around four million slaves across the south; many of whose ancestors would take part in the Great Northern Migration in the early 1900s, which saw around six million black Americans migrate away from the south in one of the largest demographic shifts in U.S. history. By the end of the nineteenth century, improvements in transport technology and increasing economic opportunities saw migration to the United States increase further, particularly from southern and Eastern Europe, and in the first decade of the 1900s the number of migrants to the U.S. exceeded one million people in some years. Twentieth and twenty-first century The U.S. population has grown steadily throughout the past 120 years, reaching one hundred million in the 1910s, two hundred million in the 1960s, and three hundred million in 2007. In the past century, the U.S. established itself as a global superpower, with the world's largest economy (by nominal GDP) and most powerful military. Involvement in foreign wars has resulted in over 620,000 further U.S. fatalities since the Civil War, and migration fell drastically during the World Wars and Great Depression; however the population continuously grew in these years as the total fertility rate remained above two births per woman, and life expectancy increased (except during the Spanish Flu pandemic of 1918).

    Since the Second World War, Latin America has replaced Europe as the most common point of origin for migrants, with Hispanic populations growing rapidly across the south and border states. Because of this, the proportion of non-Hispanic whites, which has been the most dominant ethnicity in the U.S. since records began, has dropped more rapidly in recent decades. Ethnic minorities also have a much higher birth rate than non-Hispanic whites, further contributing to this decline, and the share of non-Hispanic whites is expected to fall below fifty percent of the U.S. population by the mid-2000s. In 2020, the United States has the third-largest population in the world (after China and India), and the population is expected to reach four hundred million in the 2050s.

  12. H

    Total COVID tests rate percent population per continents and world timeline...

    • dataverse.harvard.edu
    Updated Sep 16, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eric Grossi Morato (2021). Total COVID tests rate percent population per continents and world timeline daily series from Jan/20 to Sep/21 [Dataset]. http://doi.org/10.7910/DVN/LMGGJ1
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 16, 2021
    Dataset provided by
    Harvard Dataverse
    Authors
    Eric Grossi Morato
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    World
    Description

    Total crude COVID tests rate percent of continents population diary in all pandemic timeline We show 609 diary values from Test rate in percent of total population for all 6 continents and entire world Total population, median age in 2018, percent of people above 70y and a image link map for 6 continents and earth

  13. n

    Phenotypic and genetic diversity data recorded in island and mainland...

    • data.niaid.nih.gov
    • datadryad.org
    zip
    Updated Sep 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anna Mária Csergő; Kevin Healy; Maude E. A. Baudraz; David J. Kelly; Darren P. O’Connell; Fionn Ó Marcaigh; Annabel L. Smith; Jesus Villellas; Cian White; Qiang Yang; Yvonne M. Buckley (2023). Phenotypic and genetic diversity data recorded in island and mainland populations worldwide [Dataset]. http://doi.org/10.5061/dryad.h18931zqg
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 13, 2023
    Dataset provided by
    Trinity College Dublin
    The University of Queensland
    Magyar Agrár- és Élettudományi Egyetem
    Ollscoil na Gaillimhe – University of Galway
    Universidad de Alcalá
    University College Dublin
    German Centre for Integrative Biodiversity Research
    Authors
    Anna Mária Csergő; Kevin Healy; Maude E. A. Baudraz; David J. Kelly; Darren P. O’Connell; Fionn Ó Marcaigh; Annabel L. Smith; Jesus Villellas; Cian White; Qiang Yang; Yvonne M. Buckley
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    We used this dataset to assess the strength of isolation due to geographic and macroclimatic distance across island and mainland systems, comparing published measurements of phenotypic traits and neutral genetic diversity for populations of plants and animals worldwide. The dataset includes 112 studies of 108 species (72 animals and 36 plants) in 868 island populations and 760 mainland populations, with population-level taxonomic and biogeographic information, totalling 7438 records. Methods Description of methods used for collection/generation of data: We searched the ISI Web of Science in March 2017 for comparative studies that included data on phenotypic traits and/or neutral genetic diversity of populations on true islands and on mainland sites in any taxonomic group. Search terms were 'island' and ('mainland' or 'continental') and 'population*' and ('demograph*' or 'fitness' or 'survival' or 'growth' or 'reproduc*' or 'density' or 'abundance' or 'size' or 'genetic diversity' or 'genetic structure' or 'population genetics') and ('plant*' or 'tree*' or 'shrub*or 'animal*' or 'bird*' or 'amphibian*' or 'mammal*' or 'reptile*' or 'lizard*' or 'snake*' or 'fish'), subsequently refined to the Web of Science categories 'Ecology' or 'Evolutionary Biology' or 'Zoology' or 'Genetics Heredity' or 'Biodiversity Conservation' or 'Marine Freshwater Biology' or 'Plant Sciences' or 'Geography Physical' or 'Ornithology' or 'Biochemistry Molecular Biology' or 'Multidisciplinary Sciences' or 'Environmental Sciences' or 'Fisheries' or 'Oceanography' or 'Biology' or 'Forestry' or 'Reproductive Biology' or 'Behavioral Sciences'. The search included the whole text including abstract and title, but only abstracts and titles were searchable for older papers depending on the journal. The search returned 1237 papers which were distributed among coauthors for further scrutiny. First paper filter To be useful, the papers must have met the following criteria: Overall study design criteria: Include at least two separate islands and two mainland populations; Eliminate studies comparing populations on several islands where there were no clear mainland vs. island comparisons; Present primary research data (e.g., meta-analyses were discarded); Include a field study (e.g., experimental studies and ex situ populations were discarded); Can include data from sub-populations pooled within an island or within a mainland population (but not between islands or between mainland sites); Island criteria: Island populations situated on separate islands (papers where all information on island populations originated from a single island were discarded); Can include multiple populations recorded on the same island, if there is more than one island in the study; While we accepted the authors' judgement about island vs. mainland status, in 19 papers we made our own judgement based on the relative size of the island or position relative to the mainland (e.g. Honshu Island of Japan, sized 227 960 km² was interpreted as mainland relative to islands less than 91 km²); Include islands surrounded by sea water but not islands in a lake or big river; Include islands regardless of origin (continental shelf, volcanic); Taxonomic criteria: Include any taxonomic group; The paper must compare populations within a single species; Do not include marine species (including coastline organisms); Databases used to check species delimitation: Handbook of Birds of the World (www.hbw.com/); International Plant Names Index (https://www.ipni.org/); Plants of the World Online(https://powo.science.kew.org/); Handbook of the Mammals of the World; Global Biodiversity Information Facility (https://www.gbif.org/); Biogeographic criteria: Include all continents, as well as studies on multiple continents; Do not include papers regarding migratory species; Only include old / historical invasions to islands (>50 yrs); do not include recent invasions; Response criteria: Do not include studies which report community-level responses such as species richness; Include genetic diversity measures and/or individual and population-level phenotypic trait responses; The first paper filter resulted in 235 papers which were randomly reassigned for a second round of filtering. Second paper filter In the second filter, we excluded papers that did not provide population geographic coordinates and population-level quantitative data, unless data were provided upon contacting the authors or could be obtained from figures using DataThief (Tummers 2006). We visually inspected maps plotted for each study separately and we made minor adjustments to the GPS coordinates when the coordinates placed the focal population off the island or mainland. For this study, we included only responses measured at the individual level, therefore we removed papers referring to demographic performance and traits such as immunity, behaviour and diet that are heavily reliant on ecosystem context. We extracted data on population-level mean for two broad categories of response: i) broad phenotypic measures, which included traits (size, weight and morphology of entire body or body parts), metabolism products, physiology, vital rates (growth, survival, reproduction) and mean age of sampled mature individuals; and ii) genetic diversity, which included heterozygosity,allelic richness, number of alleles per locus etc. The final dataset includes 112 studies and 108 species. Methods for processing the data: We made minor adjustments to the GPS location of some populations upon visual inspection on Google Maps of the correct overlay of the data point with the indicated island body or mainland. For each population we extracted four climate variables reflecting mean and variation in temperature and precipitation available in CliMond V1.2 (Kritikos et al. 2012) at 10 minutes resolution: mean annual temperature (Bio1), annual precipitation (Bio12), temperature seasonality (CV) (Bio4) and precipitation seasonality (CV) (Bio15) using the "prcomp function" in the stats package in R. For populations where climate variables were not available on the global climate maps mostly due to small island size not captured in CliMond, we extracted data from the geographically closest grid cell with available climate values, which was available within 3.5 km away from the focal grid cell for all localities. We normalised the four climate variables using the "normalizer" package in R (Vilela 2020), and we performed a Principal Component Analysis (PCA) using the psych package in R (Revelle 2018). We saved the loadings of the axes for further analyses. References:

    Bruno Vilela (2020). normalizer: Making data normal again.. R package version 0.1.0. Kriticos, D.J., Webber, B.L., Leriche, A., Ota, N., Macadam, I., Bathols, J., et al.(2012). CliMond: global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods Ecol. Evol., 3, 53--64. Revelle, W. (2018) psych: Procedures for Personality and Psychological Research, Northwestern University, Evanston, Illinois, USA, https://CRAN.R-project.org/package=psych Version = 1.8.12. Tummers, B. (2006). DataThief III. https://datathief.org/

  14. s

    Data from: Facebook Users

    • searchlogistics.com
    Updated Apr 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Facebook Users [Dataset]. https://www.searchlogistics.com/learn/statistics/social-media-user-statistics/
    Explore at:
    Dataset updated
    Apr 1, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Facebook is fast approaching 3 billion monthly active users. That’s about 36% of the world’s entire population that log in and use Facebook at least once a month.

  15. n

    Global contemporary effective population sizes across taxonomic groups

    • data.niaid.nih.gov
    • datadryad.org
    zip
    Updated May 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shannon H. Clarke; Elizabeth R. Lawrence; Jean-Michel Matte; Sarah J. Salisbury; Sozos N. Michaelides; Ramela Koumrouyan; Daniel E. Ruzzante; James W. A. Grant; Dylan J. Fraser (2024). Global contemporary effective population sizes across taxonomic groups [Dataset]. http://doi.org/10.5061/dryad.p2ngf1vzm
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 3, 2024
    Dataset provided by
    Dalhousie University
    Concordia University
    Authors
    Shannon H. Clarke; Elizabeth R. Lawrence; Jean-Michel Matte; Sarah J. Salisbury; Sozos N. Michaelides; Ramela Koumrouyan; Daniel E. Ruzzante; James W. A. Grant; Dylan J. Fraser
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Effective population size (Ne) is a particularly useful metric for conservation as it affects genetic drift, inbreeding and adaptive potential within populations. Current guidelines recommend a minimum Ne of 50 and 500 to avoid short-term inbreeding and to preserve long-term adaptive potential, respectively. However, the extent to which wild populations reach these thresholds globally has not been investigated, nor has the relationship between Ne and human activities. Through a quantitative review, we generated a dataset with 4610 georeferenced Ne estimates from 3829 unique populations, extracted from 723 articles. These data show that certain taxonomic groups are less likely to meet 50/500 thresholds and are disproportionately impacted by human activities; plant, mammal, and amphibian populations had a <54% probability of reaching = 50 and a <9% probability of reaching = 500. Populations listed as being of conservation concern according to the IUCN Red List had a smaller median than unlisted populations, and this was consistent across all taxonomic groups. was reduced in areas with a greater Global Human Footprint, especially for amphibians, birds, and mammals, however relationships varied between taxa. We also highlight several considerations for future works, including the role that gene flow and subpopulation structure plays in the estimation of in wild populations, and the need for finer-scale taxonomic analyses. Our findings provide guidance for more specific thresholds based on Ne and help prioritize assessment of populations from taxa most at risk of failing to meet conservation thresholds. Methods Literature search, screening, and data extraction A primary literature search was conducted using ISI Web of Science Core Collection and any articles that referenced two popular single-sample Ne estimation software packages: LDNe (Waples & Do, 2008), and NeEstimator v2 (Do et al., 2014). The initial search included 4513 articles published up to the search date of May 26, 2020. Articles were screened for relevance in two steps, first based on title and abstract, and then based on the full text. For each step, a consistency check was performed using 100 articles to ensure they were screened consistently between reviewers (n = 6). We required a kappa score (Collaboration for Environmental Evidence, 2020) of ³ 0.6 in order to proceed with screening of the remaining articles. Articles were screened based on three criteria: (1) Is an estimate of Ne or Nb reported; (2) for a wild animal or plant population; (3) using a single-sample genetic estimation method. Further details on the literature search and article screening are found in the Supplementary Material (Fig. S1). We extracted data from all studies retained after both screening steps (title and abstract; full text). Each line of data entered in the database represents a single estimate from a population. Some populations had multiple estimates over several years, or from different estimation methods (see Table S1), and each of these was entered on a unique row in the database. Data on N̂e, N̂b, or N̂c were extracted from tables and figures using WebPlotDigitizer software