Facebook
TwitterUntil the 1800s, population growth was incredibly slow on a global level. The global population was estimated to have been around 188 million people in the year 1CE, and did not reach one billion until around 1803. However, since the 1800s, a phenomenon known as the demographic transition has seen population growth skyrocket, reaching eight billion people in 2023, and this is expected to peak at over 10 billion in the 2080s.
Facebook
TwitterThis statistic shows the 20 countries with the highest population growth rate in 2024. In SouthSudan, the population grew by about 4.65 percent compared to the previous year, making it the country with the highest population growth rate in 2024. The global population Today, the global population amounts to around 7 billion people, i.e. the total number of living humans on Earth. More than half of the global population is living in Asia, while one quarter of the global population resides in Africa. High fertility rates in Africa and Asia, a decline in the mortality rates and an increase in the median age of the world population all contribute to the global population growth. Statistics show that the global population is subject to increase by almost 4 billion people by 2100. The global population growth is a direct result of people living longer because of better living conditions and a healthier nutrition. Three out of five of the most populous countries in the world are located in Asia. Ultimately the highest population growth rate is also found there, the country with the highest population growth rate is Syria. This could be due to a low infant mortality rate in Syria or the ever -expanding tourism sector.
Facebook
TwitterIn 2025, India overtook China as the world's most populous country and now has almost 1.46 billion people. China now has the second-largest population in the world, still with just over 1.4 billion inhabitants, however, its population went into decline in 2023. Global population As of 2025, the world's population stands at almost 8.2 billion people and is expected to reach around 10.3 billion people in the 2080s, when it will then go into decline. Due to improved healthcare, sanitation, and general living conditions, the global population continues to increase; mortality rates (particularly among infants and children) are decreasing and the median age of the world population has steadily increased for decades. As for the average life expectancy in industrial and developing countries, the gap has narrowed significantly since the mid-20th century. Asia is the most populous continent on Earth; 11 of the 20 largest countries are located there. It leads the ranking of the global population by continent by far, reporting four times as many inhabitants as Africa. The Demographic Transition The population explosion over the past two centuries is part of a phenomenon known as the demographic transition. Simply put, this transition results from a drastic reduction in mortality, which then leads to a reduction in fertility, and increase in life expectancy; this interim period where death rates are low and birth rates are high is where this population explosion occurs, and population growth can remain high as the population ages. In today's most-developed countries, the transition generally began with industrialization in the 1800s, and growth has now stabilized as birth and mortality rates have re-balanced. Across less-developed countries, the stage of this transition varies; for example, China is at a later stage than India, which accounts for the change in which country is more populous - understanding the demographic transition can help understand the reason why China's population is now going into decline. The least-developed region is Sub-Saharan Africa, where fertility rates remain close to pre-industrial levels in some countries. As these countries transition, they will undergo significant rates of population growth.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
this graph was created in R:
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F55a15c27e578216565ab65e502f9ecf8%2Fgraph1.png?generation=1730674251775717&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F0b481e4d397700978fe5cf15932dbc68%2Fgraph2.png?generation=1730674259213775&alt=media" alt="">
driven primarily by high birth rates in developing countries and advancements in healthcare. According to the United Nations, the global population surpassed 8 billion in 2023, marking a critical milestone in human history. This growth, however, is unevenly distributed across continents and countries, leading to varied population densities and urban pressures.
Surface area and population density play vital roles in shaping the demographic and economic landscape of each country. For instance, countries with large land masses such as Russia, Canada, and Australia have low population densities despite their significant populations, as vast portions of their land are sparsely populated or uninhabitable. Conversely, nations like Bangladesh and South Korea exhibit extremely high population densities due to smaller land areas combined with large populations.
Population density, measured as the number of people per square kilometer, affects resource availability, environmental sustainability, and quality of life. High-density areas face greater challenges in housing, infrastructure, and environmental management, often experiencing increased pollution and resource strain. In contrast, low-density areas may struggle with underdeveloped infrastructure and limited access to services due to the dispersed population.
Urbanization trends are another important aspect of these dynamics. As people migrate to cities seeking better economic opportunities, urban areas grow more densely populated, amplifying the need for efficient land use and sustainable urban planning. The UN reports that over half of the world’s population currently resides in urban areas, with this figure expected to rise to nearly 70% by 2050. This shift requires nations to balance population growth and density with sustainable development strategies to ensure a higher quality of life and environmental stewardship for future generations.
