100+ datasets found
  1. Global population 1800-2100, by continent

    • statista.com
    • ai-chatbox.pro
    Updated Jul 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Global population 1800-2100, by continent [Dataset]. https://www.statista.com/statistics/997040/world-population-by-continent-1950-2020/
    Explore at:
    Dataset updated
    Jul 4, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The world's population first reached one billion people in 1803, and reach eight billion in 2023, and will peak at almost 11 billion by the end of the century. Although it took thousands of years to reach one billion people, it did so at the beginning of a phenomenon known as the demographic transition; from this point onwards, population growth has skyrocketed, and since the 1960s the population has increased by one billion people every 12 to 15 years. The demographic transition sees a sharp drop in mortality due to factors such as vaccination, sanitation, and improved food supply; the population boom that follows is due to increased survival rates among children and higher life expectancy among the general population; and fertility then drops in response to this population growth. Regional differences The demographic transition is a global phenomenon, but it has taken place at different times across the world. The industrialized countries of Europe and North America were the first to go through this process, followed by some states in the Western Pacific. Latin America's population then began growing at the turn of the 20th century, but the most significant period of global population growth occurred as Asia progressed in the late-1900s. As of the early 21st century, almost two thirds of the world's population live in Asia, although this is set to change significantly in the coming decades. Future growth The growth of Africa's population, particularly in Sub-Saharan Africa, will have the largest impact on global demographics in this century. From 2000 to 2100, it is expected that Africa's population will have increased by a factor of almost five. It overtook Europe in size in the late 1990s, and overtook the Americas a decade later. In contrast to Africa, Europe's population is now in decline, as birth rates are consistently below death rates in many countries, especially in the south and east, resulting in natural population decline. Similarly, the population of the Americas and Asia are expected to go into decline in the second half of this century, and only Oceania's population will still be growing alongside Africa. By 2100, the world's population will have over three billion more than today, with the vast majority of this concentrated in Africa. Demographers predict that climate change is exacerbating many of the challenges that currently hinder progress in Africa, such as political and food instability; if Africa's transition is prolonged, then it may result in further population growth that would place a strain on the region's resources, however, curbing this growth earlier would alleviate some of the pressure created by climate change.

  2. Forecast: world population, by continent 2100

    • ai-chatbox.pro
    • statista.com
    Updated Apr 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Forecast: world population, by continent 2100 [Dataset]. https://www.ai-chatbox.pro/?_=%2Ftopics%2F13342%2Faging-populations%2F%23XgboD02vawLKoDs%2BT%2BQLIV8B6B4Q9itA
    Explore at:
    Dataset updated
    Apr 8, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    World
    Description

    Whereas the population is expected to decrease somewhat until 2100 in Asia, Europe, and South America, it is predicted to grow significantly in Africa. While there were 1.5 billion inhabitants on the continent at the beginning of 2024, the number of inhabitants is expected to reach 3.8 billion by 2100. In total, the global population is expected to reach nearly 10.4 billion by 2100. Worldwide population In the United States, the total population is expected to steadily increase over the next couple of years. In 2024, Asia held over half of the global population and is expected to have the highest number of people living in urban areas in 2050. Asia is home to the two most populous countries, India and China, both with a population of over one billion people. However, the small country of Monaco had the highest population density worldwide in 2021. Effects of overpopulation Alongside the growing worldwide population, there are negative effects of overpopulation. The increasing population puts a higher pressure on existing resources and contributes to pollution. As the population grows, the demand for food grows, which requires more water, which in turn takes away from the freshwater available. Concurrently, food needs to be transported through different mechanisms, which contributes to air pollution. Not every resource is renewable, meaning the world is using up limited resources that will eventually run out. Furthermore, more species will become extinct which harms the ecosystem and food chain. Overpopulation was considered to be one of the most important environmental issues worldwide in 2020.

  3. a

    Key Problem of Global Change: Population Change

    • hub.arcgis.com
    Updated Aug 3, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford University (2015). Key Problem of Global Change: Population Change [Dataset]. https://hub.arcgis.com/maps/eb0f9c3f3e674b05adddfe3d3516ebe7
    Explore at:
    Dataset updated
    Aug 3, 2015
    Dataset authored and provided by
    Stanford University
    Area covered
    Description

    This map is part of an interactive Story Map series about global change in the US.With the global human population expected to exceed 8 billion people by 2030, our species is already irreversibly changing the future of our planet. The US itself is expected to grow by 16.5% to over 360 million people, making it the third largest country in the world, behind India and China. This population increase isn’t distributed evenly - 81% of people will live in cities, urban, and suburban areas, which will continue to shape how resources are produced, transported, and consumed. The percent of foreign-born and second-generation immigrants in the US is also expected to rise in the future, contributing to an increasingly diverse population. Across the globe, immigration will likely account for significant population changes in the near future, as climate change fuels drought, crop failures, and political instability, creating climate refugees particularly among countries who do not have the infrastructure to mitigate or adapt to global change. Numbers aren’t the only thing that matter: people of different socioeconomic backgrounds use resources differently, both within and between countries.If the rest of the world used energy as intensely as the United States does, the world population would need more than 4 entire Earths to provide us with the resources to feed this rate consumption. This unfortunately means that even regions of the US that contribute less towards the problems of global change will still feel their impacts. To ensure a high quality of life for all citizens, we must address not only population growth, but also excess consumption of and reliance on resources across different regions. Geographic, population, and economic differences among regions can provide opportunities for success in the face of global change. Renewable energy sources have created entrepreneurial economic ventures, and communities have found environmental solutions through forming sustainable local food systems. Environmental justice movements are working now to ensure that all citizens have access to nature, recreational areas, and a healthy future for all.

  4. World-population2023

    • kaggle.com
    Updated Jan 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dinar khan (2023). World-population2023 [Dataset]. https://www.kaggle.com/dinarkhan/worldpopulation2023/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 29, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Dinar khan
    Area covered
    World
    Description

    The increased world population is among the fierce problems the world is facing right now and it will get uncontrolled in the coming future if proper steps for its betterment were not taken immediately. This world has observed the fastest growth during the 20th century. In the 1950s world population was 2.7 billion, By the end of this year it will cross 8 billion. This dataset is uploaded with the assumption to use your Data Science, Machine learning, and Predictive analytics skills and answer the following questions. 1. Which countries have the highest growth rate. 2. What are the densely populated countries in the world. 3. Keeping in view all the variables in mind which countries should take serious steps to control their population.

  5. Countries with the highest population decline rate 2024

    • statista.com
    Updated Apr 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries with the highest population decline rate 2024 [Dataset]. https://www.statista.com/statistics/264689/countries-with-the-highest-population-decline-rate/
    Explore at:
    Dataset updated
    Apr 16, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Worldwide
    Description

    In the Cook Islands in 2024, the population decreased by about 2.24 percent compared to the previous year, making it the country with the highest population decline rate in 2024. Of the 20 countries with the highest rate of population decline, the majority are island nations, where emigration rates are high (especially to Australia, New Zealand, and the United States), or they are located in Eastern Europe, which suffers from a combination of high emigration rates and low birth rates.

  6. GlobPOP: A 33-year (1990-2022) global gridded population dataset (Version...

    • zenodo.org
    tiff
    Updated Sep 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Luling Liu; Xin Cao; Xin Cao; Shijie Li; Na Jie; Luling Liu; Shijie Li; Na Jie (2024). GlobPOP: A 33-year (1990-2022) global gridded population dataset (Version 2.0-test-alpha) [Dataset]. http://doi.org/10.5281/zenodo.11071249
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Sep 4, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Luling Liu; Xin Cao; Xin Cao; Shijie Li; Na Jie; Luling Liu; Shijie Li; Na Jie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data Usage Notice

    This version is not recommended for download. Please check the newest version.

    We would like to inform you that the updated GlobPOP dataset (2021-2022) have been available in version 2.0. The GlobPOP dataset (2021-2022) in the current version is not recommended for your work. The GlobPOP dataset (1990-2020) in the current version is the same as version 1.0.

    Thank you for your continued support of the GlobPOP.

    If you encounter any issues, please contact us via email at lulingliu@mail.bnu.edu.cn.

    Introduction

    Continuously monitoring global population spatial dynamics is essential for implementing effective policies related to sustainable development, such as epidemiology, urban planning, and global inequality.

    Here, we present GlobPOP, a new continuous global gridded population product with a high-precision spatial resolution of 30 arcseconds from 1990 to 2020. Our data-fusion framework is based on cluster analysis and statistical learning approaches, which intends to fuse the existing five products(Global Human Settlements Layer Population (GHS-POP), Global Rural Urban Mapping Project (GRUMP), Gridded Population of the World Version 4 (GPWv4), LandScan Population datasets and WorldPop datasets to a new continuous global gridded population (GlobPOP). The spatial validation results demonstrate that the GlobPOP dataset is highly accurate. To validate the temporal accuracy of GlobPOP at the country level, we have developed an interactive web application, accessible at https://globpop.shinyapps.io/GlobPOP/, where data users can explore the country-level population time-series curves of interest and compare them with census data.

    With the availability of GlobPOP dataset in both population count and population density formats, researchers and policymakers can leverage our dataset to conduct time-series analysis of population and explore the spatial patterns of population development at various scales, ranging from national to city level.

    Data description

    The product is produced in 30 arc-seconds resolution(approximately 1km in equator) and is made available in GeoTIFF format. There are two population formats, one is the 'Count'(Population count per grid) and another is the 'Density'(Population count per square kilometer each grid)

    Each GeoTIFF filename has 5 fields that are separated by an underscore "_". A filename extension follows these fields. The fields are described below with the example filename:

    GlobPOP_Count_30arc_1990_I32

    Field 1: GlobPOP(Global gridded population)
    Field 2: Pixel unit is population "Count" or population "Density"
    Field 3: Spatial resolution is 30 arc seconds
    Field 4: Year "1990"
    Field 5: Data type is I32(Int 32) or F32(Float32)

    More information

    Please refer to the paper for detailed information:

    Liu, L., Cao, X., Li, S. et al. A 31-year (1990–2020) global gridded population dataset generated by cluster analysis and statistical learning. Sci Data 11, 124 (2024). https://doi.org/10.1038/s41597-024-02913-0.

    The fully reproducible codes are publicly available at GitHub: https://github.com/lulingliu/GlobPOP.

  7. United Nations Population Division

    • kaggle.com
    Updated Sep 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bhanupratap Biswas☑️ (2023). United Nations Population Division [Dataset]. https://www.kaggle.com/datasets/bhanupratapbiswas/united-nations-population-division/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 12, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Bhanupratap Biswas☑️
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Area covered
    United Nations
    Description

    The United Nations Population Division is a part of the United Nations Department of Economic and Social Affairs (UNDESA). Its primary mission is to provide timely and accurate demographic information and analysis to assist countries in making informed policy decisions related to population and development. The division produces a wide range of demographic data, reports, and publications, and it serves as a key source of information on global population trends.

    Some of the main functions and activities of the United Nations Population Division include:

    1. Data Collection and Analysis: The division collects and compiles data on population, fertility, mortality, migration, and other demographic variables from member states and other international sources. It analyzes this data to track global demographic trends and provides population estimates and projections.

    2. World Population Prospects: The division publishes the "World Population Prospects," which is a comprehensive set of demographic data and projections for countries around the world. This report is regularly updated and is widely used by governments, researchers, and policymakers.

    3. Demographic Research: The division conducts research on a wide range of demographic issues, including aging populations, urbanization, family planning, and more. This research helps to inform policies and programs aimed at addressing demographic challenges.

    4. Technical Assistance: The division provides technical assistance to countries in areas related to population and development, including capacity building, data collection, and analysis.

    5. Reports and Publications: The division produces a variety of reports, publications, and working papers on demographic topics. These resources are made available to the public and serve as valuable references for researchers and policymakers.

    6. Population Conferences: The United Nations Population Division plays a role in organizing and supporting international conferences and events related to population and development issues. These conferences provide a platform for countries to discuss and coordinate actions to address demographic challenges.

    Overall, the United Nations Population Division plays a crucial role in monitoring and understanding global demographic trends and supporting countries in their efforts to develop policies and programs that promote sustainable development and address population-related challenges.

  8. Population of the world 10,000BCE-2100

    • statista.com
    Updated Aug 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population of the world 10,000BCE-2100 [Dataset]. https://www.statista.com/statistics/1006502/global-population-ten-thousand-bc-to-2050/
    Explore at:
    Dataset updated
    Aug 7, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    Until the 1800s, population growth was incredibly slow on a global level. The global population was estimated to have been around 188 million people in the year 1CE, and did not reach one billion until around 1803. However, since the 1800s, a phenomenon known as the demographic transition has seen population growth skyrocket, reaching eight billion people in 2023, and this is expected to peak at over 10 billion in the 2080s.

  9. z

    Population dynamics and Population Migration

    • zenodo.org
    Updated Apr 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rutuja Sonar Riya Patil; Rutuja Sonar Riya Patil (2025). Population dynamics and Population Migration [Dataset]. http://doi.org/10.5281/zenodo.15175736
    Explore at:
    Dataset updated
    Apr 8, 2025
    Dataset provided by
    Zenodo
    Authors
    Rutuja Sonar Riya Patil; Rutuja Sonar Riya Patil
    Description

    Population dynamics, its types. Population migration (external, internal), factors determining it, main trends. Impact of migration on population health.

    Under the guidance of Moldoev M.I. Sir By Riya Patil and Rutuja Sonar

    Abstract

    Population dynamics influence development and vice versa, at various scale levels: global, continental/world-regional, national, regional, and local. Debates on how population growth affects development and how development affects population growth have already been subject of intensive debate and controversy since the late 18th century, and this debate is still ongoing. While these two debates initially focused mainly on natural population growth, the impact of migration on both population dynamics and development is also increasingly recognized. While world population will continue growing throughout the 21st century, there are substantial and growing contrasts between and within world-regions in the pace and nature of that growth, including some countries where population is stagnating or even shrinking. Because of these growing contrasts, population dynamics and their interrelationships with development have quite different governance implications in different parts of the world.

    1. Population Dynamics

    Population dynamics refers to the changes in population size, structure, and distribution over time. These changes are influenced by four main processes:

    Birth rate (natality)

    Death rate (mortality)

    Immigration (inflow of people)

    Emigration (outflow of people)

    Types of Population Dynamics

    Natural population change: Based on birth and death rates.

    Migration-based change: Caused by people moving in or out of a region.

    Demographic transition: A model that explains changes in population growth as societies industrialize.

    Population distribution: Changes in where people live (urban vs rural).

    2. Population Migration

    Migration refers to the movement of people from one location to another, often across political or geographical boundaries.

    Types of Migration

    External migration (international):

    Movement between countries.

    Examples: Refugee relocation, labor migration, education.

    Internal migration:

    Movement within the same country or region.

    Examples: Rural-to-urban migration, inter-state migration.

    3. Factors Determining Migration

    Migration is influenced by push and pull factors:

    Push factors (reasons to leave a place):

    Unemployment

    Conflict or war

    Natural disasters

    Poverty

    Lack of services or opportunities

    Pull factors (reasons to move to a place):

    Better job prospects

    Safety and security

    Higher standard of living

    Education and healthcare access

    Family reunification

    4. Main Trends in Migration

    Urbanization: Mass movement to cities for work and better services.

    Global labor migration: Movement from developing to developed countries.

    Refugee and asylum seeker flows: Due to conflict or persecution.

    Circular migration: Repeated movement between two or more locations.

    Brain drain/gain: Movement of skilled labor away from (or toward) a country.

    5. Impact of Migration on Population Health

    Positive Impacts:

    Access to better healthcare (for migrants moving to better systems).

    Skills and knowledge exchange among health professionals.

    Remittances improving healthcare affordability in home countries.

    Negative Impacts:

    Migrants’ health risks: Increased exposure to stress, poor living conditions, and occupational hazards.

    Spread of infectious diseases: Especially when health screening is lacking.

    Strain on health services: In receiving areas, especially with sudden or large influxes.

    Mental health challenges: Due to cultural dislocation, discrimination, or trauma.