version 4.3 (Rohatgi, 2020). A full list of data extracted is found in Table S2. Data Filtering After the initial data collation, correction, and organization, there was a total of 8971 Ne estimates (Fig. S1). We used regression analyses to compare Ne estimates on the same populations, using different estimation methods (LD, Sibship, and Bayesian), and found that the R2 values were very low (R2 values of <0.1; Fig. S2 and Fig. S3). Given this inconsistency, and the fact that LD is the most frequently used method in the literature (74% of our database), we proceeded with only using the LD estimates for our analyses. We further filtered the data to remove estimates where no sample size was reported or no bias correction (Waples, 2006) was applied (see Fig. S6 for more details). Ne is sometimes estimated to be infinity or negative within a population, which may reflect that a population is very large (i.e., where the drift signal-to-noise ratio is very low), and/or that there is low precision with the data due to small sample size or limited genetic marker resolution (Gilbert & Whitlock, 2015; Waples & Do, 2008; Waples & Do, 2010) We retained infinite and negative estimates only if they reported a positive lower confidence interval (LCI), and we used the LCI in place of a point estimate of Ne or Nb. We chose to use the LCI as a conservative proxy for in cases where a point estimate could not be generated, given its relevance for conservation (Fraser et al., 2007; Hare et al., 2011; Waples & Do 2008; Waples 2023). We also compared results using the LCI to a dataset where infinite or negative values were all assumed to reflect very large populations and replaced the estimate with an arbitrary large value of 9,999 (for reference in the LCI dataset only 51 estimates, or 0.9%, had an or > 9999). Using this 9999 dataset, we found that the main conclusions from the analyses remained the same as when using the LCI dataset, with the exception of the HFI analysis (see discussion in supplementary material; Table S3, Table S4 Fig. S4, S5). We also note that point estimates with an upper confidence interval of infinity (n = 1358) were larger on average (mean = 1380.82, compared to 689.44 and 571.64, for estimates with no CIs or with an upper boundary, respectively). Nevertheless, we chose to retain point estimates with an upper confidence interval of infinity because accounting for them in the analyses did not alter the main conclusions of our study and would have significantly decreased our sample size (Fig. S7, Table S5). We also retained estimates from populations that were reintroduced or translocated from a wild source (n = 309), whereas those from captive sources were excluded during article screening (see above). In exploratory analyses, the removal of these data did not influence our results, and many of these populations are relevant to real-world conservation efforts, as reintroductions and translocations are used to re-establish or support small, at-risk populations. We removed estimates based on duplication of markers (keeping estimates generated from SNPs when studies used both SNPs and microsatellites), and duplication of software (keeping estimates from NeEstimator v2 when studies used it alongside LDNe). Spatial and temporal replication were addressed with two separate datasets (see Table S6 for more information): the full dataset included spatially and temporally replicated samples, while these two types of replication were removed from the non-replicated dataset. Finally, for all populations included in our final datasets, we manually extracted their protection status according to the IUCN Red List of Threatened Species. Taxa were categorized as “Threatened” (Vulnerable, Endangered, Critically Endangered), “Nonthreatened” (Least Concern, Near Threatened), or “N/A” (Data Deficient, Not Evaluated). Mapping and Human Footprint Index (HFI) All populations were mapped in QGIS using the coordinates extracted from articles. The maps were created using a World Behrmann equal area projection. For the summary maps, estimates were grouped into grid cells with an area of 250,000 km2 (roughly 500 km x 500 km, but the dimensions of each cell vary due to distortions from the projection). Within each cell, we generated the count and median of Ne. We used the Global Human Footprint dataset (WCS & CIESIN, 2005) to generate a value of human influence (HFI) for each population at its geographic coordinates. The footprint ranges from zero (no human influence) to 100 (maximum human influence). Values were available in 1 km x 1 km grid cell size and were projected over the point estimates to assign a value of human footprint to each population. The human footprint values were extracted from the map into a spreadsheet to be used for statistical analyses. Not all geographic coordinates had a human footprint value associated with them (i.e., in the oceans and other large bodies of water), therefore marine fishes were not included in our HFI analysis. Overall, 3610 Ne estimates in our final dataset had an associated footprint value.

  16. f

    Data_Sheet_1_Projecting wheat demand in China and India for 2030 and 2050:...

    • frontiersin.figshare.com
    docx
    Updated Jun 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Khondoker Abdul Mottaleb; Gideon Kruseman; Aymen Frija; Kai Sonder; Santiago Lopez-Ridaura (2023). Data_Sheet_1_Projecting wheat demand in China and India for 2030 and 2050: Implications for food security.docx [Dataset]. http://doi.org/10.3389/fnut.2022.1077443.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 21, 2023
    Dataset provided by
    Frontiers
    Authors
    Khondoker Abdul Mottaleb; Gideon Kruseman; Aymen Frija; Kai Sonder; Santiago Lopez-Ridaura
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    China, India
    Description

    IntroductionThe combined populations of China and India were 2.78 billion in 2020, representing 36% of the world population (7.75 billion). Wheat is the second most important staple grain in both China and India. In 2019, the aggregate wheat consumption in China was 96.4 million ton and in India it was 82.5 million ton, together it was more than 35% of the world's wheat that year. In China, in 2050, the projected population will be 1294–1515 million, and in India, it is projected to be 14.89–1793 million, under the low and high-fertility rate assumptions. A question arises as to, what will be aggregate demand for wheat in China and India in 2030 and 2050?MethodsApplying the Vector Error Correction model estimation process in the time series econometric estimation setting, this study projected the per capita and annual aggregate wheat consumptions of China and India during 2019-2050. In the process, this study relies on agricultural data sourced from the Food and Agriculture Organization of the United States (FAO) database (FAOSTAT), as well as the World Bank's World Development Indicators (WDI) data catalog. The presence of unit root in the data series are tested by applying the augmented Dickey-Fuller test; Philips-Perron unit root test; Kwiatkowski-Phillips-Schmidt-Shin test, and Zivot-Andrews Unit Root test allowing for a single break in intercept and/or trend. The test statistics suggest that a natural log transformation and with the first difference of the variables provides stationarity of the data series for both China and India. The Zivot-Andrews Unit Root test, however, suggested that there is a structural break in urban population share and GDP per capita. To tackle the issue, we have included a year dummy and two multiplicative dummies in our model. Furthermore, the Johansen cointegration test suggests that at least one variable in both data series were cointegrated. These tests enable us to apply Vector Error Correction (VEC) model estimation procedure. In estimation the model, the appropriate number of lags of the variables is confirmed by applying the “varsoc” command in Stata 17 software interface. The estimated yearly per capita wheat consumption in 2030 and 2050 from the VEC model, are multiplied by the projected population in 2030 and 2050 to calculate the projected aggregate wheat demand in China and India in 2030 and 2050. After projecting the yearly per capita wheat consumption (KG), we multiply with the projected population to get the expected consumption demand.ResultsThis study found that the yearly per capita wheat consumption of China will increase from 65.8 kg in 2019 to 76 kg in 2030, and 95 kg in 2050. In India, the yearly per capita wheat consumption will increase to 74 kg in 2030 and 94 kg in 2050 from 60.4 kg in 2019. Considering the projected population growth rates under low-fertility assumptions, aggregate wheat consumption of China will increase by more than 13% in 2030 and by 28% in 2050. Under the high-fertility rate assumption, however the aggregate wheat consumption of China will increase by 18% in 2030 and nearly 50% in 2050. In the case of India, under both low and high-fertility rate assumptions, aggregate wheat demand in India will increase by 32-38% in 2030 and by 70-104% in 2050 compared to 2019 level of consumption.DiscussionsOur results underline the importance of wheat in both countries, which are the world's top wheat producers and consumers, and suggest the importance of research and development investments to maintain sufficient national wheat grain production levels to meet China and India's domestic demand. This is critical both to ensure the food security of this large segment of the world populace, which also includes 23% of the total population of the world who live on less than US $1.90/day, as well as to avoid potential grain market destabilization and price hikes that arise in the event of large import demands.

  17. n

    Simulated population time series used to build and test a model of accuracy...

    • data.niaid.nih.gov
    • datadryad.org
    zip
    Updated Jun 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shawn Dove; Monika Böhm; Robin Freeman; Louise McRae; David J. Murrell (2023). Simulated population time series used to build and test a model of accuracy for population-based global biodiversity indicators [Dataset]. http://doi.org/10.5061/dryad.mpg4f4r52
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 18, 2023
    Dataset provided by
    University College London
    Indianapolis Zoo
    Zoological Society of London
    Authors
    Shawn Dove; Monika Böhm; Robin Freeman; Louise McRae; David J. Murrell
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Global biodiversity is facing a crisis, which must be solved through effective policies and on-the-ground conservation. But governments, NGOs, and scientists need reliable indicators to guide research, conservation actions, and policy decisions. Developing reliable indicators is challenging because the data underlying those tools is incomplete and biased. For example, the Living Planet Index tracks the changing status of global vertebrate biodiversity, but taxonomic, geographic and temporal gaps and biases are present in the aggregated data used to calculate trends. But without a basis for real-world comparison, there is no way to directly assess an indicator’s accuracy or reliability. Instead, a modelling approach can be used. We developed a model of trend reliability, using simulated datasets as stand-ins for the "real world", degraded samples as stand-ins for indicator datasets (e.g. the Living Planet Database), and a distance measure to quantify reliability by comparing sampled to unsampled trends. The model revealed that the proportion of species represented in the database is not always indicative of trend reliability. Important factors are the number and length of time series, as well as their mean growth rates and variance in their growth rates, both within and between time series. We found that many trends in the Living Planet Index need more data to be considered reliable, particularly trends across the global south. In general, bird trends are the most reliable, while reptile and amphibian trends are most in need of additional data. We simulated three different solutions for reducing data deficiency, and found that collating existing data (where available) is the most efficient way to improve trend reliability, and that revisiting previously-studied populations is a quick and efficient way to improve trend reliability until new long-term studies can be completed and made available. Methods These data are entirely simulated. We used R code to generate simulated population time series. We added observation error to the simulated time series, degraded them by randomly removing observations, then sampled repeatedly and calculated both the partially and fully sampled trends using the method of the Living Planet Index. The partially sampled trends were then compared with the fully sampled trends using a distance metric. We generated thousands of time series datasets with different underlying properties and tested to see which parameters affected the distance values. We then used the responsible parameters to build a model of trend accuracy and applied that model to regional taxonomic groups in the Living Planet Database. The simulated time series in both raw and degraded form as well as the trends and distance values are included here, divided into archives which are further described in the README file.

  18. s

    Social Media Worldwide Usage Statistics

    • searchlogistics.com
    Updated Apr 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Social Media Worldwide Usage Statistics [Dataset]. https://www.searchlogistics.com/learn/statistics/social-media-user-statistics/
    Explore at:
    Dataset updated
    Apr 1, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Which countries spent the most and least time on social media?

  19. s

    Social Media Worldwide Advertising Statistics

    • searchlogistics.com
    Updated Apr 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Social Media Worldwide Advertising Statistics [Dataset]. https://www.searchlogistics.com/learn/statistics/social-media-user-statistics/
    Explore at:
    Dataset updated
    Apr 1, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Global ad spend were expected to reach over $134 billion in 2022. This means that it has increased by over 17% yearly.

  20. PSA Test Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). PSA Test Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/psa-test-market
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    PSA Test Market Outlook



    The global PSA Test market size was valued at approximately USD 3.2 billion in 2023 and is projected to reach USD 5.4 billion by 2032, growing at a compound annual growth rate (CAGR) of 6.0% from 2024 through 2032. The increasing incidence of prostate cancer, which is currently one of the most common types of cancer affecting men worldwide, is a significant growth factor for this market. Rising awareness about the benefits of early detection of prostate cancer and advancements in PSA testing technologies are also driving market growth. The growing geriatric population, who are more susceptible to prostate ailments, further supports the market expansion.



    The growth of the PSA Test market is primarily driven by the increasing prevalence of prostate cancer, which has led to a greater demand for early diagnostic tests. Medical advancements have significantly enhanced the accuracy and reliability of PSA tests, making them a preferred choice for healthcare providers worldwide. Moreover, public health initiatives and awareness campaigns have successfully educated men over the age of 50 on the importance of regular PSA screenings, further boosting market demand. The development of more sophisticated and less invasive testing methods, which provide quicker and more accurate results, is also propelling the market growth.



    Technological advancements in PSA testing have played a crucial role in market expansion. Innovations in testing procedures, such as the development of highly specific and sensitive test kits, have improved the detection rates of prostate cancer significantly. The integration of artificial intelligence in diagnostic processes has further refined the accuracy of PSA tests by reducing false positives and negatives. These improvements not only enhance patient outcomes but also increase the confidence of healthcare providers in recommending PSA tests, thus contributing to the market growth.



    Another important growth factor is the increasing investment in healthcare infrastructure and research, particularly in developing countries. Governments and private organizations are actively investing in improving healthcare facilities, which includes the adoption of advanced diagnostic tools like PSA tests. The focus on improving healthcare accessibility in rural and remote areas is also expected to drive market growth, as more individuals gain access to routine prostate health check-ups and screenings. Additionally, collaborations and partnerships between key players in the market to develop cost-effective and high-quality PSA tests are likely to enhance market growth dynamics.



    The introduction of the Prostate Cancer Test Kit has revolutionized the way individuals approach prostate health. These kits provide a convenient and accessible option for men to monitor their prostate-specific antigen (PSA) levels from the comfort of their homes. By enabling early detection of potential prostate issues, these test kits play a crucial role in preventive healthcare. The ease of use and affordability of these kits make them an attractive choice for many, particularly those who may not have easy access to healthcare facilities. Furthermore, the availability of such kits encourages more men to take proactive steps in managing their health, thereby contributing to the overall growth of the PSA Test market.



    Regionally, North America holds a prominent share of the PSA Test market, attributed to the high prevalence of prostate cancer and the presence of an advanced healthcare system. However, the Asia Pacific region is anticipated to witness the fastest CAGR during the forecast period, driven by the increasing awareness of prostate health, rising disposable income, and improved healthcare infrastructure. In Europe, strong government initiatives and the presence of leading market players contribute to significant market growth. The Middle East & Africa and Latin America, although currently holding a smaller market share, are expected to see moderate growth due to ongoing healthcare improvements and rising cancer awareness.



    Product Type Analysis



    The PSA Test market is segmented into instruments, reagents & kits, each playing a vital role in the overall diagnostic process. Instruments, which include devices used for conducting PSA tests, form a crucial part of this segment. These instruments have seen significant advancements in terms of automation and precision, which facilitate quicker and more accurate test results. As hospitals and di

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). World population by age and region 2024 [Dataset]. https://www.statista.com/statistics/265759/world-population-by-age-and-region/
Organization logo

World population by age and region 2024

Explore at:
83 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Mar 11, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
World
Description

Globally, about 25 percent of the population is under 15 years of age and 10 percent is over 65 years of age. Africa has the youngest population worldwide. In Sub-Saharan Africa, more than 40 percent of the population is below 15 years, and only three percent are above 65, indicating the low life expectancy in several of the countries. In Europe, on the other hand, a higher share of the population is above 65 years than the population under 15 years. Fertility rates The high share of children and youth in Africa is connected to the high fertility rates on the continent. For instance, South Sudan and Niger have the highest population growth rates globally. However, about 50 percent of the world’s population live in countries with low fertility, where women have less than 2.1 children. Some countries in Europe, like Latvia and Lithuania, have experienced a population decline of one percent, and in the Cook Islands, it is even above two percent. In Europe, the majority of the population was previously working-aged adults with few dependents, but this trend is expected to reverse soon, and it is predicted that by 2050, the older population will outnumber the young in many developed countries. Growing global population As of 2025, there are 8.1 billion people living on the planet, and this is expected to reach more than nine billion before 2040. Moreover, the global population is expected to reach 10 billions around 2060, before slowing and then even falling slightly by 2100. As the population growth rates indicate, a significant share of the population increase will happen in Africa.

Search
Clear search
Close search
Google apps
Main menu