100+ datasets found
  1. 10 powerful tools and maps with which to teach about population and...

    • library.ncge.org
    Updated Jul 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCGE (2021). 10 powerful tools and maps with which to teach about population and demographics [Dataset]. https://library.ncge.org/documents/bae1d5f1cba243ea88d09b043b8444ee
    Explore at:
    Dataset updated
    Jul 27, 2021
    Dataset provided by
    National Council for Geographic Educationhttp://www.ncge.org/
    Authors
    NCGE
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Author: Joseph Kerski, post_secondary_educator, Esri and University of DenverGrade/Audience: high school, ap human geography, post secondary, professional developmentResource type: lessonSubject topic(s): population, maps, citiesRegion: africa, asia, australia oceania, europe, north america, south america, united states, worldStandards: All APHG population tenets. Geography for Life cultural and population geography standards. Objectives: 1. Understand how population change and demographic characteristics are evident at a variety of scales in a variety of places around the world. 2. Understand the whys of where through analysis of change over space and time. 3. Develop skills using spatial data and interactive maps. 4. Understand how population data is communicated using 2D and 3D maps, visualizations, and symbology. Summary: Teaching and learning about demographics and population change in an effective, engaging manner is enriched and enlivened through the use of web mapping tools and spatial data. These tools, enabled by the advent of cloud-based geographic information systems (GIS) technology, bring problem solving, critical thinking, and spatial analysis to every classroom instructor and student (Kerski 2003; Jo, Hong, and Verma 2016).

  2. d

    SafeGraph Map Data | Global Coverage for Maps | 52M+ Places to Map

    • datarade.ai
    .csv
    Updated Mar 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SafeGraph (2023). SafeGraph Map Data | Global Coverage for Maps | 52M+ Places to Map [Dataset]. https://datarade.ai/data-products/safegraph-map-data-global-coverage-41m-places-safegraph
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Mar 23, 2023
    Dataset authored and provided by
    SafeGraph
    Area covered
    United States of America, Canada, United Kingdom
    Description

    SafeGraph Places provides baseline information for every record in the SafeGraph product suite via the Places schema and polygon information when applicable via the Geometry schema. The current scope of a place is defined as any location humans can visit with the exception of single-family homes. This definition encompasses a diverse set of places ranging from restaurants, grocery stores, and malls; to parks, hospitals, museums, offices, and industrial parks. Premium sets of Places include apartment buildings, Parking Lots, and Point POIs (such as ATMs or transit stations).

    SafeGraph Places is a point of interest (POI) data offering with varying coverage depending on the country. Note that address conventions and formatting vary across countries. SafeGraph has coalesced these fields into the Places schema.

    SafeGraph provides clean and accurate geospatial datasets on 51M+ physical places/points of interest (POI) globally. Hundreds of industry leaders like Mapbox, Verizon, Clear Channel, and Esri already rely on SafeGraph POI data to unlock business insights and drive innovation. Easily ingest this data to power your map products today.

  3. a

    Global Cities

    • hub.arcgis.com
    Updated May 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MapMaker (2023). Global Cities [Dataset]. https://hub.arcgis.com/maps/aa8135223a0e401bb46e11881d6df489
    Explore at:
    Dataset updated
    May 10, 2023
    Dataset authored and provided by
    MapMaker
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Area covered
    Description

    It is estimated that more than 8 billion people live on Earth and the population is likely to hit more than 9 billion by 2050. Approximately 55 percent of Earth’s human population currently live in areas classified as urban. That number is expected to grow by 2050 to 68 percent, according to the United Nations (UN).The largest cities in the world include Tōkyō, Japan; New Delhi, India; Shanghai, China; México City, Mexico; and São Paulo, Brazil. Each of these cities classifies as a megacity, a city with more than 10 million people. The UN estimates the world will have 43 megacities by 2030.Most cities' populations are growing as people move in for greater economic, educational, and healthcare opportunities. But not all cities are expanding. Those cities whose populations are declining may be experiencing declining fertility rates (the number of births is lower than the number of deaths), shrinking economies, emigration, or have experienced a natural disaster that resulted in fatalities or forced people to leave the region.This Global Cities map layer contains data published in 2018 by the Population Division of the United Nations Department of Economic and Social Affairs (UN DESA). It shows urban agglomerations. The UN DESA defines an urban agglomeration as a continuous area where population is classified at urban levels (by the country in which the city resides) regardless of what local government systems manage the area. Since not all places record data the same way, some populations may be calculated using the city population as defined by its boundary and the metropolitan area. If a reliable estimate for the urban agglomeration was unable to be determined, the population of the city or metropolitan area is used.Data Citation: United Nations Department of Economic and Social Affairs. World Urbanization Prospects: The 2018 Revision. Statistical Papers - United Nations (ser. A), Population and Vital Statistics Report, 2019, https://doi.org/10.18356/b9e995fe-en.