    Population dynamics is one of the fundamental areas of ecology, forming both the basis for the study of more complex communities and of many applied questions. Understanding population dynamics is the key to understanding the relative importance of competition for resources and predation in structuring ecological communities, which is a central question in ecology.

    Population dynamics plays a central role in many approaches to preserving biodiversity, which until now have been primarily focused on a single species approach. The calculation of the intrinsic growth rate of a species from a life table is often the central piece of conservation plans. Similarly, management of natural resources, such as fisheries, depends on population dynamics as a way to determine appropriate management actions.

    Population dynamics can be characterized by a nonlinear system of difference or differential equations between the birth sizes of consecutive periods. In such a nonlinear system, when the feedback elasticity of previous events on current birth size is larger, the more likely the dynamics will be volatile. Depending on the classification criteria of the population, the revealed cyclical behavior has various interpretations. Under different contextual scenarios, Malthusian cycles, Easterlin cycles, predator–prey cycles, dynastic cycles, and capitalist–laborer cycles have been introduced and analyzed

    Generally, population dynamics is a nonlinear stochastic process. Nonlinearities tend to be complicated to deal with, both when we want to do analytic stochastic modelling and when analysing data. The way around the problem is to approximate the nonlinear model with a linear one, for which the mathematical and statistical theories are more developed and tractable. Let us assume that the population process is described as:

    (1)Nt=f(Nt−1,εt)

    where Nt is population density at time t and εt is a series of random variables with identical distributions (mean and variance). Function f specifies how the population density one time step back, plus the stochastic environment εt, is mapped into the current time step. Let us assume that the (deterministic) stationary (equilibrium) value of the population is N* and that ε has mean ε*. The linear approximation of Eq. (1) close to N* is then:

    (2)xt=axt−1+bϕt

    where xt=Nt−N*, a=f

    f(N*,ε*)/f

    N, b=ff(N*,ε*)/fε, and ϕt=εt−ε*

    The term population refers to the members of a single species that can interact with each other. Thus, the fish in a lake, or the moose on an island, are clear examples of a population. In other cases, such as trees in a forest, it may not be nearly so clear what a population is, but the concept of population is still very useful.

    Population dynamics is essentially the study of the changes in the numbers through time of a single species. This is clearly a case where a quantitative description is essential, since the numbers of individuals in the population will be counted. One could begin by looking at a series of measurements of the numbers of particular species through time. However, it would still be necessary to decide which changes in numbers through time are significant, and how to determine what causes the changes in numbers. Thus, it is more sensible to begin with models that relate changes in population numbers through time to underlying assumptions. The models will provide indications of what features of changes in numbers are important and what measurements are critical to make, and they will help determine what the cause of changes in population levels might be.

    To understand the dynamics of biological populations, the study starts with the simplest possibility and determines what the dynamics of the population would be in that case. Then, deviations in observed populations from the predictions of that simplest case would provide information about the kinds of forces shaping the dynamics of populations. Therefore, in describing the dynamics in this simplest case it is essential to be explicit and clear about the assumptions made. It would not be argued that the idealized population described here would ever be found, but that focusing on the idealized population would provide insight into real populations, just as the study of Newtonian mechanics provides understanding of more realistic situations in physics.

    Population migration

    The vast majority of people continue to live in the countries where they were born —only one in 30 are migrants.

    In most discussions on migration, the starting point is usually numbers. Understanding changes in scale, emerging trends, and shifting demographics related to global social and economic transformations, such as migration, help us make sense of the changing world we live in and plan for the future. The current global estimate is that there were around 281 million international migrants in the world in 2020, which equates to 3.6 percent of the global population.

    Overall, the estimated number of international migrants has increased over the past five decades. The total estimated 281 million people living in a country other than their countries of birth in 2020 was 128 million more than in 1990 and over three times the estimated number in 1970.

    There is currently a larger number of male than female international migrants worldwide and the growing gender gap has increased over the past 20 years. In 2000, the male to female split was 50.6 to 49.4 per cent (or 88 million male migrants and 86 million female migrants). In 2020 the split was 51.9 to 48.1 per cent, with 146 million male migrants and 135 million female migrants. The share of

  10. Median age of U.S. population by state 2022

    • ai-chatbox.pro
    • statista.com
    Updated Aug 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Median age of U.S. population by state 2022 [Dataset]. https://www.ai-chatbox.pro/?_=%2Fstatistics%2F208048%2Fmedian-age-of-population-in-the-usa-by-state%2F%23XgboDwS6a1rKoGJjSPEePEUG%2FVFd%2Bik%3D
    Explore at:
    Dataset updated
    Aug 6, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    United States
    Description

    In 2022, the state with the highest median age of its population was Maine at 45.1 years. Utah had the lowest median age at 32.1 years. View the distribution of the U.S. population by ethnicity here.

    Additional information on the aging population in the United States

    High birth rates during the so-called baby boom years that followed World War II followed by lower fertility and morality rates have left the United States with a serious challenge in the 21st Century. However, the issue of an aging population is certainly not an issue unique to the United States. The age distribution of the global population shows that other parts of the world face a similar issue.

    Within the United States, the uneven distribution of populations aged 65 years and over among states offers both major challenges and potential solutions. On the one hand, federal action over the issue may be contentious as other states are set to harbor the costs of elderly care in states such as California and Florida. That said, domestic migration from comparably younger states may help to fill gaps in the workforce left by retirees in others.

    Nonetheless, aging population issues are set to gain further prominence in the political and economic decisions made by policymakers regardless of the eventual distribution of America’s elderly. Analysis of the financial concerns of Americans by age shows many young people still decades from retirement hold strong concern over their eventual financial position.

  11. d

    Gridded Population of the World, Version 4 (GPWv4): Population Count,...

    • catalog.data.gov
    • cloud.csiss.gmu.edu
    • +3more
    Updated Apr 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SEDAC (2025). Gridded Population of the World, Version 4 (GPWv4): Population Count, Revision 11 [Dataset]. https://catalog.data.gov/dataset/gridded-population-of-the-world-version-4-gpwv4-population-count-revision-11
    Explore at:
    Dataset updated
    Apr 24, 2025
    Dataset provided by
    SEDAC
    Area covered
    Earth, World
    Description

    The Gridded Population of the World, Version 4 (GPWv4): Population Count, Revision 11 consists of estimates of human population (number of persons per pixel), consistent with national censuses and population registers, for the years 2000, 2005, 2010, 2015, and 2020. A proportional allocation gridding algorithm, utilizing approximately 13.5 million national and sub-national administrative Units, was used to assign population counts to 30 arc-second grid cells. The data files were produced as global rasters at 30 arc-second (~1 km at the equator) resolution. To enable faster global processing, and in support of research commUnities, the 30 arc-second data were aggregated to 2.5 arc-minute, 15 arc-minute, 30 arc-minute and 1 degree resolutions.

  12. Distribution of the global population by continent 2024

    • statista.com
    • ai-chatbox.pro
    Updated Mar 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Distribution of the global population by continent 2024 [Dataset]. https://www.statista.com/statistics/237584/distribution-of-the-world-population-by-continent/
    Explore at:
    Dataset updated
    Mar 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    In the middle of 2023, about 60 percent of the global population was living in Asia.The total world population amounted to 8.1 billion people on the planet. In other words 4.7 billion people were living in Asia as of 2023. Global populationDue to medical advances, better living conditions and the increase of agricultural productivity, the world population increased rapidly over the past century, and is expected to continue to grow. After reaching eight billion in 2023, the global population is estimated to pass 10 billion by 2060. Africa expected to drive population increase Most of the future population increase is expected to happen in Africa. The countries with the highest population growth rate in 2024 were mostly African countries. While around 1.47 billion people live on the continent as of 2024, this is forecast to grow to 3.9 billion by 2100. This is underlined by the fact that most of the countries wit the highest population growth rate are found in Africa. The growing population, in combination with climate change, puts increasing pressure on the world's resources.

  13. M

    India Population Growth Rate

    • macrotrends.net
    csv
    Updated May 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). India Population Growth Rate [Dataset]. https://www.macrotrends.net/global-metrics/countries/IND/india/population-growth-rate
    Explore at:
    csvAvailable download formats
    Dataset updated
    May 31, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    india
    Description
    India population growth rate for 2023 was 0.88%, a 0.09% increase from 2022.
    <ul style='margin-top:20px;'>
    
    <li>India population growth rate for 2022 was <strong>0.79%</strong>, a <strong>0.03% decline</strong> from 2021.</li>
    <li>India population growth rate for 2021 was <strong>0.82%</strong>, a <strong>0.15% decline</strong> from 2020.</li>
    <li>India population growth rate for 2020 was <strong>0.97%</strong>, a <strong>0.07% decline</strong> from 2019.</li>
    </ul>Annual population growth rate for year t is the exponential rate of growth of midyear population from year t-1 to t, expressed as a percentage . Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.
    
  14. National Fertility Survey, 1970

    • icpsr.umich.edu
    ascii, delimited, sas +2
    Updated Aug 8, 2008
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Westoff, Charles F.; Ryder, Norman B. (2008). National Fertility Survey, 1970 [Dataset]. http://doi.org/10.3886/ICPSR20003.v1
    Explore at:
    delimited, ascii, sas, spss, stataAvailable download formats
    Dataset updated
    Aug 8, 2008
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Westoff, Charles F.; Ryder, Norman B.
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/20003/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/20003/terms

    Time period covered
    1970
    Area covered
    United States
    Dataset funded by
    United States Department of Health and Human Services. National Institutes of Health. Eunice Kennedy Shriver National Institute of Child Health and Human Development
    Description

    The 1970 National Fertility Survey (NFS) was the second in a series of three surveys that followed the Growth of American Families surveys (1955 and 1960) aimed at examining marital fertility and family planning in the United States. Women were queried on the following main topics: residence history, age and race, family background, pregnancies, abortions and miscarriages, marriage history, education, employment and income, religion, use of family planning clinics, current and past birth control pill use and other methods of contraception, sterility, ideals regarding childbearing, attitudes and opinions with respect to abortion, gender roles, sterilization and world population, and birth histories. Respondents were asked to give residence histories for themselves and their husbands. Specifically, they were asked about the state they grew up in, whether they had lived with both parents, whether they had lived on a farm growing up, and whether they were currently living on a farm. Respondents were asked to give their date of birth, current age and race, as well as that of their husband. Regarding family background, respondents were asked how many brothers and sisters that they had, whether their siblings were older or younger, and whether there were any twins in the family. Additionally, respondents were asked to summarize their pregnancy history by giving information with respect to total number of pregnancies, live births, miscarriages, and abortions. Regarding abortions, respondents also were asked to give the date of the abortion and if they had used any family planning techniques prior to the abortion. Respondents were queried about their marriage history, specifically they were asked whether this was their first marriage, whether it was their spouse's first marriage, and their total number of marriages. If previously married, respondents were asked about the dates of past marriages and reasons for the marriage ending (e.g., death, divorce, or annulment). Respondents were asked a series of questions about both their own and their spouse's education including number of grades completed, current educational status, schooling completed after marriage, highest grade completed, and highest grade the respondent and spouse hoped to complete. All respondents were queried about their own and their husband's employment situations, as well as their household income. Respondents were asked about employment prior to and after marriage, employment after the birth of their first child, reasons for working, future employment expectations, earned income for both the respondent and husband in 1970, and other sources of income. There was also a series of questions on religion including religious preferences growing up, current religious preferences, and the importance of religion for both the respondent and her husband. Respondents were asked whether they had ever been to a family planning clinic, whether methods of family planning were discussed with a doctor or other medically trained person, whether this had taken place in the last 12 months, and if not, when the last time was. Several questions were devoted to the respondent's current and past use of the birth control pill and other methods of contraception such as the IUD and the diaphragm. Specifically, respondents were asked how they obtained the method of contraception for the first time, whether the respondent had sought methods of contraception from a doctor, and whether they had discussed with a doctor problems related to the methods of contraception. Respondents were asked why they used the pill and other methods of contraception, why they had stopped using a particular method, whether the methods were being used for family planning, and during what intervals the methods were used. Respondents also were asked questions about sterility including whether they were able to have children, whether they or their husband had undergone a sterilization operation, and if so, what kind of operation it was, the motive for having such an operation, whether the respondent had arrived at menopause, and if they had seen a doctor if they were unable to have a baby. They were also asked about their ideals with respect to children including their ideal number of children, the ideal number of boys and girls, as well as the ideal age for having their first and last child. The survey also sough

  15. M

    Japan Population Growth Rate

    • macrotrends.net
    csv
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). Japan Population Growth Rate [Dataset]. https://www.macrotrends.net/global-metrics/countries/jpn/japan/population-growth-rate
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1961 - Dec 31, 2023
    Area covered
    Japan
    Description

    Historical chart and dataset showing Japan population growth rate by year from 1961 to 2023.

  16. c

    International Environmental Survey, 1982; UK Sample

    • datacatalogue.cessda.eu
    Updated Nov 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cotgrove, S. F., University of Bath (2024). International Environmental Survey, 1982; UK Sample [Dataset]. http://doi.org/10.5255/UKDA-SN-1840-1
    Explore at:
    Dataset updated
    Nov 28, 2024
    Dataset provided by
    School of Humanities and Social Sciences
    International Institute for Environment and Society (Berlin)
    Authors
    Cotgrove, S. F., University of Bath
    Time period covered
    Mar 1, 1982 - Jun 1, 1982
    Area covered
    United Kingdom
    Variables measured
    Individuals, Groups, National, Businessmen, Electors, Elites, Environmentalists, Public officials
    Measurement technique
    Postal survey
    Description

    Abstract copyright UK Data Service and data collection copyright owner.


    This study formed part of a time series in three countries (USA, Germany and UK) using a common core questionnaire.
    Main Topics:

    Variables
    Measures of beliefs about a range of environmental issues; social and political values/paradigms; indices of behaviour on environmental issues, including political action; urgency of a range of problems; socio-demographic variables, including occupation and sector.

  17. A long-term global population proportion with access to electricity dataset...

    • zenodo.org
    bin, csv, tiff
    Updated May 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Luling Liu; Luling Liu; Xin Cao; Xin Cao (2025). A long-term global population proportion with access to electricity dataset (SDG 7.1.1) from 1992 to 2022 based on nighttime light remote sensing [Dataset]. http://doi.org/10.5281/zenodo.14018079
    Explore at:
    tiff, bin, csvAvailable download formats
    Dataset updated
    May 13, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Luling Liu; Luling Liu; Xin Cao; Xin Cao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Introduction

    In 2015, the United Nations established 17 Sustainable Development Goals (SDGs), with Goal 7 focusing on ensuring access to affordable, reliable, and sustainable modern energy for all by 2030. By 2022, approximately 760 million people, or 1 in 11 globally still lacked electricity access according to Tracking SDG7 :The Energy Progress Report 2022, posing significant challenges to achieving this goal. Traditional survey methods for estimating the proportion of people with electricity access are often costly, infrequently updated, and hindered by the need for interpolation of historical data.

    To address these challenges, this dataset employs a nighttime light remote sensing estimation framework that integrates DMSP-CCNL and NPP/VIIRS data with GlobPOP population data. This approach produces a global 0.1-degree grid and national-scale electricity access index (EAI) maps from 1992 to 2022.

    The framework results' correlation coefficient (R) with World Bank survey data from 1992 to 2022 is 0.87, and the RMSE is 15.4, demonstrating its reliability at the national level. By effectively capturing geospatial changes, this dataset supports SDG 7.1.1 monitoring and offers valuable insights for policymakers to address electricity access disparities and promote sustainable energy transitions.

    Data Description

    1. This dataset consists of 0.1-degree grid Electricity Access Index (EAI) data in GeoTIFF format, where each pixel value represents the proportion of the population with access to electricity within that area.

    Example Filename: EAI_0dot1_Deg_WGS84_F32_1992

    • Field 1: EAI (Proportion of people with access to electricity)
    • Field 2&3: Spatial resolution is 0.1 degree
    • Field 4: Coordinate system is WGS84
    • Field 5: Data type is F32 (Float32)
    • Field 6: Year "1992"

    2. Aggregated EAI data at the national scale is provided in both Shapefile and CSV formats:

    • Table Filename: EAI_Level_0_1992_2022.csv
      • Fields include:

        • SOC (Country code)
        • Name (Country name)
        • National EAI data from 1992 to 2022
    • Shape Filename: EAI_Level_0_1992_2022.shp
        • Boundary data sourced from GADM (Database of Global Administrative Areas)

    3. The pixel-level (30 arc-seconds) Electricity Accessed Population Density is provided in GeoTIFF format, as identified through nighttime light (NTL) data.

    Example Filename: Elec_PopDen_WGS84_30arc_F32_1992

    • Field 1 & 2: Population Density with access to electricity (per km^2)
    • Field 3: Coordinate system is WGS84
    • Field 4: Spatial resolution is 30 arc-seconds
    • Field 5: Data type is F32 (Float32)
    • Field 6: Year "1992"

    If you encounter any issues, please contact us via email at liu.luling.k2@s.mail.nagoya-u.ac.jp.

    More Information

    The source codes are publicly available at GitHub: https://github.com/lulingliu/EAI.

  18. GlobPOP: A 31-year (1990-2020) global gridded population dataset generated...

    • zenodo.org
    tiff
    Updated Apr 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Luling Liu; Xin Cao; Xin Cao; Shijie Li; Na Jie; Luling Liu; Shijie Li; Na Jie (2025). GlobPOP: A 31-year (1990-2020) global gridded population dataset generated by cluster analysis and statistical learning [Dataset]. http://doi.org/10.5281/zenodo.10088105
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Apr 18, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Luling Liu; Xin Cao; Xin Cao; Shijie Li; Na Jie; Luling Liu; Shijie Li; Na Jie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data Update Notice 数据更新通知

    We are pleased to announce that the GlobPOP dataset for the years 2021-2022 has undergone a comprehensive quality check and has now been updated accordingly. Following the established methodology that ensures the high precision and reliability, these latest updates allow for even more comprehensive time-series analysis. The updated GlobPOP dataset remains available in GeoTIFF format for easy integration into your existing workflows.

    2021-2022 年的 GlobPOP 数据集经过全面的质量检查,现已进行相应更新。 遵循确保高精度和可靠性的原有方法,本次更新允许进行更全面的时间序列分析。 更新后的 GlobPOP 数据集仍以 GeoTIFF 格式提供,以便轻松集成到您现有的工作流中。

    To reflect these updates, our interactive web application has also been refreshed. Users can now explore the updated national population time-series curves from 1990 to 2022. This can be accessed via the same link: https://globpop.shinyapps.io/GlobPOP/. Thank you for your continued support of the GlobPOP, and we hope that the updated data will further enhance your research and policy analysis endeavors.

    交互式网页反映了人口最新动态,用户现在可以探索感兴趣的国家1990 年至 2022 年人口时间序列曲线,并将其与人口普查数据进行比较。感谢您对 GlobPOP 的支持,我们希望更新的数据将进一步加强您的研究和政策分析工作。

    If you encounter any issues, please contact us via email at lulingliu@mail.bnu.edu.cn.

    如果您遇到任何问题,请通过电子邮件联系我们。

    Introduction

    Continuously monitoring global population spatial dynamics is essential for implementing effective policies related to sustainable development, such as epidemiology, urban planning, and global inequality.

    Here, we present GlobPOP, a new continuous global gridded population product with a high-precision spatial resolution of 30 arcseconds from 1990 to 2020. Our data-fusion framework is based on cluster analysis and statistical learning approaches, which intends to fuse the existing five products(Global Human Settlements Layer Population (GHS-POP), Global Rural Urban Mapping Project (GRUMP), Gridded Population of the World Version 4 (GPWv4), LandScan Population datasets and WorldPop datasets to a new continuous global gridded population (GlobPOP). The spatial validation results demonstrate that the GlobPOP dataset is highly accurate. To validate the temporal accuracy of GlobPOP at the country level, we have developed an interactive web application, accessible at https://globpop.shinyapps.io/GlobPOP/, where data users can explore the country-level population time-series curves of interest and compare them with census data.

    With the availability of GlobPOP dataset in both population count and population density formats, researchers and policymakers can leverage our dataset to conduct time-series analysis of population and explore the spatial patterns of population development at various scales, ranging from national to city level.

    Data description

    The product is produced in 30 arc-seconds resolution(approximately 1km in equator) and is made available in GeoTIFF format. There are two population formats, one is the 'Count'(Population count per grid) and another is the 'Density'(Population count per square kilometer each grid)

    Each GeoTIFF filename has 5 fields that are separated by an underscore "_". A filename extension follows these fields. The fields are described below with the example filename:

    GlobPOP_Count_30arc_1990_I32

    Field 1: GlobPOP(Global gridded population)
    Field 2: Pixel unit is population "Count" or population "Density"
    Field 3: Spatial resolution is 30 arc seconds
    Field 4: Year "1990"
    Field 5: Data type is I32(Int 32) or F32(Float32)

    More information

    Please refer to the paper for detailed information:

    Liu, L., Cao, X., Li, S. et al. A 31-year (1990–2020) global gridded population dataset generated by cluster analysis and statistical learning. Sci Data 11, 124 (2024). https://doi.org/10.1038/s41597-024-02913-0.

    The fully reproducible codes are publicly available at GitHub: https://github.com/lulingliu/GlobPOP.

  19. f

    Data from: genRCT: a statistical analysis framework for generalizing RCT...

    • tandf.figshare.com
    txt
    Updated Nov 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dasom Lee; Shu Yang; Mark Berry; Tom Stinchcombe; Harvey Jay Cohen; Xiaofei Wang (2024). genRCT: a statistical analysis framework for generalizing RCT findings to real-world population [Dataset]. http://doi.org/10.6084/m9.figshare.25567157.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Nov 28, 2024
    Dataset provided by
    Taylor & Francis
    Authors
    Dasom Lee; Shu Yang; Mark Berry; Tom Stinchcombe; Harvey Jay Cohen; Xiaofei Wang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    When evaluating the real-world treatment effect, the analysis based on randomized clinical trials (RCTs) often introduces generalizability bias due to the difference in risk factors between the trial participants and the real-world patient population. This problem of lack of generalizability associated with the RCT-only analysis can be addressed by leveraging observational studies with large sample sizes that are representative of the real-world population. A set of novel statistical methods, termed “genRCT”, for improving the generalizability of the trial has been developed using calibration weighting, which enforces the covariates balance between the RCT and observational study. This paper aims to review statistical methods for generalizing the RCT findings by harnessing information from large observational studies that represent real-world patients. Specifically, we discuss the choices of data sources and variables to meet key theoretical assumptions and principles. We introduce and compare estimation methods for continuous, binary, and survival endpoints. We showcase the use of the R package genRCT through a case study that estimates the average treatment effect of adjuvant chemotherapy for the stage 1B non-small cell lung patients represented by a large cancer registry.

  20. Leading health problems worldwide 2024

    • statista.com
    • ai-chatbox.pro
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Leading health problems worldwide 2024 [Dataset]. https://www.statista.com/statistics/917148/leading-health-problems-worldwide/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jul 26, 2024 - Aug 9, 2024
    Area covered
    Worldwide
    Description

    A survey of people from 31 different countries around the world found that mental health was the biggest health problem respondents said was facing their country in 2024. Other health problems reported by respondents included cancer, stress, and obesity. The COVID-19 pandemic The COVID-19 pandemic impacted almost every country in the world and was the biggest global health crisis in recent history. It resulted in hundreds of millions of cases and millions of deaths, causing unprecedented disruption in health care systems. Lockdowns imposed in many countries to halt the spread of the virus also resulted in a rise of mental health issues as feelings of stress, isolation, and hopelessness arose. However, vaccines to combat the virus were developed at record speed, and many countries have now vaccinated large shares of their population. Nevertheless, in 2024, ** percent of respondents still stated that COVID-19 was the biggest health problem facing their country. Mental health issues One side effect of the COVID-19 pandemic has been a focus on mental health around the world. The two most common mental health issues worldwide are anxiety disorders and depression. In 2021, it was estimated that around *** percent of the global population had an anxiety disorder, while **** percent suffered from depression. Rates of depression are higher among females than males, with some *** percent of females suffering from depression, compared to *** percent of men. However, rates of suicide in most countries are higher among men than women. One positive outcome of the COVID-19 pandemic and the spotlight it shined on mental health may be a decrease in stigma surrounding mental health issues and seeking help for such issues. This would be a positive development as many people around the world do not or cannot receive the necessary treatment they need for their mental health.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). Global population 1800-2100, by continent [Dataset]. https://www.statista.com/statistics/997040/world-population-by-continent-1950-2020/
Organization logo

Global population 1800-2100, by continent

Explore at:
7 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jul 4, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
World
Description

The world's population first reached one billion people in 1803, and reach eight billion in 2023, and will peak at almost 11 billion by the end of the century. Although it took thousands of years to reach one billion people, it did so at the beginning of a phenomenon known as the demographic transition; from this point onwards, population growth has skyrocketed, and since the 1960s the population has increased by one billion people every 12 to 15 years. The demographic transition sees a sharp drop in mortality due to factors such as vaccination, sanitation, and improved food supply; the population boom that follows is due to increased survival rates among children and higher life expectancy among the general population; and fertility then drops in response to this population growth. Regional differences The demographic transition is a global phenomenon, but it has taken place at different times across the world. The industrialized countries of Europe and North America were the first to go through this process, followed by some states in the Western Pacific. Latin America's population then began growing at the turn of the 20th century, but the most significant period of global population growth occurred as Asia progressed in the late-1900s. As of the early 21st century, almost two thirds of the world's population live in Asia, although this is set to change significantly in the coming decades. Future growth The growth of Africa's population, particularly in Sub-Saharan Africa, will have the largest impact on global demographics in this century. From 2000 to 2100, it is expected that Africa's population will have increased by a factor of almost five. It overtook Europe in size in the late 1990s, and overtook the Americas a decade later. In contrast to Africa, Europe's population is now in decline, as birth rates are consistently below death rates in many countries, especially in the south and east, resulting in natural population decline. Similarly, the population of the Americas and Asia are expected to go into decline in the second half of this century, and only Oceania's population will still be growing alongside Africa. By 2100, the world's population will have over three billion more than today, with the vast majority of this concentrated in Africa. Demographers predict that climate change is exacerbating many of the challenges that currently hinder progress in Africa, such as political and food instability; if Africa's transition is prolonged, then it may result in further population growth that would place a strain on the region's resources, however, curbing this growth earlier would alleviate some of the pressure created by climate change.

Search
Clear search
Close search
Google apps
Main menu