Through an understanding of population size, surface area, and density, policymakers can better address challenges related to urban development, rural depopulation, and resource allocation, supporting a balanced approach to population management and economic development.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
this graph was created in OurDataWorld:
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F5ba70e2a6c4926d6d6cf25183d04d768%2Fgraph1.png?generation=1721857623801679&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F37881b8889c3e253207b67f0115b704e%2Fgraph2.png?generation=1721857629220811&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F6391ebd97d7f80974d7acd60a10b914d%2Fgraph3.png?generation=1721857634439762&alt=media" alt="">
Population growth is one of the most important topics we cover at Our World in Data.
For most of human history, the global population was a tiny fraction of what it is today. Over the last few centuries, the human population has gone through an extraordinary change. In 1800, there were one billion people. Today there are more than 8 billion of us.
But after a period of very fast population growth, demographers expect the world population to peak by the end of this century.
On this page, you will find all of our data, charts, and writing on changes in population growth. This includes how populations are distributed worldwide, how this has changed, and what demographers expect for the future. Geographical maps show us where the world's landmasses are; not where people are. That means they don't always give us an accurate picture of how global living standards are changing.
One way to understand the distribution of people worldwide is to redraw the world map – not based on the area but according to population.
This is shown here as a population cartogram: a geographical presentation of the world where the size of countries is not drawn according to the distribution of land but by the distribution of people. It’s shown for the year 2018.
As the population size rather than the territory is shown in this map, you can see some significant differences when you compare it to the standard geographical map we’re most familiar with.
Small countries with a high population density increase in size in this cartogram relative to the world maps we are used to – look at Bangladesh, Taiwan, or the Netherlands. Large countries with a small population shrink in size – look for Canada, Mongolia, Australia, or Russia.
Facebook
TwitterThe world's population first reached one billion people in 1805, and reached eight billion in 2022, and will peak at almost 10.2 billion by the end of the century. Although it took thousands of years to reach one billion people, it did so at the beginning of a phenomenon known as the demographic transition; from this point onwards, population growth has skyrocketed, and since the 1960s the population has increased by one billion people every 12 to 15 years. The demographic transition sees a sharp drop in mortality due to factors such as vaccination, sanitation, and improved food supply; the population boom that follows is due to increased survival rates among children and higher life expectancy among the general population; and fertility then drops in response to this population growth. Regional differences The demographic transition is a global phenomenon, but it has taken place at different times across the world. The industrialized countries of Europe and North America were the first to go through this process, followed by some states in the Western Pacific. Latin America's population then began growing at the turn of the 20th century, but the most significant period of global population growth occurred as Asia progressed in the late-1900s. As of the early 21st century, almost two-thirds of the world's population lives in Asia, although this is set to change significantly in the coming decades. Future growth The growth of Africa's population, particularly in Sub-Saharan Africa, will have the largest impact on global demographics in this century. From 2000 to 2100, it is expected that Africa's population will have increased by a factor of almost five. It overtook Europe in size in the late 1990s, and overtook the Americas a few years later. In contrast to Africa, Europe's population is now in decline, as birth rates are consistently below death rates in many countries, especially in the south and east, resulting in natural population decline. Similarly, the population of the Americas and Asia are expected to go into decline in the second half of this century, and only Oceania's population will still be growing alongside Africa. By 2100, the world's population will have over three billion more than today, with the vast majority of this concentrated in Africa. Demographers predict that climate change is exacerbating many of the challenges that currently hinder progress in Africa, such as political and food instability; if Africa's transition is prolonged, then it may result in further population growth that would place a strain on the region's resources, however, curbing this growth earlier would alleviate some of the pressure created by climate change.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The current US Census Bureau world population estimate in June 2019 shows that the current global population is 7,577,130,400 people on earth, which far exceeds the world population of 7.2 billion from 2015. Our own estimate based on UN data shows the world's population surpassing 7.7 billion.