  4. Human Geography Map

    • esriaustraliahub.com.au
    • noveladata.com
    • +17more
    Updated Feb 2, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2017). Human Geography Map [Dataset]. https://www.esriaustraliahub.com.au/maps/3582b744bba84668b52a16b0b6942544
    Explore at:
    Dataset updated
    Feb 2, 2017
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The Human Geography Map (World Edition) web map provides a detailed vector basemap with a monochromatic style and content adjusted to support Human Geography information. Where possible, the map content has been adjusted so that it observes WCAG contrast criteria.This basemap, included in the ArcGIS Living Atlas of the World, uses 3 vector tile layers:Human Geography Label, a label reference layer including cities and communities, countries, administrative units, and at larger scales street names.Human Geography Detail, a detail reference layer including administrative boundaries, roads and highways, and larger bodies of water. This layer is designed to be used with a high degree of transparency so that the detail does not compete with your information. It is set at approximately 50% in this web map, but can be adjusted.Human Geography Base, a simple basemap consisting of land areas in a very light gray only.The vector tile layers in this web map are built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Learn more about this basemap from the cartographic designer in Introducing a Human Geography Basemap.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the tile layer item referenced in this map.

  5. I

    Data for: Probabilistic global maps of crop-specific areas from 1961 to 2014...

    • databank.illinois.edu
    Updated Aug 28, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nicole Jackson; Megan Konar; Peter Debaere; Lyndon Estes (2019). Data for: Probabilistic global maps of crop-specific areas from 1961 to 2014 [Dataset]. http://doi.org/10.13012/B2IDB-7439710_V1
    Explore at:
    Dataset updated
    Aug 28, 2019
    Authors
    Nicole Jackson; Megan Konar; Peter Debaere; Lyndon Estes
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Dataset funded by
    U.S. National Science Foundation (NSF)
    Description

    Agriculture has substantial socioeconomic and environmental impacts that vary between crops. However, information on how the spatial distribution of specific crops has changed over time across the globe is relatively sparse. We introduce the Probabilistic Cropland Allocation Model (PCAM), a novel algorithm to estimate where specific crops have likely been grown over time. Specifically, PCAM downscales annual and national-scale data on the crop-specific area harvested of 17 major crops to a global 0.5-degree grid from 1961-2014. The resulting database presented here provides annual global gridded likelihood estimates of crop-specific areas. Both mean and standard deviations of grid cell fractions are available for each of the 17 crops. Each netCDF file contains an individual year of data with an additional variable ("crs") that defines the coordinate reference system used. Our results provide new insights into the likely changes in the spatial distribution of major crops over the past half-century. For additional information, please see the related paper by Jackson et al. (2019) in Environmental Research Letters (https://doi.org/10.1088/1748-9326/ab3b93).

  6. Google Maps Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated Jul 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2023). Google Maps Dataset [Dataset]. https://brightdata.com/products/datasets/google-maps
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Jul 4, 2023
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    The Google Maps dataset is ideal for getting extensive information on businesses anywhere in the world. Easily filter by location, business type, and other factors to get the exact data you need. The Google Maps dataset includes all major data points: timestamp, name, category, address, description, open website, phone number, open_hours, open_hours_updated, reviews_count, rating, main_image, reviews, url, lat, lon, place_id, country, and more.

  7. World Population Density

    • directrelief.hub.arcgis.com
    • globalfistulahub.org
    • +2more
    Updated May 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Direct Relief (2020). World Population Density [Dataset]. https://directrelief.hub.arcgis.com/datasets/DirectRelief::world-population-density
    Explore at:
    Dataset updated
    May 20, 2020
    Dataset authored and provided by
    Direct Reliefhttp://directrelief.org/
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    World,
    Description

    This layer was created by Duncan Smith and based on work by the European Commission JRC and CIESIN. A description from his website follows:--------------------A brilliant new dataset produced by the European Commission JRC and CIESIN Columbia University was recently released- the Global Human Settlement Layer (GHSL). This is the first time that detailed and comprehensive population density and built-up area for the world has been available as open data. As usual, my first thought was to make an interactive map, now online at- http://luminocity3d.org/WorldPopDen/The World Population Density map is exploratory, as the dataset is very rich and new, and I am also testing out new methods for navigating statistics at both national and city scales on this site. There are clearly many applications of this data in understanding urban geographies at different scales, urban development, sustainability and change over time.

  8. World Topographic Map

    • visionzero.geohub.lacity.org
    • cacgeoportal.com
    • +5more
    Updated Oct 27, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2017). World Topographic Map [Dataset]. https://visionzero.geohub.lacity.org/maps/7dc6cea0b1764a1f9af2e679f642f0f5
    Explore at:
    Dataset updated
    Oct 27, 2017
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This vector tile layer presents the World Topographic Map style (World Edition) and provides a basemap for the world, symbolized with a classic Esri topographic map style. This layer includes highways, major roads, minor roads, railways, water features, cities, parks, landmarks, building footprints, and administrative boundaries, designed for use with World Hillshade for added context. This vector tile layer provides unique capabilities for customization, high-resolution display, and use in mobile devices.This vector tile layer is built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.This layer is used in the Topographic web map included in ArcGIS Living Atlas of the World.See the Vector Basemaps group for other vector tile layers, including Topographic (with Contours and Hillshade) multisource tile layer.Customize this StyleLearn more about customizing this vector basemap style using the Vector Tile Style Editor. Additional details are available in ArcGIS Online Blogs and the Esri Vector Basemaps Reference Document.

  9. Community Map

    • noveladata.com
    • hub.arcgis.com
    • +7more
    Updated Feb 16, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). Community Map [Dataset]. https://www.noveladata.com/maps/esri::community-map/about
    Explore at:
    Dataset updated
    Feb 16, 2019
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The Community Map (World Edition) web map provides a customized world basemap that is uniquely symbolized and optimized to display special areas of interest (AOIs) that have been created and edited by Community Maps contributors. These special areas of interest include landscaping features such as grass, trees, and sports amenities like tennis courts, football and baseball field lines, and more. This basemap, included in the ArcGIS Living Atlas of the World, uses the Community vector tile layer. The vector tile layer in this web map is built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the layer items referenced in this map.

  10. Global Land Cover 1992-2020

    • cacgeoportal.com
    • climate.esri.ca
    • +4more
    Updated Apr 2, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). Global Land Cover 1992-2020 [Dataset]. https://www.cacgeoportal.com/datasets/1453082255024699af55c960bc3dc1fe
    Explore at:
    Dataset updated
    Apr 2, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer is a time series of the annual ESA CCI (Climate Change Initiative) land cover maps of the world. ESA has produced land cover maps for the years 1992-2020. These are available at the European Space Agency Climate Change Initiative website.Time Extent: 1992-2020Cell Size: 300 meter Source Type: ThematicPixel Type: 8 Bit UnsignedData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary Sphere Extent: GlobalSource: ESA Climate Change InitiativeUpdate Cycle: Annual until 2020, no updates thereafterWhat can you do with this layer? This layer may be added to ArcGIS Online maps and applications and shown in a time series to watch a "time lapse" view of land cover change since 1992 for any part of the world. The same behavior exists when the layer is added to ArcGIS Pro. In addition to displaying all layers in a series, this layer may be queried so that only one year is displayed in a map. This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro with a query set to display just one year. Then, an area count of land cover types may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from other years to show a trend. To sum up area by land cover using this service, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth. Different Classifications Available to Map Five processing templates are included in this layer. The processing templates may be used to display a smaller set of land cover classes.Cartographic Renderer (Default Template)Displays all ESA CCI land cover classes.*Forested lands TemplateThe forested lands template shows only forested lands (classes 50-90).Urban Lands TemplateThe urban lands template shows only urban areas (class 190).Converted Lands TemplateThe converted lands template shows only urban lands and lands converted to agriculture (classes 10-40 and 190).Simplified RendererDisplays the map in ten simple classes which match the ten simplified classes used in 2050 Land Cover projections from Clark University.Any of these variables can be displayed or analyzed by selecting their processing template. In ArcGIS Online, select the Image Display Options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left hand menu. From the Processing Template pull down menu, select the variable to display. Using Time By default, the map will display as a time series animation, one year per frame. A time slider will appear when you add this layer to your map. To see the most current data, move the time slider until you see the most current year. In addition to displaying the past quarter century of land cover maps as an animation, this time series can also display just one year of data by use of a definition query. For a step by step example using ArcGIS Pro on how to display just one year of this layer, as well as to compare one year to another, see the blog called Calculating Impervious Surface Change. Hierarchical ClassificationLand cover types are defined using the land cover classification (LCCS) developed by the United Nations, FAO. It is designed to be as compatible as possible with other products, namely GLCC2000, GlobCover 2005 and 2009. This is a heirarchical classification system. For example, class 60 means "closed to open" canopy broadleaved deciduous tree cover. But in some places a more specific type of broadleaved deciduous tree cover may be available. In that case, a more specific code 61 or 62 may be used which specifies "open" (61) or "closed" (62) cover. Land Cover Processing To provide consistency over time, these maps are produced from baseline land cover maps, and are revised for changes each year depending on the best available satellite data from each period in time. These revisions were made from AVHRR 1km time series from 1992 to 1999, SPOT-VGT time series between 1999 and 2013, and PROBA-V data for years 2013, 2014 and 2015. When MERIS FR or PROBA-V time series are available, changes detected at 1 km are re-mapped at 300 m. The last step consists in back- and up-dating the 10-year baseline LC map to produce the 24 annual LC maps from 1992 to 2015. Source data The datasets behind this layer were extracted from NetCDF files and TIFF files produced by ESA. Years 1992-2015 were acquired from ESA CCI LC version 2.0.7 in TIFF format, and years 2016-2018 were acquired from version 2.1.1 in NetCDF format. These are downloadable from ESA with an account, after agreeing to their terms of use. https://maps.elie.ucl.ac.be/CCI/viewer/download.php CitationESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfMore technical documentation on the source datasets is available here:https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=doc*Index of all classes in this layer:10 Cropland, rainfed11 Herbaceous cover12 Tree or shrub cover20 Cropland, irrigated or post-flooding30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%) 50 Tree cover, broadleaved, evergreen, closed to open (>15%)60 Tree cover, broadleaved, deciduous, closed to open (>15%)61 Tree cover, broadleaved, deciduous, closed (>40%)62 Tree cover, broadleaved, deciduous, open (15-40%)70 Tree cover, needleleaved, evergreen, closed to open (>15%)71 Tree cover, needleleaved, evergreen, closed (>40%)72 Tree cover, needleleaved, evergreen, open (15-40%)80 Tree cover, needleleaved, deciduous, closed to open (>15%)81 Tree cover, needleleaved, deciduous, closed (>40%)82 Tree cover, needleleaved, deciduous, open (15-40%)90 Tree cover, mixed leaf type (broadleaved and needleleaved)100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%)110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%)120 Shrubland121 Shrubland evergreen122 Shrubland deciduous130 Grassland140 Lichens and mosses150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)151 Sparse tree (<15%)152 Sparse shrub (<15%)153 Sparse herbaceous cover (<15%)160 Tree cover, flooded, fresh or brakish water170 Tree cover, flooded, saline water180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water190 Urban areas200 Bare areas201 Consolidated bare areas202 Unconsolidated bare areas210 Water bodies

  11. World Transportation

    • wifire-data.sdsc.edu
    csv, esri rest +4
    Updated Jun 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). World Transportation [Dataset]. https://wifire-data.sdsc.edu/dataset/world-transportation
    Explore at:
    csv, kml, esri rest, geojson, html, zipAvailable download formats
    Dataset updated
    Jun 9, 2021
    Dataset provided by
    Esrihttp://esri.com/
    Area covered
    World
    Description

    This map presents transportation data, including highways, roads, railroads, and airports for the world.

    The map was developed by Esri using Esri highway data; Garmin basemap layers; HERE street data for North America, Europe, Australia, New Zealand, South America and Central America, India, most of the Middle East and Asia, and select countries in Africa. Data for Pacific Island nations and the remaining countries of Africa was sourced from OpenStreetMap contributors. Specific country list and documentation of Esri's process for including OSM data is available to view.

    You can add this layer on top of any imagery, such as the Esri World Imagery map service, to provide a useful reference overlay that also includes street labels at the largest scales. (At the largest scales, the line symbols representing the streets and roads are automatically hidden and only the labels showing the names of streets and roads are shown). Imagery With Labels basemap in the basemap dropdown in the ArcGIS web and mobile clients does not include this World Transportation map. If you use the Imagery With Labels basemap in your map and you want to have road and street names, simply add this World Transportation layer into your map. It is designed to be drawn underneath the labels in the Imagery With Labels basemap, and that is how it will be drawn if you manually add it into your web map.

  12. OpenStreetMap

    • data-rcitgis.opendata.arcgis.com
    • pacificgeoportal.com
    • +35more
    Updated Mar 20, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    esri_en (2019). OpenStreetMap [Dataset]. https://data-rcitgis.opendata.arcgis.com/maps/c29cfb7875fc4b97b58ba6987c460862
    Explore at:
    Dataset updated
    Mar 20, 2019
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    esri_en
    Area covered
    Description

    This web map presents a vector basemap of OpenStreetMap (OSM) data hosted by Esri. Esri created this vector tile basemap from the Daylight map distribution of OSM data, which is supported by Facebook and supplemented with additional data from Microsoft. This version of the map is rendered using OSM cartography. The OSM Daylight map will be updated every month with the latest version of OSM Daylight data.OpenStreetMap is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site:www.OpenStreetMap.org. Esri is a supporter of the OSM project and is excited to make this enhanced vector basemap available to the ArcGIS user and developer communities.

  13. World Reef Map – Global Coral Reef Atlas

    • palau-data.sprep.org
    • nauru-data.sprep.org
    • +13more
    Updated Feb 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SPREP Environmental Monitoring and Governance (EMG) (2025). World Reef Map – Global Coral Reef Atlas [Dataset]. https://palau-data.sprep.org/dataset/world-reef-map-global-coral-reef-atlas
    Explore at:
    Dataset updated
    Feb 20, 2025
    Dataset provided by
    Pacific Regional Environment Programmehttps://www.sprep.org/
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    Pacific Region, World
    Description

    The Khaled bin Sultan Living Oceans Foundation has completed the World Reef Map, an online interactive coral reef atlas that allows users to explore all of the coral reefs and shallow water marine habitats mapped on the Global Reef Expedition. With over 65,000 square kilometers of shallow water marine ecosystems mapped, this is by far the largest collection of high-resolution coral reef maps ever made. Map layers include Benthic Habitat Data, Bathymetry, Depth Contours and Habitat Videos.

  14. c

    Data from: Global Land Cover Mapping and Estimation Yearly 30 m V001

    • s.cnmilf.com
    • data.nasa.gov
    • +1more
    Updated Jun 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    LP DAAC;BU/EE/LCSC (2025). Global Land Cover Mapping and Estimation Yearly 30 m V001 [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/global-land-cover-mapping-and-estimation-yearly-30-m-v001-80e06
    Explore at:
    Dataset updated
    Jun 28, 2025
    Dataset provided by
    LP DAAC;BU/EE/LCSC
    Description

    NASA's Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Land Cover Mapping and Estimation (GLanCE) annual 30 meter (m) Version 1 data product provides global land cover and land cover change data derived from Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 Operational Land Imager (OLI). These maps provide the user community with land cover type, land cover change, metrics characterizing the magnitude and seasonality of greenness of each pixel, and the magnitude of change. GLanCE data products will be provided using a set of seven continental grids that use Lambert Azimuthal Equal Area projections parameterized to minimize distortion for each continent. Currently, North America, South America, Europe, and Oceania are available. This dataset is useful for a wide range of applications, including ecosystem, climate, and hydrologic modeling; monitoring the response of terrestrial ecosystems to climate change; carbon accounting; and land management. The GLanCE data product provides seven layers: the land cover class, the estimated day of year of change, integer identifier for class in previous year, median and amplitude of the Enhanced Vegetation Index (EVI2) in the year, rate of change in EVI2, and the change in EVI2 median from previous year to current year. A low-resolution browse image representing EVI2 amplitude is also available for each granule.Known Issues Version 1.0 of the data set does not include Quality Assurance, Leaf Type or Leaf Phenology. These layers are populated with fill values. These layers will be included in future releases of the data product. * Science Data Set (SDS) values may be missing, or of lower quality, at years when land cover change occurs. This issue is a by-product of the fact that Continuous Change Detection and Classification (CCDC) does not fit models or provide synthetic reflectance values during short periods of time between time segments. * The accuracy of mapping results varies by land cover class and geography. Specifically, distinguishing between shrubs and herbaceous cover is challenging at high latitudes and in arid and semi-arid regions. Hence, the accuracy of shrub cover, herbaceous cover, and to some degree bare cover, is lower than for other classes. * Due to the combined effects of large solar zenith angles, short growing seasons, lower availability of high-resolution imagery to support training data, the representation of land cover at land high latitudes in the GLanCE product is lower than in mid latitudes. * