83 datasets found
  1. Smallest countries worldwide 2020, by land area

    • statista.com
    Updated Jan 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Smallest countries worldwide 2020, by land area [Dataset]. https://www.statista.com/statistics/1181994/the-worlds-smallest-countries/
    Explore at:
    Dataset updated
    Jan 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2020
    Area covered
    World
    Description

    The smallest country in the world is Vatican City, with a landmass of just 0.49 square kilometers (0.19 square miles). Vatican City is an independent state surrounded by Rome. Vatican City is not the only small country located inside Italy. San Marino is another microstate, with a land area of 60 square kilometers, making it the fifth-smallest country in the world. Many of these small nations have equally small populations, typically less than half a million inhabitants. However, the population of Singapore is almost six million, and is the twentieth smallest country in the world with a land area of 726 square kilometers. In comparison, Jamaica is almost eight times larger than Singapore, but has half the population.

  2. Countries with the smallest population 2024

    • statista.com
    Updated Feb 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries with the smallest population 2024 [Dataset]. https://www.statista.com/statistics/1328242/countries-with-smallest-population/
    Explore at:
    Dataset updated
    Feb 14, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    World
    Description

    The Vatican City, often called the Holy See, has the smallest population worldwide, with only 496 inhabitants. It is also the smallest country in the world by size. The islands Niue, Tuvalu, and Nauru followed in the next three positions. On the other hand, India is the most populated country in the world, with over 1.4 billion inhabitants.

  3. Countries with the lowest rural population rates worldwide 2023

    • statista.com
    Updated Feb 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries with the lowest rural population rates worldwide 2023 [Dataset]. https://www.statista.com/statistics/1328179/lowest-rural-population-rate-worldwide-country/
    Explore at:
    Dataset updated
    Feb 12, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    World
    Description

    The lowest rural population rates are found in some of the smallest countries in the world and city-states and areas, such as Gibraltar, Monaco, and Singapore, where the whole population lives in urban areas. Apart from these, Qatar is the country with the lowest rural population rate in the world. There, less than one percent of the population lives in rural areas. Belgium follows behind Qatar with less than two percent living in rural areas. On the other hand, Papua New Guinea has the largest rural population in the world.

  4. Esri Data & Maps

    • datacore-gn.unepgrid.ch
    ogc:wms +1
    Updated Apr 30, 2011
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    International Boundaries Polygons Level 0 - ESRI (2011). Esri Data & Maps [Dataset]. https://datacore-gn.unepgrid.ch/geonetwork/srv/api/records/bf950e93-8157-4e8e-ab97-01ed6ca5fad5
    Explore at:
    www:link-1.0-http--link, ogc:wmsAvailable download formats
    Dataset updated
    Apr 30, 2011
    Dataset provided by
    Esrihttp://esri.com/
    Time period covered
    2014
    Area covered
    Antarctic Ice shield, Antarctica
    Description

    World Countries is a detailed dataset of country level boundaries which can be used at both large and small scales. It has been designed to be used as a basemap and includes an additional Disputed Boundaries layer that can be used to edit boundaries to fit a users needs and view of the political world.

    Included are attributes for local and official names and country codes, along with continent and display fields. Particularly useful are the Land_Type and Land_Rank fields which separate polygons based on their size. These attributes can be used for rendering at different scales by providing the ability to turn off small islands which may clutter small scale views.

  5. T

    SMALL BUSINESS SENTIMENT by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jul 2, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2015). SMALL BUSINESS SENTIMENT by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/small-business-sentiment
    Explore at:
    csv, xml, json, excelAvailable download formats
    Dataset updated
    Jul 2, 2015
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for SMALL BUSINESS SENTIMENT reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  6. World Country Boundaries

    • agtransport.usda.gov
    Updated Jul 18, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESRI (2019). World Country Boundaries [Dataset]. https://agtransport.usda.gov/w/vmrp-m3nw/default?cur=BKS0LhUAhNr&from=upHzRVKKtAh
    Explore at:
    application/rssxml, csv, application/geo+json, kml, application/rdfxml, kmz, xml, tsvAvailable download formats
    Dataset updated
    Jul 18, 2019
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    ESRI
    Area covered
    World
    Description

    Small-scale world country boundaries. Based off ESRI World Countries, but with added, separate polygons for Hong Kong and Taiwan. These additions are not intended to be precise boundaries. Rather, they are intended to provide a general region to highlight agricultural export destinations.

  7. F

    Refugee Population by Country or Territory of Asylum for Small States

    • fred.stlouisfed.org
    json
    Updated Jul 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Refugee Population by Country or Territory of Asylum for Small States [Dataset]. https://fred.stlouisfed.org/series/SMPOPREFGSST
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 9, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Refugee Population by Country or Territory of Asylum for Small States (SMPOPREFGSST) from 1990 to 2023 about refugee, small, World, and population.

  8. Highest population density by country 2024

    • statista.com
    Updated Apr 25, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Highest population density by country 2021 [Dataset]. https://www.statista.com/statistics/264683/top-fifty-countries-with-the-highest-population-density/
    Explore at:
    Dataset updated
    Apr 25, 2014
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    World
    Description

    Monaco led the ranking for countries with the highest population density in 2024, with nearly 26,000 residents per square kilometer. The Special Administrative Region Macao came in second, followed by Singapore. The world’s second smallest country Monaco is the world’s second smallest country, with an area of about two square kilometers, and its population only numbers around 40,000. It is a constitutional monarchy located by the Mediterranean Sea, and while Monaco is not part of the European Union, it does participate in some EU policies. The country is perhaps most famous for the Monte Carlo casino and for hosting the Monaco Grand Prix, the world's most prestigious Formula One race. The global population Globally, the population density per square kilometer stands at about 60 inhabitants, and Asia is the most densely populated region in the world. The global population is increasing rapidly, so population density is only expected to increase as well. In 1950, for example, the global population stood at about 2.54 billion people, and it reached over eight billion during 2023.

  9. a

    World Countries

    • fesec-cesj.opendata.arcgis.com
    • hub.arcgis.com
    Updated Feb 12, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centre d'enseignement Saint-Joseph de Chimay (2017). World Countries [Dataset]. https://fesec-cesj.opendata.arcgis.com/datasets/b611f019b6d34369b7e441c14ed46918
    Explore at:
    Dataset updated
    Feb 12, 2017
    Dataset authored and provided by
    Centre d'enseignement Saint-Joseph de Chimay
    Area covered
    Description

    World Countries is a detailed layer of country level boundaries which is best used at large scales (e.g. below 1:2m scale). For a more generalized layer to use at small-to-medium scales, refer to the World Countries (Generalized) layer. It has been designed to be used as a layer that can be easily edited to fit a users needs and view of the political world. Included are attributes for name and ISO codes, along with continent information. Particularly useful are the Land Type and Land Rank fields which separate polygons based on their areal size. These attributes are useful for rendering at different scales by providing the ability to turn off small islands which may clutter small scale views.This dataset represents the world countries as they existed in January 2015.

  10. Land Cover 2050 - Country

    • pacificgeoportal.com
    • rwanda.africageoportal.com
    • +13more
    Updated Jul 9, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Land Cover 2050 - Country [Dataset]. https://www.pacificgeoportal.com/datasets/afeaa714dd8b4553bc92898002abf145
    Explore at:
    Dataset updated
    Jul 9, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Use this country model layer when performing analysis within a single country. This layer displays a single global land cover map that is modeled by country for the year 2050 at a pixel resolution of 300m. ESA CCI land cover from the years 2010 and 2018 were used to create this prediction.Variable mapped: Projected land cover in 2050.Data Projection: Cylindrical Equal AreaMosaic Projection: Cylindrical Equal AreaExtent: Global Cell Size: 300mSource Type: ThematicVisible Scale: 1:50,000 and smallerSource: Clark UniversityPublication date: April 2021What you can do with this layer?This layer may be added to online maps and compared with the ESA CCI Land Cover from any year from 1992 to 2018. To do this, add Global Land Cover 1992-2018 to your map and choose the processing template (image display) from that layer called “Simplified Renderer.” This layer can also be used in analysis in ecological planning to find specific areas that may need to be set aside before they are converted to human use.Links to the six Clark University land cover 2050 layers in ArcGIS Living Atlas of the World:There are three scales (country, regional, and world) for the land cover and vulnerability models. They’re all slightly different since the country model can be more fine-tuned to the drivers in that particular area. Regional (continental) and global have more spatially consistent model weights. Which should you use? If you’re analyzing one country or want to make accurate comparisons between countries, use the country level. If mapping larger patterns, use the global or regional extent (depending on your area of interest). Land Cover 2050 - GlobalLand Cover 2050 - RegionalLand Cover 2050 - CountryLand Cover Vulnerability to Change 2050 GlobalLand Cover Vulnerability to Change 2050 RegionalLand Cover Vulnerability to Change 2050 CountryWhat these layers model (and what they don’t model)The model focuses on human-based land cover changes and projects the extent of these changes to the year 2050. It seeks to find where agricultural and urban land cover will cover the planet in that year, and what areas are most vulnerable to change due to the expansion of the human footprint. It does not predict changes to other land cover types such as forests or other natural vegetation during that time period unless it is replaced by agriculture or urban land cover. It also doesn’t predict sea level rise unless the model detected a pattern in changes in bodies of water between 2010 and 2018. A few 300m pixels might have changed due to sea level rise during that timeframe, but not many.The model predicts land cover changes based upon patterns it found in the period 2010-2018. But it cannot predict future land use. This is partly because current land use is not necessarily a model input. In this model, land set aside as a result of political decisions, for example military bases or nature reserves, may be found to be filled in with urban or agricultural areas in 2050. This is because the model is blind to the political decisions that affect land use.Quantitative Variables used to create ModelsBiomassCrop SuitabilityDistance to AirportsDistance to Cropland 2010Distance to Primary RoadsDistance to RailroadsDistance to Secondary RoadsDistance to Settled AreasDistance to Urban 2010ElevationGDPHuman Influence IndexPopulation DensityPrecipitationRegions SlopeTemperatureQualitative Variables used to create ModelsBiomesEcoregionsIrrigated CropsProtected AreasProvincesRainfed CropsSoil ClassificationSoil DepthSoil DrainageSoil pHSoil TextureWere small countries modeled?Clark University modeled some small countries that had a few transitions. Only five countries were modeled with this procedure: Bhutan, North Macedonia, Palau, Singapore and Vanuatu.As a rule of thumb, the MLP neural network in the Land Change Modeler requires at least 100 pixels of change for model calibration. Several countries experienced less than 100 pixels of change between 2010 & 2018 and therefore required an alternate modeling methodology. These countries are Bhutan, North Macedonia, Palau, Singapore and Vanuatu. To overcome the lack of samples, these select countries were resampled from 300 meters to 150 meters, effectively multiplying the number of pixels by four. As a result, we were able to empirically model countries which originally had as few as 25 pixels of change.Once a selected country was resampled to 150 meter resolution, three transition potential images were calibrated and averaged to produce one final transition potential image per transition. Clark Labs chose to create averaged transition potential images to limit artifacts of model overfitting. Though each model contained at least 100 samples of "change", this is still relatively little for a neural network-based model and could lead to anomalous outcomes. The averaged transition potentials were used to extrapolate change and produce a final hard prediction and risk map of natural land cover conversion to Cropland and Artificial Surfaces in 2050.39 Small Countries Not ModeledThere were 39 countries that were not modeled because the transitions, if any, from natural to anthropogenic were very small. In this case the land cover for 2050 for these countries are the same as the 2018 maps and their vulnerability was given a value of 0. Here were the countries not modeled:AndorraAntigua and BarbudaBarbadosCape VerdeComorosCook IslandsDjiboutiDominicaFaroe IslandsFrench GuyanaFrench PolynesiaGibraltarGrenadaGuamGuyanaIcelandJan MayenKiribatiLiechtensteinLuxembourgMaldivesMaltaMarshall IslandsMicronesia, Federated States ofMoldovaMonacoNauruSaint Kitts and NevisSaint LuciaSaint Vincent and the GrenadinesSamoaSan MarinoSeychellesSurinameSvalbardThe BahamasTongaTuvaluVatican CityIndex to land cover values in this dataset:The Clark University Land Cover 2050 projections display a ten-class land cover generalized from ESA Climate Change Initiative Land Cover. 1 Mostly Cropland2 Grassland, Scrub, or Shrub3 Mostly Deciduous Forest4 Mostly Needleleaf/Evergreen Forest5 Sparse Vegetation6 Bare Area7 Swampy or Often Flooded Vegetation8 Artificial Surface or Urban Area9 Surface Water10 Permanent Snow and Ice

