This vector tile layer presents the World Topographic Map style (World Edition) and provides a basemap for the world, symbolized with a classic Esri topographic map style. This layer includes highways, major roads, minor roads, railways, water features, cities, parks, landmarks, building footprints, and administrative boundaries, designed for use with World Hillshade for added context. This vector tile layer provides unique capabilities for customization, high-resolution display, and use in mobile devices.This vector tile layer is built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.This layer is used in the Topographic web map included in ArcGIS Living Atlas of the World.See the Vector Basemaps group for other vector tile layers, including Topographic (with Contours and Hillshade) multisource tile layer.Customize this StyleLearn more about customizing this vector basemap style using the Vector Tile Style Editor. Additional details are available in ArcGIS Online Blogs and the Esri Vector Basemaps Reference Document.
This vector tile layer presents the World Topographic Map (with Contours and Hillshade) style (World Edition) and provides a basemap for the world, symbolized with a classic Esri topographic map style, including both vector contour lines and vector hillshade. This layer includes highways, major roads, minor roads, railways, water features, cities, parks, landmarks, building footprints, and administrative boundaries. This vector tile layer provides unique capabilities for customization and high-resolution display.This is a multisource vector map style. The root.json style file calls three vector tile services to display all the data in the map. The "esri" source contains all the basemap tiles for this layer. The other two sources are "contours" and "hillshade". Click the View style button on right to see the json. The multisource section of this code is shown below."sources": { "esri": { "type": "vector", "url": "https://basemaps.arcgis.com/arcgis/rest/services/World_Basemap_v2/VectorTileServer" }, "contours": { "type": "vector", "url": "https://basemaps.arcgis.com/arcgis/rest/services/World_Contours_v2/VectorTileServer" }, "hillshade": { "type": "vector", "url": "https://basemaps.arcgis.com/arcgis/rest/services/World_Hillshade_v2/VectorTileServer" } },This vector tile layer is built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.This layer is used in the Topographic (Vector) web map included in ArcGIS Living Atlas of the World.See the Vector Basemaps group for other vector tile layers. Customize this StyleLearn more about customizing this vector basemap style using the Vector Tile Style Editor. Additional details are available in ArcGIS Online Blogs and the Esri Vector Basemaps Reference Document.
This map is designed to be used as a basemap by GIS professionals and as a reference map by anyone. The map includes administrative boundaries, cities, water features, physiographic features, parks, landmarks, highways, roads, railways, and airports overlaid on land cover and shaded relief imagery for added context. The map provides coverage for the world down to a scale of ~1:72k. Coverage is provided down to ~1:4k for the following areas: Australia and New Zealand; India; Europe; Canada; Mexico; the continental United States and Hawaii; South America and Central America; Africa; and most of the Middle East. Coverage down to ~1:1k and ~1:2k is available in select urban areas. This basemap was compiled from a variety of best available sources from several data providers, including the U.S. Geological Survey (USGS), U.S. Environmental Protection Agency (EPA), U.S. National Park Service (NPS), Food and Agriculture Organization of the United Nations (FAO), Department of Natural Resources Canada (NRCAN), GeoBase, Agriculture and Agri-Food Canada, Garmin, HERE, Esri, OpenStreetMap contributors, and the GIS User Community. For more information on this map, including the terms of use, visit us online.
Important Note: This item is in mature support as of July 2021. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.World Topographic Map is designed to be used as a basemap by GIS professionals and as a reference map by anyone. The map includes cities, water features, physiographic features, contours, parks, landmarks, highways, roads, railways, airports, and administrative boundaries, overlaid on shaded relief imagery for added context.This basemap is compiled from a variety of authoritative sources from several data providers, including the U.S. Geological Survey (USGS), U.S. Environmental Protection Agency (EPA), U.S. National Park Service (NPS), Food and Agriculture Organization of the United Nations (FAO), Department of Natural Resources Canada (NRCAN), HERE, and Esri. Data for select areas is sourced from OpenStreetMap contributors. Specific country list and documentation of Esri's process for including OSM data is available to view. Additionally, data for the World Topographic Map is provided by the GIS community through the Community Maps Program. View the list of Contributors for the World Topographic Map.CoverageThe map provides coverage for the world down to a scale of ~1:72k. Coverage is provided down to ~1:4k for the following areas: Africa, Australia and New Zealand; Europe and Russia; India; most of the Middle East; Pacific Island nations; Alaska; Canada; Mexico; South America and Central America. Coverage is available down to ~1:2k and ~1:1k in select urban areas.CitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop you can see topographic citations. Citations returned apply only to the available map at that location and scale.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer in a web map, see this Topographic basemap.
World Elevation layers are compiled from many authoritative data providers, and are updated quarterly. This map shows the extent of the various datasets comprising the World Elevation dynamic (Terrain,TopoBathy) and tiled (Terrain 3D, TopoBathy 3D, World Hillshade, World Hillshade (Dark)) services.The tiled services (Terrain 3D,TopoBathy 3D,World Hillshade,World Hillshade (Dark)) also include an additional data source from Maxar's Precision3D covering parts of the globe.Note: ArcGIS Elevation service, Terrain 3D (for Export) and TopoBathy 3D (for Export) does not include Maxar Precision3D and Airbus WorldDEM4Ortho.To view the all the sources in a table format, check out World Elevation Data Sources Table.Topography sources listed in the table are part of Terrain, TopoBathy, Terrain 3D, TopoBathy 3D, World Hillshade and World Hillshade (Dark), while bathymetry sources are part of TopoBathy and TopoBathy 3D only.Disclaimer: Data sources are not to be used for navigation/safety at sea and in air.
The Topographic (World Edition) web map is presented with a classic Esri topographic map style including a shaded relief layer for added context. This comprehensive topographic map includes landform labels, highways, major roads, minor roads, railways, water features, cities, parks, landmarks, building footprints, and administrative boundaries, designed for use with shaded relief for added context. This basemap, included in the ArcGIS Living Atlas of the World, uses the World Topographic Map vector tile layer and World Hillshade. For a topographic basemap that includes vector contours and vector hillshade, see the Topographic (Vector) web map.The vector tile layer in this web map is built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the tile layers referenced in this map.
Link to landing page referenced by identifier. Service Protocol: Link to landing page referenced by identifier. Link Function: information-- dc:identifier.
Culminating more than four years of processing data, NASA and the National Geospatial-Intelligence Agency (NGA) have completed Earth's most extensive global topographic map. The mission is a collaboration among NASA, NGA, and the German and Italian space agencies. For 11 days in February 2000, the space shuttle Endeavour conducted the Shuttle Radar Topography Mission (SRTM) using C-Band and X-Band interferometric synthetic aperture radars to acquire topographic data over 80% of the Earth's land mass, creating the first-ever near-global data set of land elevations. This data was used to produce topographic maps (digital elevation maps) 30 times as precise as the best global maps used today. The SRTM system gathered data at the rate of 40,000 per minute over land. They reveal for the first time large, detailed swaths of Earth's topography previously obscured by persistent cloudiness. The data will benefit scientists, engineers, government agencies and the public with an ever-growing array of uses. The SRTM radar system mapped Earth from 56 degrees south to 60 degrees north of the equator. The resolution of the publicly available data is three arc-seconds (1/1,200th of a degree of latitude and longitude, about 295 feet, at Earth's equator). The final data release covers Australia and New Zealand in unprecedented uniform detail. It also covers more than 1,000 islands comprising much of Polynesia and Melanesia in the South Pacific, as well as islands in the South Indian and Atlantic oceans. SRTM data are being used for applications ranging from land use planning to "virtual" Earth exploration. Currently, the mission's homepage "http://www.jpl.nasa.gov/srtm" provides direct access to recently obtained earth images. The Shuttle Radar Topography Mission C-band data for North America and South America are available to the public. A list of complete public data set is available at "http://www2.jpl.nasa.gov/srtm/dataprod.htm" The data specifications are within the following parameters: 30-meter X 30-meter spatial sampling with 16 meter absolute vertical height accuracy, 10-meter relative vertical height accuracy, and 20-meter absolute horizontal circular accuracy. From the JPL Mission Products Summary, "http://www.jpl.nasa.gov/srtm/dataprelimdescriptions.html". The primary products of the SRTM mission are the digital elevation maps of most of the Earth's surface. Visualized images of these maps are available for viewing online. Below you will find descriptions of the types of images that are being generated: Radar Image Radar Image with Color as Height Radar Image with Color Wrapped Fringes -Shaded Relief Perspective View with B/W Radar Image Overlaid Perspective View with Radar Image Overlaid, Color as Height Perspective View of Shaded Relief Perspective View with Landsat or other Image Overlaid Contour Map - B/W with Contour Lines Stereo Pair Anaglypgh The SRTM radar contained two types of antenna panels, C-band and X-band. The near-global topographic maps of Earth called Digital Elevation Models (DEMs) are made from the C-band radar data. These data were processed at the Jet Propulsion Laboratory and are being distributed through the United States Geological Survey's EROS Data Center. Data from the X-band radar are used to create slightly higher resolution DEMs but without the global coverage of the C-band radar. The SRTM X-band radar data are being processed and distributed by the German Aerospace Center, DLR.
Important Note: This item is in mature support. There are new versions of basemaps available for your use. Esri recommends updating your maps and apps to use the appropriate new version. This topographic map is designed to be used as a basemap and a reference map. The map has been compiled by Esri and the ArcGIS user community from a variety of best available sources. The map is intended to support the ArcGIS Online basemap gallery. For more details on the map, please visit the World Topographic Map service description.
The Land Processes Distributed Active Archive Center (LP DAAC) is responsible for the archive and distribution of NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Digital Elevation Model (DEM) version 1 (NASADEM_SSP) dataset, which provides global Shuttle Radar Topography Mission (SRTM) sub-swath elevation data at 1 arc second spacing.
NASADEM data products were derived from original telemetry data from the Shuttle Radar Topography Mission (SRTM), a collaboration between NASA and the National Geospatial-Intelligence Agency (NGA), as well as participation from the German and Italian space agencies. SRTM's primary focus was to generate a near-global DEM of the Earth using radar interferometry. It was a primary component of the payload on space shuttle Endeavour during its STS-99 mission, which was launched on February 11, 2000, and flew for 11 days.
In addition to Terra Advanced Spaceborne Thermal and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) Version 2 data, NASADEM also relied on Ice, Cloud, and Land Elevation Satellite (ICESat) Geoscience Laser Altimeter System (GLAS) ground control points of its lidar shots to improve surface elevation measurements that led to improved geolocation accuracy. Other reprocessing improvements include the conversion to geoid reference and the use of GDEMs and Advanced Land Observing Satellite Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) AW3D30 DEM, and interpolation for void filling.
NASADEM are distributed in 1 degree latitude by 1 degree longitude tiles and consist of all land between 60° N and 56° S latitude. This accounts for about 80% of Earth's total landmass.
NASADEM_SSP data product layers include radar total correlation, radar volumetric correlation, radar individual images, radar incidence angle (relative to ellipsoid), and radar incidence angle (local). A low-resolution browse image showing sub-swath elevation is also available for each NASADEM_SSP granule.
The Land Processes Distributed Active Archive Center (LP DAAC) is responsible for the archive and distribution of NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Digital Elevation Model (DEM) version 1 (NASADEM_SC) dataset, which provides global slope and curvature elevation data at 1 arc second spacing.
NASADEM data products were derived from original telemetry data from the Shuttle Radar Topography Mission (SRTM), a collaboration between NASA and the National Geospatial-Intelligence Agency (NGA), as well as participation from the German and Italian space agencies. SRTM's primary focus was to generate a near-global DEM of the Earth using radar interferometry. It was a primary component of the payload on space shuttle Endeavour during its STS-99 mission, which was launched on February 11, 2000, and flew for 11 days.
In addition to Terra Advanced Spaceborne Thermal and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) Version 2 data, NASADEM also relied on Ice, Cloud, and Land Elevation Satellite (ICESat) Geoscience Laser Altimeter System (GLAS) ground control points of its lidar shots to improve surface elevation measurements that led to improved geolocation accuracy. Other reprocessing improvements include the conversion to geoid reference and the use of GDEMs and Advanced Land Observing Satellite Panchromatic Remote-sensing instrument for Stereo Mapping (PRISM) AW3D30 DEM, and interpolation for void filling.
NASADEM are distributed in 1 degree latitude by 1 degree longitude tiles and consist of all land between 60° N and 56° S latitude. This accounts for about 80% of Earth's total landmass.
NASADEM_SC data product layers include slope, aspect angle, profile curvature, plan curvature, and an updated SRTM water body dataset (water mask). A low-resolution browse image showing slope is also available for each NASADEM_SC granule.
This vector tile layer presents the World Street Map (with Relief - WGS84) style (World Edition) and provides a basemap for the world, symbolized with a classic Esri street map style. This comprehensive street map includes highways, major roads, minor roads, railways, water features, cities, parks, landmarks, building footprints, and administrative boundaries. Additionally, this layer is designed for use with World Hillshade (WGS84). This vector tile layer provides unique capabilities for customization and high-resolution display, and use in mobile devices.This vector tile layer is built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps (WGS84) are updated quarterly.This layer is used in the Streets (with Relief - WGS84) web map included in ArcGIS Living Atlas of the World.Check out other WGS84 basemaps in the World Basemaps (WGS84) group. Customize this StyleLearn more about customizing this vector basemap style using the Vector Tile Style Editor. Additional details are available in ArcGIS Online Blogs and the Esri Vector Basemaps Reference Document.Precise Tile RegistrationThe map uses the improved tiling scheme “WGS84 Geographic, Version 2” to ensure proper tile positioning at higher resolutions (neighborhood level and beyond). The new tiling scheme is much more precise than tiling schemes of the legacy basemaps Esri released years ago. We recommend that you start using this new basemap for any new web maps in WGS84 that you plan to author. Due to the number of differences between the old and new tiling schemes, some web clients will not be able to overlay tile layers in the old and new tiling schemes in one web map.
The Land Processes Distributed Active Archive Center (LP DAAC) is responsible for the archive and distribution of NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) SRTM, which includes the global 1 arc second (~30 meter) swath (raw) image data product. (See User Guide Section 2.2.1)
The SRTM swath image data set consists of radar image files containing brightness values, as well as quality assurance (incidence angle) files for each of four overlapping sub-swaths that passes through a 1 degree by 1 degree tile. Data from each sub-swath is included as a separate file. Some files may contain only partial data; however, every image pixel acquired by SRTM is included in this data set.
The NASA SRTM data sets result from a collaborative effort by the National Aeronautics and Space Administration (NASA) and the National Geospatial-Intelligence Agency (NGA - previously known as the National Imagery and Mapping Agency, or NIMA), as well as the participation of the German and Italian space agencies. This collaboration aims to generate a near-global digital elevation model (DEM) of Earth using radar interferometry. SRTM was the primary (and virtually only) payload on the STS-99 mission of the Space Shuttle Endeavour, which launched February 11, 2000 and flew for 11 days.
The SRTM swaths extended from ~30 degrees off-nadir to ~58 degrees off-nadir from an altitude of 233 kilometers (km), creating swaths ~225 km wide, and consisted of all land between 60° N and 56° S latitude to account for 80% of Earth's total landmass.
Known Issues * Known issues in the NASA SRTM are described in the following publication: * Rodriguez, E., C. S. Morris, and J. E. Belz (2006), A global assessment of the SRTM performance, Photogramm. Eng. Remote Sens., 72, 249–260. https://doi.org/10.14358/PERS.72.3.249
Improvements/Changes from Previous Version * Version 3.0 products are filled with ASTER Global Digital Elevation Model (GDEM) Version 2.0, the Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010), and the National Elevation Dataset (NED).
No description is available. Visit https://dataone.org/datasets/a2bb987b6db37fceb03bec437be972ee for complete metadata about this dataset.
The Land Processes Distributed Active Archive Center (LP DAAC) is responsible for the archive and distribution of NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) SRTM, which includes the global 3 arc second (~90 meter) number product.
The NASA SRTM data sets result from a collaborative effort by the National Aeronautics and Space Administration (NASA) and the National Geospatial-Intelligence Agency (NGA - previously known as the National Imagery and Mapping Agency, or NIMA), as well as the participation of the German and Italian space agencies. This collaboration aims to generate a near-global digital elevation model (DEM) of Earth using radar interferometry. SRTM was the primary (and virtually only) payload on the STS-99 mission of the Space Shuttle Endeavour, which launched February 11, 2000 and flew for 11 days.
The SRTM swaths extended from ~30 degrees off-nadir to ~58 degrees off-nadir from an altitude of 233 kilometers (km), creating swaths ~225 km wide, and consisted of all land between 60° N and 56° S latitude to account for 80% of Earth's total landmass.
Ancillary one-byte (0 to 255) "NUM" (number) files were produced for NASA SRTM Version 3. These files have names corresponding to the elevation files, except with the extension ".NUM" (such as N37W105.NUM). The elevation files use the extension ".HGT", meaning height (such as N37W105.HGT). The separate NUM file indicates the source of each DEM pixel; the number of ASTER scenes used (up to 100), if ASTER; and the number of SRTM data takes (up to 24), if SRTM. The NUM file for both 3 arc second products (whether sampled or averaged) references the 3 x 3 center pixel. Note that NUMs less than 6 are water and those greater than 10 are land. The 3 arc second data was derived from the 1 arc second using sampling and averaging methods. (See Figure 3 in the User Guide)
The global 3 arc second number product is also available in NetCDF4 format as the SRTMGL3_NUMNC dataset and can be used with the corresponding SRTMGL3_NC elevation product.
Known Issues * Known issues in the NASA SRTM are described in the following publication: * Rodriguez, E., C. S. Morris, and J. E. Belz (2006), A global assessment of the SRTM performance, Photogramm. Eng. Remote Sens., 72, 249–260. https://doi.org/10.14358/PERS.72.3.249
Improvements/Changes from Previous Version * Voids in the Version 3.0 products have been filled with ASTER Global Digital Elevation Model (GDEM) Version 2.0, the Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010), and the National Elevation Dataset (NED).
The Land Processes Distributed Active Archive Center (LP DAAC) is responsible for the archive and distribution of NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) SRTM, which includes the global 1 arc second (~30 meter) combined (merged) image data product. (See User Guide Section 2.2.2)
The combined image data set contains mosaicked one degree by one degree images/tiles of uncalibrated radar brightness values at 1 arc second. To create a smooth mosaic image, each pixel in an output is an average of all the image pixels for a location. Pixels with a value of zero (voids) were not counted. Because SRTM imaged a given location with two like-polarization channels (VV = vertical transmit and vertical receive, and HH = horizontal transmit and horizontal receive) and at a variety of look and azimuth angles, the quantitative scattering information was lost in the pursuit of a smoother image product unlike the SRTM swath image product SRTMIMGR, which preserved the quantitative scattering information.
The NASA SRTM data sets result from a collaborative effort by the National Aeronautics and Space Administration (NASA) and the National Geospatial-Intelligence Agency (NGA - previously known as the National Imagery and Mapping Agency, or NIMA), as well as the participation of the German and Italian space agencies. This collaboration aims to generate a near-global digital elevation model (DEM) of Earth using radar interferometry. SRTM was the primary (and virtually only) payload on the STS-99 mission of the Space Shuttle Endeavour, which launched February 11, 2000 and flew for 11 days.
The SRTM swaths extended from ~30 degrees off-nadir to ~58 degrees off-nadir from an altitude of 233 kilometers (km), creating swaths ~225 km wide, and consisted of all land between 60° N and 56° S latitude to account for 80% of Earth's total landmass.
Known Issues * Known issues in the NASA SRTM are described in the following publication: * Rodriguez, E., C. S. Morris, and J. E. Belz (2006), A global assessment of the SRTM performance, Photogramm. Eng. Remote Sens., 72, 249–260. https://doi.org/10.14358/PERS.72.3.249
Improvements/Changes from Previous Version * Version 3.0 products are filled with ASTER Global Digital Elevation Model (GDEM) Version 2.0, the Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010), and the National Elevation Dataset (NED).
The Land Processes Distributed Active Archive Center (LP DAAC) is responsible for the archive and distribution of the NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) version SRTM, which includes the global 1 arc second (~30 meter) product.
NASA Shuttle Radar Topography Mission (SRTM) datasets result from a collaborative effort by the National Aeronautics and Space Administration (NASA) and the National Geospatial-Intelligence Agency (NGA - previously known as the National Imagery and Mapping Agency, or NIMA), as well as the participation of the German and Italian space agencies. The purpose of SRTM was to generate a near-global digital elevation model (DEM) of the Earth using radar interferometry. SRTM was a primary component of the payload on the Space Shuttle Endeavour during its STS-99 mission. Endeavour launched February 11, 2000 and flew for 11 days.
SRTM collected data in swaths, which extend from ~30 degrees off-nadir to ~58 degrees off-nadir from an altitude of 233 kilometers (km). These swaths are ~225 km wide, and consisted of all land between 60° N and 56° S latitude. This accounts for about 80% of Earth's total landmass.
Each SRTMGL1 data tile contains a mosaic and blending of elevations generated by averaging all "data takes" that fall within that tile. These elevation files use the extension ".HGT", meaning height (such as N37W105.SRTMGL1.HGT). The primary goal of creating the Version 3 data was to eliminate voids that were present in earlier versions of SRTM data. In areas with limited data, existing topographical data were used to supplement the SRTM data to fill the voids. The source of each elevation pixel is identified in the corresponding SRTMGL1N product (such as N37W105.SRTMGL1N.NUM).
The global 1 arc second SRTM product is also available in NetCDF4 format as the SRTMGL1_NC dataset with the source of each elevation pixel in the corresponding SRTMGL1_NUMNC product.
Known Issues * Known issues in the NASA SRTM are described in the following publication: * Rodriguez, E., C. S. Morris, and J. E. Belz (2006), A global assessment of the SRTM performance, Photogramm. Eng. Remote Sens., 72, 249–260. https://doi.org/10.14358/PERS.72.3.249
Improvements/Changes from Previous Version * Voids in the Version 3.0 products have been filled with ASTER Global Digital Elevation Model (GDEM) Version 2.0, the Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010), and the National Elevation Dataset (NED).
This dynamic World Elevation Terrain layer returns float values representing ground heights in meters and compiles multi-resolution data from many authoritative data providers from across the globe. Heights are orthometric (sea level = 0), and water bodies that are above sea level have approximated nominal water heights.Height units: MetersUpdate Frequency: QuarterlyCoverage: World/GlobalData Sources: This layer is compiled from a variety of best available sources from several data providers. To see the coverage and extents of various datasets comprising this service in an interactive map, see World Elevation Coverage Map.What can you do with this layer?Use for Visualization: This layer is generally not optimal for direct visualization. By default, 32 bit floating point values are returned, resulting in higher bandwidth requirements. Therefore, usage should be limited to applications requiring elevation data values. Alternatively, client applications can select from numerous additional functions, applied on the server, that return rendered data. For visualizations such as multi-directional hillshade, hillshade, elevation tinted hillshade, and slope, consider using the appropriate server-side function defined on this service.Use for Analysis: Yes. This layer provides data as floating point elevation values suitable for use in analysis. There is a limit of 5000 rows x 5000 columns.Note: This layer combine data from different sources and resamples the data dynamically to the requested projection, extent and pixel size. For analyses using ArcGIS Desktop, it is recommended to filter a dataset, specify the projection, extent and cell size using the Make Image Server Layer geoprocessing tool. The extent is factor of cell size and rows/columns limit. e.g. if cell size is 10 m, the extent for analysis would be less than 50,000 m x 50,000 m.Server Functions: This layer has server functions defined for the following elevation derivatives. In ArcGIS Pro, server function can be invoked from Layer Properties - Processing Templates.
Slope Degrees Slope Percent Aspect Ellipsoidal height Hillshade Multi-Directional Hillshade Dark Multi-Directional Hillshade Elevation Tinted Hillshade Slope Map Aspect Map Mosaic Method: This image service uses a default mosaic method of "By Attribute”, using Field 'Best' and target of 0. Each of the rasters has been attributed with ‘Best’ field value that is generally a function of the pixel size such that higher resolution datasets are displayed at higher priority. Other mosaic methods can be set, but care should be taken as the order of the rasters may change. Where required, queries can also be set to display only specific datasets such as only NED or the lock raster mosaic rule used to lock to a specific dataset.Accuracy: Accuracy will vary as a function of location and data source. Please refer to the metadata available in the layer, and follow the links to the original sources for further details. An estimate of CE90 and LE90 are included as attributes, where available.This layer allows query, identify, and export image requests. The layer is restricted to a 5,000 x 5,000 pixel limit in a single request.This layer is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.
The Land Processes Distributed Active Archive Center (LP DAAC) is responsible for the archive and distribution of NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Digital Elevation Model (DEM) version 1 (NASADEM_SIM) dataset, which provides global Shuttle Radar Topography Mission (SRTM) image mosaic data at 1 arc second spacing.
NASADEM data products were derived from original telemetry data from the Shuttle Radar Topography Mission (SRTM), a collaboration between NASA and the National Geospatial-Intelligence Agency (NGA), as well as participation from the German and Italian space agencies. SRTM's primary focus was to generate a near-global DEM of the Earth using radar interferometry. It was a primary component of the payload on space shuttle Endeavour during its STS-99 mission, which was launched on February 11, 2000, and flew for 11 days.
In addition to Terra Advanced Spaceborne Thermal and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) Version 2 data, NASADEM also relied on Ice, Cloud, and Land Elevation Satellite (ICESat) Geoscience Laser Altimeter System (GLAS) ground control points of its lidar shots to improve surface elevation measurements that led to improved geolocation accuracy. Other reprocessing improvements include the conversion to geoid reference and the use of GDEMs and Advanced Land Observing Satellite Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) AW3D30 DEM, and interpolation for void filling.
NASADEM are distributed in 1 degree latitude by 1 degree longitude tiles and consist of all land between 60° N and 56° S latitude. This accounts for about 80% of Earth's total landmass.
NASADEM_SIM data product layers include radar combined images and a NUM file associated with combined images. A low-resolution browse image showing the SRTM image mosaic elevation is also available for each NASADEM_SIM granule.
This vector tile layer presents the World Topographic Map style (World Edition) and provides a basemap for the world, symbolized with a classic Esri topographic map style. This layer includes highways, major roads, minor roads, railways, water features, cities, parks, landmarks, building footprints, and administrative boundaries, designed for use with World Hillshade for added context. This vector tile layer provides unique capabilities for customization, high-resolution display, and use in mobile devices.This vector tile layer is built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.This layer is used in the Topographic web map included in ArcGIS Living Atlas of the World.See the Vector Basemaps group for other vector tile layers, including Topographic (with Contours and Hillshade) multisource tile layer.Customize this StyleLearn more about customizing this vector basemap style using the Vector Tile Style Editor. Additional details are available in ArcGIS Online Blogs and the Esri Vector Basemaps Reference Document.