China is the most populous country in the world with a population exceeding 1.4 billion. It is one of just two countries with a population of more than 1 billion, with India being the second. As of 2018, India has a population of over 1.355 billion people, and its population growth is expected to continue through at least 2050. By the year 2030, the country of India is expected to become the most populous country in the world. This is because India’s population will grow, while China is projected to see a loss in population.
The next 11 countries that are the most populous in the world each have populations exceeding 100 million. These include the United States, Indonesia, Brazil, Pakistan, Nigeria, Bangladesh, Russia, Mexico, Japan, Ethiopia, and the Philippines. Of these nations, all are expected to continue to grow except Russia and Japan, which will see their populations drop by 2030 before falling again significantly by 2050.
Many other nations have populations of at least one million, while there are also countries that have just thousands. The smallest population in the world can be found in Vatican City, where only 801 people reside.
In 2018, the world’s population growth rate was 1.12%. Every five years since the 1970s, the population growth rate has continued to fall. The world’s population is expected to continue to grow larger but at a much slower pace. By 2030, the population will exceed 8 billion. In 2040, this number will grow to more than 9 billion. In 2055, the number will rise to over 10 billion, and another billion people won’t be added until near the end of the century. The current annual population growth estimates from the United Nations are in the millions - estimating that over 80 million new lives are added each year.
This population growth will be significantly impacted by nine specific countries which are situated to contribute to the population growth more quickly than other nations. These nations include the Democratic Republic of the Congo, Ethiopia, India, Indonesia, Nigeria, Pakistan, Uganda, the United Republic of Tanzania, and the United States of America. Particularly of interest, India is on track to overtake China's position as the most populous country by the year 2030. Additionally, multiple nations within Africa are expected to double their populations before fertility rates begin to slow entirely.
Global life expectancy has also improved in recent years, increasing the overall population life expectancy at birth to just over 70 years of age. The projected global life expectancy is only expected to continue to improve - reaching nearly 77 years of age by the year 2050. Significant factors impacting the data on life expectancy include the projections of the ability to reduce AIDS/HIV impact, as well as reducing the rates of infectious and non-communicable diseases.
Population aging has a massive impact on the ability of the population to maintain what is called a support ratio. One key finding from 2017 is that the majority of the world is going to face considerable growth in the 60 plus age bracket. This will put enormous strain on the younger age groups as the elderly population is becoming so vast without the number of births to maintain a healthy support ratio.
Although the number given above seems very precise, it is important to remember that it is just an estimate. It simply isn't possible to be sure exactly how many people there are on the earth at any one time, and there are conflicting estimates of the global population in 2016.
Some, including the UN, believe that a population of 7 billion was reached in October 2011. Others, including the US Census Bureau and World Bank, believe that the total population of the world reached 7 billion in 2012, around March or April.
| Columns | Description |
|---|---|
| CCA3 | 3 Digit Country/Territories Code |
| Name | Name of the Country/Territories |
| 2022 | Population of the Country/Territories in the year 2022. |
| 2020 | Population of the Country/Territories in the year 2020. |
| 2015 | Population of the Country/Territories in the year 2015. |
| 2010 | Population of the Country/Territories in the year 2010. |
| 2000 | Population of the Country/Territories in the year 2000. |
| 1990 | Population of the Country/Territories in the year 1990. |
| 1980 | Population of the Country/Territories in the year 1980. |
| 1970 | Population of the Country/Territories in the year 1970. |
| Area (km²) | Area size of the Country/Territories in square kilometer. |
| Density (per km²) | Population Density per square kilometer. |
| Grow... |
Facebook
Twitterhttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasetshttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasets
Subjected dataset is extracted using world bank and UN websites to find population collapse according to countries and regions. The code generates data for seven indicators based on the current date and is available from Year 2000 to the year 2021.
This code is useful for research purposes, there are nine distinct CSV files associated with this code, seven of them deals with indicators, one CSV file pertaining to country groups and last CSV file is analysis for 20 years between seven indicators. Below are seven indicators extracted from the world bank and the United Nations websites.
Total Population, Population Growth, Life Expectancy at birth, Fertility Rate, Death Rate (per 1,000 people)), Birth Rate (per 1,000 people), Median Age
Population collapse is calculated using Total Population, Population Growth, Life Expectancy at birth, Fertility Rate, Death Rate, Birth Rate and Median Age, for that various criteria were applied to extract data:
The data was filtered based on several attributes, first ids and title has been extracted from the world bank data then timeframe and columns provided to extract data. This filtering process ensured that only relevant data meeting the specified criteria. For median age UN website is used and data is extracted for all countries. Median age data is not available for groups or regions; however, it could be calculated as median age data is available for all countries of the globe.