  11. Largest countries in the world by area

    • statista.com
    Updated Aug 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Largest countries in the world by area [Dataset]. https://www.statista.com/statistics/262955/largest-countries-in-the-world/
    Explore at:
    Dataset updated
    Aug 7, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    World
    Description

    The statistic shows the 30 largest countries in the world by area. Russia is the largest country by far, with a total area of about 17 million square kilometers.

    Population of Russia

    Despite its large area, Russia - nowadays the largest country in the world - has a relatively small total population. However, its population is still rather large in numbers in comparison to those of other countries. In mid-2014, it was ranked ninth on a list of countries with the largest population, a ranking led by China with a population of over 1.37 billion people. In 2015, the estimated total population of Russia amounted to around 146 million people. The aforementioned low population density in Russia is a result of its vast landmass; in 2014, there were only around 8.78 inhabitants per square kilometer living in the country. Most of the Russian population lives in the nation’s capital and largest city, Moscow: In 2015, over 12 million people lived in the metropolis.

  12. World Country Boundaries

    • internal.agtransport.usda.gov
    • agtransport.usda.gov
    application/rdfxml +4
    Updated Jul 18, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESRI (2019). World Country Boundaries [Dataset]. https://internal.agtransport.usda.gov/Exports/World-Country-Boundaries/vmrp-m3nw
    Explore at:
    csv, xml, application/rssxml, application/rdfxml, tsvAvailable download formats
    Dataset updated
    Jul 18, 2019
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    ESRI
    Area covered
    World
    Description

    Small-scale world country boundaries. Based off ESRI World Countries, but with added, separate polygons for Hong Kong and Taiwan. These additions are not intended to be precise boundaries. Rather, they are intended to provide a general region to highlight agricultural export destinations.

  13. a

    COVID-19 Trends in Each Country-Copy

    • hub.arcgis.com
    • unfpa-stories-unfpapdp.hub.arcgis.com
    • +2more
    Updated Jun 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United Nations Population Fund (2020). COVID-19 Trends in Each Country-Copy [Dataset]. https://hub.arcgis.com/maps/1c4a4134d2de4e8cb3b4e4814ba6cb81
    Explore at:
    Dataset updated
    Jun 4, 2020
    Dataset authored and provided by
    United Nations Population Fund
    Area covered
    North Pacific Ocean, Pacific Ocean
    Description

    COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.Revisions added on 4/23/2020 are highlighted.Revisions added on 4/30/2020 are highlighted.Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Correction on 6/1/2020Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Reasons for undertaking this work:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-30 days + 5% from past 31-56 days - total deaths.We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source used as basis:Stephen A. Lauer, MS, PhD *; Kyra H. Grantz, BA *; Qifang Bi, MHS; Forrest K. Jones, MPH; Qulu Zheng, MHS; Hannah R. Meredith, PhD; Andrew S. Azman, PhD; Nicholas G. Reich, PhD; Justin Lessler, PhD. 2020. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine DOI: 10.7326/M20-0504.New Cases per Day (NCD) = Measures the daily spread of COVID-19. This is the basis for all rates. Back-casting revisions: In the Johns Hopkins’ data, the structure is to provide the cumulative number of cases per day, which presumes an ever-increasing sequence of numbers, e.g., 0,0,1,1,2,5,7,7,7, etc. However, revisions do occur and would look like, 0,0,1,1,2,5,7,7,6. To accommodate this, we revised the lists to eliminate decreases, which make this list look like, 0,0,1,1,2,5,6,6,6.Reporting Interval: In the early weeks, Johns Hopkins' data provided reporting every day regardless of change. In late April, this changed allowing for days to be skipped if no new data was available. The day was still included, but the value of total cases was set to Null. The processing therefore was updated to include tracking of the spacing between intervals with valid values.100 News Cases in a day as a spike threshold: Empirically, this is based on COVID-19’s rate of spread, or r0 of ~2.5, which indicates each case will infect between two and three other people. There is a point at which each administrative area’s capacity will not have the resources to trace and account for all contacts of each patient. Thus, this is an indicator of uncontrolled or epidemic trend. Spiking activity in combination with the rate of new cases is the basis for determining whether an area has a spreading or epidemic trend (see below). Source used as basis:World Health Organization (WHO). 16-24 Feb 2020. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Obtained online.Mean of Recent Tail of NCD = Empirical, and a COVID-19-specific basis for establishing a recent trend. The recent mean of NCD is taken from the most recent fourteen days. A minimum of 21 days of cases is required for analysis but cannot be considered reliable. Thus, a preference of 42 days of cases ensures much higher reliability. This analysis is not explanatory and thus, merely represents a likely trend. The tail is analyzed for the following:Most recent 2 days: In terms of likelihood, this does not mean much, but can indicate a reason for hope and a basis to share positive change that is not yet a trend. There are two worthwhile indicators:Last 2 days count of new cases is less than any in either the past five or 14 days. Past 2 days has only one or fewer new cases – this is an extremely positive outcome if the rate of testing has continued at the same rate as the previous 5 days or 14 days. Most recent 5 days: In terms of likelihood, this is more meaningful, as it does represent at short-term trend. There are five worthwhile indicators:Past five days is greater than past 2 days and past 14 days indicates the potential of the past 2 days being an aberration. Past five days is greater than past 14 days and less than past 2 days indicates slight positive trend, but likely still within peak trend time frame.Past five days is less than the past 14 days. This means a downward trend. This would be an

  14. World Regions

    • mapdirect-fdep.opendata.arcgis.com
    • cacgeoportal.com
    • +4more
    Updated Dec 21, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). World Regions [Dataset]. https://mapdirect-fdep.opendata.arcgis.com/datasets/a79a3e4dc55343b08543b1b6133bfb90
    Explore at:
    Dataset updated
    Dec 21, 2019
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    World,
    Description

    World Regions represents the boundaries for 25 commonly recognized world regions. It provides a basemap layer of the regions for the world, delivering a straightforward method of selecting a small multi-country area for display or study.This layer is best viewed out beyond a scale of 1:3,000,000. The original source was extracted from the ArcWorld Supplemental database in 2001 and updated as country boundaries coincident to regional boundaries change.To download the data for this layer as a layer package for use in ArcGIS desktop applications, refer to World Regions.

  15. Land Cover 2050 - Global

    • cacgeoportal.com
    • climate.esri.ca
    • +13more
    Updated Jul 9, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). Land Cover 2050 - Global [Dataset]. https://www.cacgeoportal.com/datasets/cee96e0ada6541d0bd3d67f3f8b5ce63
    Explore at:
    Dataset updated
    Jul 9, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Use this global model layer when performing analysis across continents. This layer displays a global land cover map and model for the year 2050 at a pixel resolution of 300m. ESA CCI land cover from the years 2010 and 2018 were used to create this prediction.Variable mapped: Projected land cover in 2050.Data Projection: Cylindrical Equal AreaMosaic Projection: Cylindrical Equal AreaExtent: Global Cell Size: 300mSource Type: ThematicVisible Scale: 1:50,000 and smallerSource: Clark UniversityPublication date: April 2021What you can do with this layer?This layer may be added to online maps and compared with the ESA CCI Land Cover from any year from 1992 to 2018. To do this, add Global Land Cover 1992-2018 to your map and choose the processing template (image display) from that layer called “Simplified Renderer.” This layer can also be used in analysis in ecological planning to find specific areas that may need to be set aside before they are converted to human use.Links to the six Clark University land cover 2050 layers in ArcGIS Living Atlas of the World:There are three scales (country, regional, and world) for the land cover and vulnerability models. They’re all slightly different since the country model can be more fine-tuned to the drivers in that particular area. Regional (continental) and global have more spatially consistent model weights. Which should you use? If you’re analyzing one country or want to make accurate comparisons between countries, use the country level. If mapping larger patterns, use the global or regional extent (depending on your area of interest). Land Cover 2050 - GlobalLand Cover 2050 - RegionalLand Cover 2050 - CountryLand Cover Vulnerability to Change 2050 GlobalLand Cover Vulnerability to Change 2050 RegionalLand Cover Vulnerability to Change 2050 CountryWhat these layers model (and what they don’t model)The model focuses on human-based land cover changes and projects the extent of these changes to the year 2050. It seeks to find where agricultural and urban land cover will cover the planet in that year, and what areas are most vulnerable to change due to the expansion of the human footprint. It does not predict changes to other land cover types such as forests or other natural vegetation during that time period unless it is replaced by agriculture or urban land cover. It also doesn’t predict sea level rise unless the model detected a pattern in changes in bodies of water between 2010 and 2018. A few 300m pixels might have changed due to sea level rise during that timeframe, but not many.The model predicts land cover changes based upon patterns it found in the period 2010-2018. But it cannot predict future land use. This is partly because current land use is not necessarily a model input. In this model, land set aside as a result of political decisions, for example military bases or nature reserves, may be found to be filled in with urban or agricultural areas in 2050. This is because the model is blind to the political decisions that affect land use.Quantitative Variables used to create ModelsBiomassCrop SuitabilityDistance to AirportsDistance to Cropland 2010Distance to Primary RoadsDistance to RailroadsDistance to Secondary RoadsDistance to Settled AreasDistance to Urban 2010ElevationGDPHuman Influence IndexPopulation DensityPrecipitationRegions SlopeTemperatureQualitative Variables used to create ModelsBiomesEcoregionsIrrigated CropsProtected AreasProvincesRainfed CropsSoil ClassificationSoil DepthSoil DrainageSoil pHSoil TextureWere small countries modeled?Clark University modeled some small countries that had a few transitions. Only five countries were modeled with this procedure: Bhutan, North Macedonia, Palau, Singapore and Vanuatu.As a rule of thumb, the MLP neural network in the Land Change Modeler requires at least 100 pixels of change for model calibration. Several countries experienced less than 100 pixels of change between 2010 & 2018 and therefore required an alternate modeling methodology. These countries are Bhutan, North Macedonia, Palau, Singapore and Vanuatu. To overcome the lack of samples, these select countries were resampled from 300 meters to 150 meters, effectively multiplying the number of pixels by four. As a result, we were able to empirically model countries which originally had as few as 25 pixels of change.Once a selected country was resampled to 150 meter resolution, three transition potential images were calibrated and averaged to produce one final transition potential image per transition. Clark Labs chose to create averaged transition potential images to limit artifacts of model overfitting. Though each model contained at least 100 samples of "change", this is still relatively little for a neural network-based model and could lead to anomalous outcomes. The averaged transition potentials were used to extrapolate change and produce a final hard prediction and risk map of natural land cover conversion to Cropland and Artificial Surfaces in 2050.39 Small Countries Not ModeledThere were 39 countries that were not modeled because the transitions, if any, from natural to anthropogenic were very small. In this case the land cover for 2050 for these countries are the same as the 2018 maps and their vulnerability was given a value of 0. Here were the countries not modeled:AndorraAntigua and BarbudaBarbadosCape VerdeComorosCook IslandsDjiboutiDominicaFaroe IslandsFrench GuyanaFrench PolynesiaGibraltarGrenadaGuamGuyanaIcelandJan MayenKiribatiLiechtensteinLuxembourgMaldivesMaltaMarshall IslandsMicronesia, Federated States ofMoldovaMonacoNauruSaint Kitts and NevisSaint LuciaSaint Vincent and the GrenadinesSamoaSan MarinoSeychellesSurinameSvalbardThe BahamasTongaTuvaluVatican CityIndex to land cover values in this dataset:The Clark University Land Cover 2050 projections display a ten-class land cover generalized from ESA Climate Change Initiative Land Cover. 1 Mostly Cropland2 Grassland, Scrub, or Shrub3 Mostly Deciduous Forest4 Mostly Needleleaf/Evergreen Forest5 Sparse Vegetation6 Bare Area7 Swampy or Often Flooded Vegetation8 Artificial Surface or Urban Area9 Surface Water10 Permanent Snow and Ice

  16. C

    Replication data for "High life satisfaction reported among small-scale...

    • dataverse.csuc.cat
    • b2find.dkrz.de
    csv, txt
    Updated Feb 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eric Galbraith; Eric Galbraith; Victoria Reyes Garcia; Victoria Reyes Garcia (2024). Replication data for "High life satisfaction reported among small-scale societies with low incomes" [Dataset]. http://doi.org/10.34810/data904
    Explore at:
    csv(1620), csv(7829), txt(7017), csv(227502)Available download formats
    Dataset updated
    Feb 7, 2024
    Dataset provided by
    CORA.Repositori de Dades de Recerca
    Authors
    Eric Galbraith; Eric Galbraith; Victoria Reyes Garcia; Victoria Reyes Garcia
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2021 - Oct 24, 2023
    Area covered
    China, Shangri-la, Laprak, Nepal, Bassari country, Senegal, Bulgan soum, Mongolia, United Republic of, Tanzania, Mafia Island, Puna, Argentina, Darjeeling, India, Kumbungu, Ghana, Guatemala, Western highlands, Ba, Fiji
    Dataset funded by
    European Commission
    Description

    This dataset was created in order to document self-reported life evaluations among small-scale societies that exist on the fringes of mainstream industrialized socieities. The data were produced as part of the LICCI project, through fieldwork carried out by LICCI partners. The data include individual responses to a life satisfaction question, and household asset values. Data from Gallup World Poll and the World Values Survey are also included, as used for comparison. TABULAR DATA-SPECIFIC INFORMATION --------------------------------- 1. File name: LICCI_individual.csv Number of rows and columns: 2814,7 Variable list: Variable names: User, Site, village Description: identification of investigator and location Variable name: Well.being.general Description: numerical score for life satisfaction question Variable names: HH_Assets_US, HH_Assets_USD_capita Description: estimated value of representative assets in the household of respondent, total and per capita (accounting for number of household inhabitants) 2. File name: LICCI_bySite.csv Number of rows and columns: 19,8 Variable list: Variable names: Site, N Description: site name and number of respondents at the site Variable names: SWB_mean, SWB_SD Description: mean and standard deviation of life satisfaction score Variable names: HHAssets_USD_mean, HHAssets_USD_sd Description: Site mean and standard deviation of household asset value Variable names: PerCapAssets_USD_mean, PerCapAssets_USD_sd Description: Site mean and standard deviation of per capita asset value 3. File name: gallup_WVS_GDP_pk.csv Number of rows and columns: 146,8 Variable list: Variable name: Happiness Score, Whisker-high, Whisker-low Description: from Gallup World Poll as documented in World Happiness Report 2022. Variable name: GDP-PPP2017 Description: Gross Domestic Product per capita for year 2020 at PPP (constant 2017 international $). Accessed May 2022. Variable name: pk Description: Produced capital per capita for year 2018 (in 2018 US$) for available countries, as estimated by the World Bank (accessed February 2022). Variable names: WVS7_mean, WVS7_std Description: Results of Question 49 in the World Values Survey, Wave 7.

  17. Countries in Europe, by area

    • statista.com
    Updated Oct 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Countries in Europe, by area [Dataset]. https://www.statista.com/statistics/1277259/countries-europe-area/
    Explore at:
    Dataset updated
    Oct 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Europe
    Description

    Russia is the largest country in Europe, and also the largest in the world, its total size amounting to 17 million square kilometers (km2). It should be noted, however, that over three quarters of Russia is located in Asia, and the Ural mountains are often viewed as the meeting point of the two continents in Russia; nonetheless, European Russia is still significantly larger than any other European country. Ukraine, the second largest country on the continent, is only 603,000 km2, making it about 28 times smaller than its eastern neighbor, or seven times smaller than the European part of Russia. France is the third largest country in Europe, but the largest in the European Union. The Vatican City, often referred to as the Holy Sea, is both the smallest country in Europe and in the world, at just one km2. Population Russia is also the most populous country in Europe. It has around 144 million inhabitants across the country; in this case, around three quarters of the population live in the European part, which still gives it the largest population in Europe. Despite having the largest population, Russia is a very sparsely populated country due to its size and the harsh winters. Germany is the second most populous country in Europe, with 83 million inhabitants, while the Vatican has the smallest population. Worldwide, India and China are the most populous countries, with approximately 1.4 billion inhabitants each. Cities Moscow in Russia is ranked as the most populous city in Europe with around 13 million inhabitants, although figures vary, due to differences in the methodologies used by countries and sources. Some statistics include Istanbul in Turkey* as the largest city in Europe with its 15 million inhabitants, bit it has been excluded here as most of the country and parts of the city is located in Asia. Worldwide, Tokyo is the most populous city, with Jakarta the second largest and Delhi the third.

  18. Tuvalu and the effect of sea level rise

    • pacific-data.sprep.org
    pdf
    Updated Aug 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Levine, Mark (2021). Tuvalu and the effect of sea level rise [Dataset]. https://pacific-data.sprep.org/dataset/tuvalu-and-effect-sea-level-rise
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Aug 27, 2021
    Dataset provided by
    Pacific Regional Environment Programmehttps://www.sprep.org/
    Pacific Environment
    Authors
    Levine, Mark
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    Tuvalu, SPREP LIBRARY
    Description

    IF YOU HAVEN'T HEARD of Tuvalu, the fourth-smallest country in the world, so much the better, because its nine square miles of diy land may soon disappear from sight like a polished stone chopped in the deep sea. And if that happens, it might be unpleasant to consider that the basic amenities of our lifestyle-our cars and planes and power plants, our well-lighted, well-cooled and -heated homes-have brought about the obliteration of an ancient, peaceful civilization halfway around the world.E-copy available from "FL" field|Downloaded off the internetCall Number: VF 6578 (EL)Physical Description: 17 p. ; 29 cm

  19. i

    Forest and Carbon

    • climatedata.imf.org
    Updated Apr 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    climatedata_Admin (2023). Forest and Carbon [Dataset]. https://climatedata.imf.org/datasets/66dad9817da847b385d3b2323ce1be57
    Explore at:
    Dataset updated
    Apr 3, 2023
    Dataset authored and provided by
    climatedata_Admin
    License

    https://www.imf.org/external/terms.htmhttps://www.imf.org/external/terms.htm

    Description

    Source: Food and Agriculture Organization of the United Nations (FAO), 2022. FAO, 2022 FAOSTAT Land, Inputs and Sustainability, Land Use https://www.fao.org/faostat/en/#data/RL, Rome, FAO; IMF staff calculations.Category: MitigationData series: Forest areaLand areaCarbon stocks in forestsShare of forest areaIndex of forest extentIndex of carbon stocks in forestsMetadata:The FAOSTAT Land Use domain contains data on twenty-one land use categories. The FAO Land Use classification is aligned with the UN System of Environmental and Economic Accounting (SEEA); the UN Framework for the Development of Environmental Statistics (FDES); and the World Census of Agriculture. It is furthermore consistent with the land use classes of the Intergovernmental Panel on Climate Change for country reporting to the UN Framework Convention on Climate Change (UNFCCC). In terms of the 2030 SDG Agenda statistical processes, FAO land use classes - Land Area and Forest Land provide inputs into the computations of SDG indicator 15.1.1.Methodology:Data on land area, forest area and carbon stocks in forests for the years 1992-2020 have been sourced from FAOSTAT. The methodology adopted by FAO for the compilation of land cover datasets can be seen at-https://www.fao.org/faostat/en/#data/RL. For some of the countries that were formed during 1992-2020, the shares as in the year of formation have been used to impute the values for the previous years using the values of the originating country.The following three indicators/indices have been compiled to enable a macro-view of changes in the forests post the ratification of the UN Framework Convention for Climate Change (UNFCCC).1. Share of forest area: The indicator can be considered as identical to global SDG indicator 15.1.1 "Forest area as a proportion of total land area".2. Index of forest extent: The index shows the magnitude of the forest area of a given year with reference to the base year 1992, that is depicted as 100. 3. Index of carbon stocks in forests: The index shows the magnitude of the carbon stocks in living biomass in forests of a given year with reference to the base year 1992, that is depicted as 100. The indices and the indicators have also been compiled and presented by region and sub-region according to the M49 and the World Economic Outlook Classifications. The “World” estimates do not include emissions of selected small countries.Disclaimer:Users are encouraged to examine the documentation, metadata, and sources associated with the data. User feedback on the fit-for-use of this product and whether the various dimensions of the product are appropriate is welcome.

  20. Future of Business Survey 2020 - Albania, Algeria, American Samoa...and 176...

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Oct 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Facebook (2023). Future of Business Survey 2020 - Albania, Algeria, American Samoa...and 176 more [Dataset]. https://microdata.worldbank.org/index.php/catalog/4212
    Explore at:
    Dataset updated
    Oct 26, 2023
    Dataset provided by
    Organisation for Economic Co-operation and Developmenthttp://oecd.org/
    World Bankhttp://worldbank.org/
    Facebook
    Time period covered
    2020
    Area covered
    American Samoa, Albania, Algeria
    Description

    Abstract

    The Future of Business Survey is a new source of information on small and medium-sized enterprises (SMEs). Launched in February 2016, the monthly survey - a partnership between Facebook, OECD, and The World Bank - provides a timely pulse on the economic environment in which businesses operate and who those businesses are to help inform decision-making at all levels and to deliver insights that can help businesses grow. The Future of Business Survey provides a perspective from newer and long-standing digitalized businesses and provides a unique window into a new mobilized economy.

    Policymakers, researchers and businesses share a common interest in the environment in which SMEs operate, as well their outlook on the future, not least because young and innovative SMEs in particular are often an important source of considerable economic and employment growth. Better insights and timely information about SMEs improve our understanding of economic trends, and can provide new insights that can further stimulate and help these businesses grow.

    To help provide these insights, Facebook, OECD and The World Bank have collaborated to develop a monthly survey that attempts to improve our understanding of SMEs in a timely and forward-looking manner. The three organizations share a desire to create new ways to hear from businesses and help them succeed in the emerging digitally-connected economy. The shared goal is to help policymakers, researchers, and businesses better understand business sentiment, and to leverage a digital platform to provide a unique source of information to complement existing indicators.

    With more businesses leveraging online tools each day, the survey provides a lens into a new mobilized, digital economy and, in particular, insights on the actors: a relatively unmeasured community worthy of deeper consideration and considerable policy interest.

    Geographic coverage

    When the survey was initially launched in February 2016, it included 22 countries. When the survey was initially launched in February 2016, it included 22 countries. The Future of Business Survey is now conducted in over 90 countries in every region of the world.

    Countries included in at least one wave: Albania Algeria American Samoa Andorra Angola Anguilla Antigua and Barbuda Argentina Aruba Australia Austria Azerbaijan Bahamas (the) Bangladesh Barbados Belarus Belgium Belize Benin Bolivia (Plurinational State of) Bonaire, Sint Eustatius and Saba Bosnia and Herzegovina Botswana Brazil Brunei Darussalam Bulgaria Burkina Faso Burundi Cabo Verde Cambodia Cameroon Canada Cayman Islands (the) Central African Republic (the) Chad Chile Colombia Congo (the) Curaçao Cyprus Czechia Côte d'Ivoire Denmark Djibouti Dominica Dominican Republic (the) Ecuador Egypt El Salvador Equatorial Guinea Estonia Eswatini Ethiopia Faroe Islands (the) Fiji Finland France French Polynesia Gabon Gambia (the) Germany Ghana Gibraltar Greece Grenada Guadeloupe Guam Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Honduras Hong Kong Hungary Iceland India Indonesia Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kenya Korea (the Republic of) Kuwait Lao People's Democratic Republic (the) Lebanon Lesotho Liberia Libya Liechtenstein Lithuania Luxembourg Malawi Malaysia Mali Malta Martinique Mauritania Mauritius Mayotte Mexico Monaco Montenegro Morocco Mozambique Myanmar Namibia Nepal Netherlands (the) New Caledonia New Zealand Nicaragua Niger (the) Nigeria North Macedonia Northern Mariana Islands (the) Norway Oman Pakistan Panama Papua New Guinea Paraguay Peru Philippines (the) Poland Portugal Qatar Romania Russian Federation (the) Rwanda Réunion Saint Kitts and Nevis Saint Lucia Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Sint Maarten (Dutch part) Slovakia Slovenia Solomon Islands South Africa Spain Sweden Switzerland Taiwan Tanzania, the United Republic of Thailand Timor-Leste Togo Tonga Trinidad and Tobago Tunisia Turkey Turks and Caicos Islands (the) Uganda United Arab Emirates (the) United Kingdom of Great Britain and Northern Ireland (the) United States of America (the) Uruguay Vanuatu Viet Nam Virgin Islands (British) Virgin Islands (U.S.) Zambia.

    Analysis unit

    The study describes small and medium-sized enterprises.

    Universe

    The target population consists of SMEs that have an active Facebook business Page and include both newer and longer-standing businesses, spanning across a variety of sectors. With more businesses leveraging online tools each day, the survey provides a lens into a new mobilized, digital economy and, in particular, insights on the actors: a relatively unmeasured community worthy of deeper consideration and considerable policy interest.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Twice a year in over 97 countries, the Facebook Survey Team sends the Future of Business to admins and owners of Facebook-designated small business pages. When we share data from this survey, we anonymize responses to all survey questions and only share country-level data publicly. To achieve better representation of the broader small business population, we also weight our results based on known characteristics of the Facebook Page admin population.

    A random sample of firms, representing the target population in each country, is selected to respond to the Future of Business Survey each month.

    Mode of data collection

    Internet [int]

    Research instrument

    The survey includes questions about perceptions of current and future economic activity, challenges, business characteristics and strategy. Custom modules include questions related to regulation, access to finance, digital payments, and digital skills. The full questionnaire is available for download.

    Response rate

    Response rates to online surveys vary widely depending on a number of factors including survey length, region, strength of the relationship with invitees, incentive mechanisms, invite copy, interest of respondents in the topic and survey design.

    Note: Response rates are calculated as the number of respondents who completed the survey divided by the total number of SMEs invited.

    Sampling error estimates

    Any survey data is prone to several forms of error and biases that need to be considered to understand how closely the results reflect the intended population. In particular, the following components of the total survey error are noteworthy:

    Sampling error is a natural characteristic of every survey based on samples and reflects the uncertainty in any survey result that is attributable to the fact that not the whole population is surveyed.

    Other factors beyond sampling error that contribute to such potential differences are frame or coverage error (sampling frame of page owners does not include all relevant businesses but also may include individuals that don't represent businesses), and nonresponse error.

    Note that the sample is meant to reflect the population of businesses on Facebook, not the population of small businesses in general. This group of digitized SMEs is itself a community worthy of deeper consideration and of considerable policy interest. However, care should be taken when extrapolating to the population of SMEs in general. Moreover, future work should evaluate the external validity of the sample. Particularly, respondents should be compared to the broader population of SMEs on Facebook, and the economy as a whole.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Smallest countries worldwide 2020, by land area [Dataset]. https://www.statista.com/statistics/1181994/the-worlds-smallest-countries/
Organization logo

Smallest countries worldwide 2020, by land area

Explore at:
4 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jan 23, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2020
Area covered
World
Description

The smallest country in the world is Vatican City, with a landmass of just 0.49 square kilometers (0.19 square miles). Vatican City is an independent state surrounded by Rome. Vatican City is not the only small country located inside Italy. San Marino is another microstate, with a land area of 60 square kilometers, making it the fifth-smallest country in the world. Many of these small nations have equally small populations, typically less than half a million inhabitants. However, the population of Singapore is almost six million, and is the twentieth smallest country in the world with a land area of 726 square kilometers. In comparison, Jamaica is almost eight times larger than Singapore, but has half the population.

Search
Clear search
Close search
Google apps
Main menu