Variables: Economy, Seven Indicators Years from 2000 to 2021
For country group files, all countries are assigned according to regions, groups, by lending, by income, etc. so for this file each country is repeated as one country is member of more than one group.
Below screenshot is extracted for those countries whose population does fall in 20 years and death rate is increased while birth rate is decrease. So, for instance Ukraine population in Year 2002 was 48.2M while as per Year 2021 there population is decreased by 9% to 43.8M, similarly there death rate is increase from 15.7 to 18.5 (per 1000 people) and birth rate is decrease by 10% from 8.10 to 7.30.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F15657145%2Ffeaff87cec8a478065eb06229045d7f1%2FPopulation%20Collapse.JPG?generation=1691841930935324&alt=media" alt="">
Facebook
TwitterThe statistic shows the development of the world population from 1950 to 2050. The world population was around 7.38 billion people in 2015.
The global population
As shown above, the total number of people living on Earth has more than doubled since the 1950s, and continues to increase. A look at the development of the world population since the beginning of the Common Era shows that such a surge in numbers is unprecedented. The first significant rise in population occurred during the 14th century, after the Black Death had killed approximately 25 million people worldwide. Subsequently, the global population increased slowly but steadily until it reached record numbers between 1950 and 2000.
The majority of the global population lives on the Asian continent, as a statistic of the world population by continent shows. In around 100 years, it is estimated that population levels on the African continent will have reached similar levels to those we see in Asia today. As for a forecast of the development of the world population, the figures are estimated to have reached more than 10 billion by the 22nd century.
Growing population numbers pose an increasing risk to the planet, since rocketing numbers equal increased consumption of food and resources. Scientists worry that natural resources, such as oil, and food resources will become scarce, endangering the human race and, even more so, the world’s ecosystem. Nowadays, the number of undernourished / starving people worldwide has decreased slightly, but forecasts paint a darker picture.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Somalia SO: Population: Growth data was reported at 2.922 % in 2017. This records an increase from the previous number of 2.904 % for 2016. Somalia SO: Population: Growth data is updated yearly, averaging 2.731 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 11.814 % in 1977 and a record low of 0.114 % in 1984. Somalia SO: Population: Growth data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Somalia – Table SO.World Bank.WDI: Population and Urbanization Statistics. Annual population growth rate for year t is the exponential rate of growth of midyear population from year t-1 to t, expressed as a percentage . Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.; ; Derived from total population. Population source: (1) United Nations Population Division. World Population Prospects: 2017 Revision, (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Somalia SO: Urban Population Growth data was reported at 4.226 % in 2017. This records an increase from the previous number of 4.216 % for 2016. Somalia SO: Urban Population Growth data is updated yearly, averaging 4.314 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 12.784 % in 1977 and a record low of -4.600 % in 2007. Somalia SO: Urban Population Growth data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Somalia – Table SO.World Bank: Population and Urbanization Statistics. Urban population refers to people living in urban areas as defined by national statistical offices. It is calculated using World Bank population estimates and urban ratios from the United Nations World Urbanization Prospects.; ; World Bank staff estimates based on the United Nations Population Division's World Urbanization Prospects: 2018 Revision.; Weighted average;
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Somalia SO: Population: Male: Ages 40-44: % of Male Population data was reported at 3.758 % in 2017. This records a decrease from the previous number of 3.786 % for 2016. Somalia SO: Population: Male: Ages 40-44: % of Male Population data is updated yearly, averaging 4.389 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 4.857 % in 1960 and a record low of 3.758 % in 2017. Somalia SO: Population: Male: Ages 40-44: % of Male Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Somalia – Table SO.World Bank.WDI: Population and Urbanization Statistics. Male population between the ages 40 to 44 as a percentage of the total male population.; ; World Bank staff estimates based on age/sex distributions of United Nations Population Division's World Population Prospects: 2017 Revision.; ;
Facebook
TwitterGlobal Population of the World (GPW) translates census population data to a latitude-longitude grid so that population data may be used in cross-disciplinary studies. There are three data files with this data set for the reference years 1990 and 1995. Over 127,000 administrative units and population counts were collected and integrated from various sources to create the gridded data. In brief, GPW was created using the following steps:
* Population data were estimated for the product reference years, 1990 and 1995, either by the data source or by interpolating or extrapolating the given estimates for other years.
* Additional population estimates were created by adjusting the source population data to match UN national population estimates for the reference years.
* Borders and coastlines of the spatial data were matched to the Digital Chart of the World where appropriate and lakes from the Digital Chart of the World were added.
* The resulting data were then transformed into grids of UN-adjusted and unadjusted population counts for the reference years.
* Grids containing the area of administrative boundary data in each cell (net of lakes) were created and used with the count grids to produce population densities.
As with any global data set based on multiple data sources, the spatial and attribute precision of GPW is variable. The level of detail and accuracy, both in time and space, vary among the countries for which data were obtained.
Facebook
TwitterPopulation dynamics, its types. Population migration (external, internal), factors determining it, main trends. Impact of migration on population health.
Under the guidance of Moldoev M.I. Sir By Riya Patil and Rutuja Sonar
Abstract
Population dynamics influence development and vice versa, at various scale levels: global, continental/world-regional, national, regional, and local. Debates on how population growth affects development and how development affects population growth have already been subject of intensive debate and controversy since the late 18th century, and this debate is still ongoing. While these two debates initially focused mainly on natural population growth, the impact of migration on both population dynamics and development is also increasingly recognized. While world population will continue growing throughout the 21st century, there are substantial and growing contrasts between and within world-regions in the pace and nature of that growth, including some countries where population is stagnating or even shrinking. Because of these growing contrasts, population dynamics and their interrelationships with development have quite different governance implications in different parts of the world.
1. Population Dynamics
Population dynamics refers to the changes in population size, structure, and distribution over time. These changes are influenced by four main processes:
Birth rate (natality)
Death rate (mortality)
Immigration (inflow of people)
Emigration (outflow of people)
Types of Population Dynamics
Natural population change: Based on birth and death rates.
Migration-based change: Caused by people moving in or out of a region.
Demographic transition: A model that explains changes in population growth as societies industrialize.
Population distribution: Changes in where people live (urban vs rural).
2. Population Migration
Migration refers to the movement of people from one location to another, often across political or geographical boundaries.
Types of Migration
External migration (international):
Movement between countries.
Examples: Refugee relocation, labor migration, education.
Internal migration:
Movement within the same country or region.
Examples: Rural-to-urban migration, inter-state migration.
3. Factors Determining Migration
Migration is influenced by push and pull factors:
Push factors (reasons to leave a place):
Unemployment
Conflict or war
Natural disasters
Poverty
Lack of services or opportunities
Pull factors (reasons to move to a place):
Better job prospects
Safety and security
Higher standard of living
Education and healthcare access
Family reunification
4. Main Trends in Migration
Urbanization: Mass movement to cities for work and better services.
Global labor migration: Movement from developing to developed countries.
Refugee and asylum seeker flows: Due to conflict or persecution.
Circular migration: Repeated movement between two or more locations.
Brain drain/gain: Movement of skilled labor away from (or toward) a country.
5. Impact of Migration on Population Health
Positive Impacts:
Access to better healthcare (for migrants moving to better systems).
Skills and knowledge exchange among health professionals.
Remittances improving healthcare affordability in home countries.
Negative Impacts:
Migrants’ health risks: Increased exposure to stress, poor living conditions, and occupational hazards.
Spread of infectious diseases: Especially when health screening is lacking.
Strain on health services: In receiving areas, especially with sudden or large influxes.
Mental health challenges: Due to cultural dislocation, discrimination, or trauma.
Population dynamics is one of the fundamental areas of ecology, forming both the basis for the study of more complex communities and of many applied questions. Understanding population dynamics is the key to understanding the relative importance of competition for resources and predation in structuring ecological communities, which is a central question in ecology.
Population dynamics plays a central role in many approaches to preserving biodiversity, which until now have been primarily focused on a single species approach. The calculation of the intrinsic growth rate of a species from a life table is often the central piece of conservation plans. Similarly, management of natural resources, such as fisheries, depends on population dynamics as a way to determine appropriate management actions.
Population dynamics can be characterized by a nonlinear system of difference or differential equations between the birth sizes of consecutive periods. In such a nonlinear system, when the feedback elasticity of previous events on current birth size is larger, the more likely the dynamics will be volatile. Depending on the classification criteria of the population, the revealed cyclical behavior has various interpretations. Under different contextual scenarios, Malthusian cycles, Easterlin cycles, predator–prey cycles, dynastic cycles, and capitalist–laborer cycles have been introduced and analyzed
Generally, population dynamics is a nonlinear stochastic process. Nonlinearities tend to be complicated to deal with, both when we want to do analytic stochastic modelling and when analysing data. The way around the problem is to approximate the nonlinear model with a linear one, for which the mathematical and statistical theories are more developed and tractable. Let us assume that the population process is described as:
(1)Nt=f(Nt−1,εt)
where Nt is population density at time t and εt is a series of random variables with identical distributions (mean and variance). Function f specifies how the population density one time step back, plus the stochastic environment εt, is mapped into the current time step. Let us assume that the (deterministic) stationary (equilibrium) value of the population is N* and that ε has mean ε*. The linear approximation of Eq. (1) close to N* is then:
(2)xt=axt−1+bϕt
where xt=Nt−N*, a=f
f(N*,ε*)/f
N, b=ff(N*,ε*)/fε, and ϕt=εt−ε*
The term population refers to the members of a single species that can interact with each other. Thus, the fish in a lake, or the moose on an island, are clear examples of a population. In other cases, such as trees in a forest, it may not be nearly so clear what a population is, but the concept of population is still very useful.
Population dynamics is essentially the study of the changes in the numbers through time of a single species. This is clearly a case where a quantitative description is essential, since the numbers of individuals in the population will be counted. One could begin by looking at a series of measurements of the numbers of particular species through time. However, it would still be necessary to decide which changes in numbers through time are significant, and how to determine what causes the changes in numbers. Thus, it is more sensible to begin with models that relate changes in population numbers through time to underlying assumptions. The models will provide indications of what features of changes in numbers are important and what measurements are critical to make, and they will help determine what the cause of changes in population levels might be.
To understand the dynamics of biological populations, the study starts with the simplest possibility and determines what the dynamics of the population would be in that case. Then, deviations in observed populations from the predictions of that simplest case would provide information about the kinds of forces shaping the dynamics of populations. Therefore, in describing the dynamics in this simplest case it is essential to be explicit and clear about the assumptions made. It would not be argued that the idealized population described here would ever be found, but that focusing on the idealized population would provide insight into real populations, just as the study of Newtonian mechanics provides understanding of more realistic situations in physics.
Population migration
The vast majority of people continue to live in the countries where they were born —only one in 30 are migrants.
In most discussions on migration, the starting point is usually numbers. Understanding changes in scale, emerging trends, and shifting demographics related to global social and economic transformations, such as migration, help us make sense of the changing world we live in and plan for the future. The current global estimate is that there were around 281 million international migrants in the world in 2020, which equates to 3.6 percent of the global population.
Overall, the estimated number of international migrants has increased over the past five decades. The total estimated 281 million people living in a country other than their countries of birth in 2020 was 128 million more than in 1990 and over three times the estimated number in 1970.
There is currently a larger number of male than female international migrants worldwide and the growing gender gap has increased over the past 20 years. In 2000, the male to female split was 50.6 to 49.4 per cent (or 88 million male migrants and 86 million female migrants). In 2020 the split was 51.9 to 48.1 per cent, with 146 million male migrants and 135 million female migrants. The share of
Facebook
TwitterAttribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
Countries from Natural Earth 50M scale data with a Human Development Index attribute for each of the following years: 1980, 1985, 1990, 1995, 2000, 2005, 2010, 2013, 2015, & 2017. The Human Development Index measures achievement in 3 areas of human development: long life, good education and income. Specifically, the index is computed using life expectancy at birth, Mean years of schooling, expected years of schooling, and gross national income (GNI) per capita (PPP $). The United Nations categorizes the HDI values into 4 groups. In 2013 these groups were defined by the following HDI values: Very High: 0.736 and higher High: 0.615 to 0.735 Medium: 0.494 to 0.614 Low: 0.493 and lower
In 2015 & 2017 these groups were defined by the following HDI values: Very High: 0.800 and higher High: 0.700 to 0.799 Medium: 0.550 to 0.699 Low: 0.549 and lower
Human Development Index attributes are from The World Bank: HDRO calculations based on data from UNDESA (2013a), Barro and Lee (2013), UNESCO Institute for Statistics (2013), UN Statistics Division(2014), World Bank (2014) and IMF (2014). 2015 & 2017 values source: HDRO calculations based on data from UNDESA (2017a), UNESCO Institute for Statistics (2018), United Nations Statistics Division (2018b), World Bank (2018b), Barro and Lee (2016) and IMF (2018).
Population data are from (1) United Nations Population Division. World Population Prospects, (2) United Nations Statistical Division. Population and Vital Statistics Report (various years), (3) Census reports and other statistical publications from national statistical offices, (4) Eurostat: Demographic Statistics, (5) Secretariat of the Pacific Community: Statistics and Demography Programme, and (6) U.S. Census Bureau: International Database.
Facebook
TwitterThis map shows the average number of children born to a woman during her lifetime. Data from Population Reference Bureau's 2017 World Population Data Sheet. The world's total fertility rate reported in 2017 was 2.5 as a whole. Replacement-Level fertility is widely recognized as 2.0 children per woman, so as to "replace" each parent in the next generation. Countries depicted in pink have a total fertility rate below replacement level whereas countries depicted in teal have a total fertility rate above replacement level. In countries with very high child mortality rates, a replacement level of 2.1 could be used, since not every child will survive into their reproductive years. Determinants of Total Fertility Rate include: women's education levels and opportunities, marriage rates among women of childbearing age (generally defined as 15-49), contraceptive usage and method mix/effectiveness, infant & child mortality rates, share of population living in urban areas, the importance of children as part of the labor force (or cost/penalty to women's labor force options that having children poses), and religious and cultural norms, among many other factors. This map was made using the Global Population and Maternal Health Indicators layer.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Somalia SO: Population: Male: Ages 30-34: % of Male Population data was reported at 5.625 % in 2017. This records an increase from the previous number of 5.574 % for 2016. Somalia SO: Population: Male: Ages 30-34: % of Male Population data is updated yearly, averaging 6.179 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 6.676 % in 1985 and a record low of 5.446 % in 2012. Somalia SO: Population: Male: Ages 30-34: % of Male Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Somalia – Table SO.World Bank: Population and Urbanization Statistics. Male population between the ages 30 to 34 as a percentage of the total male population.; ; World Bank staff estimates based on age/sex distributions of United Nations Population Division's World Population Prospects: 2017 Revision.; ;
Facebook
TwitterSome of the SNK rasters intentionally do not align or have the same extent. These rasters were not snapped to a common raster per the authors discretion. Please review selected rasters prior to use. These varying alignments are a result of the use of differing source data sets and all products derived from them. We recommend that users snap or align rasters as best suits their own projects. - This set of files includes downscaled projections of decadal means of monthly total precipitation (in millimeters, no unit conversion necessary) for each month of decades 2020-2029, 2050-2059, and 2060-2069 at 2x2 kilometer spatial resolution. Each file represents a mean monthly total in a given decade.
The spatial extent is clipped to a Seward REA boundary bounding box.
Overview:
Most of SNAP#8217;s climate projections come in multiple versions. There are 5 climate models, one 5 model average, 3 climate scenarios, 12 months, and 100 years. This amounts to 21,600 files per variable. Some datasets are derived products such as monthly decadal averages or specific seasonal averages, among others. This specific dataset is one subset of those.
Each set of files originates from one of five top ranked global circulation models or is calculated as a 5 Model Average. These models are referred to by the acronyms: cccma_cgcm31, mpi_echam5, gfdl_cm21, ukmo_hadcm3, miroc3_2_medres, or 5modelavg.
For a description of the model selection process, please see Walsh et al. 2008. Global Climate Model Performance over Alaska and Greenland. Journal of Climate. v. 21 pp. 6156-6174
Each set of files also represents one projected emission scenario referred to as: sresb1, sresa2, or sresa1b.
Emmission scenarios in brief:
The Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) created a range of scenarios to explore alternative development pathways, covering a wide range of demographic, economic and technological driving forces and resulting greenhouse gas emissions. The B1 scenario describes a convergent world, a global population that peaks in mid-century, with rapid changes in economic structures toward a service and information economy. The Scenario A1B assumes a world of very rapid economic growth, a global population that peaks in mid-century, rapid introduction of new and more efficient technologies, and a balance between fossil fuels and other energy sources. The A2 scenario describes a very heterogeneous world with high population growth, slow economic development and slow technological change.
These files are bias corrected and downscaled via the delta method using PRISM (http:prism.oregonstate.edu) 1961-1990 2km data as baseline climate. Absolute anomalies are utilized for temperature variables. Proportional anomalies are utilized for precipitation variables. Please see http:www.snap.uaf.eduabout for a description of the downscaling process.
File naming scheme:
[variable]_[metric]_[units]_[format]_[assessmentReport] [groupModel][scenario]_[timeFrame].[fileFormat]
[variable] pr, tas, logs, dot, dof, veg, age, dem etc
[metric] mean, total, decadal mean monthly mean, etc
[units] mm, C, in, km
[format] optional, if layer is formatted for special use
[assessmentReport] ar4, ar5
[groupModel] cccma_cgcm31, mpi_echam5, gfdl_cm21, ukmo_hadcm3, miroc3_2_medres, 5modelavg, cru_ts30
[scenario] sresb1, sresa2, sresa1b
[timeFrame] yyyy or mm_yyyy or yyyy_yyyy or mm_yyyy_mm_yyyy
[fileFormat] txt, png, pdf, bmp, tif
examples:
tas_mean_C_ar4_cccma_cgcm3_1_sresb1_05_2034.tif
this file represents mean May, 2034 temperature from the 4th Assessment Report on Climate Change from the CCCMA modeling group, using their CGCM3.1 model, under the B1 climate scenario.
pr_total_mm_ar4_5modelAvg_sresa1b_09_2077.tif
this file represents total September, 2077 precipitation from the 4th Assessment Report on Climate Change from the 5 Model Average, under the A1B climate scenario.
tas = near-surface air temperature
pr = precipitation including both liquid and solid phases
Facebook
TwitterUnderstanding why some species are at high risk of extinction, while others remain relatively safe, is central to the development of a predictive conservation science. Recent studies have shown that a species' extinction risk may be determined by two types of factors: intrinsic biological traits and exposure to external anthropogenic threats. However, little is known about the relative and interacting effects of intrinsic and external variables on extinction risk. Using phylogenetic comparative methods, we show that extinction risk in the mammal order Carnivora is predicted more strongly by biology than exposure to high-density human populations. However, biology interacts with human population density to determine extinction risk: biological traits explain 80% of variation in risk for carnivore species with high levels of exposure to human populations, compared to 45% for carnivores generally. The results suggest that biology will become a more critical determinant of risk as human populations expand. We demonstrate how a model predicting extinction risk from biology can be combined with projected human population density to identify species likely to move most rapidly towards extinction by the year 2030. African viverrid species are particularly likely to become threatened, even though most are currently considered relatively safe. We suggest that a preemptive approach to species conservation is needed to identify and protect species that may not be threatened at present but may become so in the near future.
Facebook
TwitterEn EspañolIs the world too dense with people, or does it feel like there's plenty of room for all 8 billion of us? Well, the answer to that question hinges on where you happen to be looking. For city dwellers, it may seem like the world is packed full with people, but human population is unevenly distributed across the face of the planet. While some localities have more than 100,000 people per square mile, vast stretches of Earth's surface are nearly devoid of people.The reasons for this dichotomy are manifold. Starting with the most obvious, huge swaths of the planet simply don't foster the conditions that allow human settlement on a large scale to be comfortable, or even feasible. These places may be too cold or too hot, too dry or too wet.
Facebook
TwitterUntil the 1800s, population growth was incredibly slow on a global level. The global population was estimated to have been around 188 million people in the year 1CE, and did not reach one billion until around 1803. However, since the 1800s, a phenomenon known as the demographic transition has seen population growth skyrocket, reaching eight billion people in 2023, and this is expected to peak at over 10 billion in the 2080s.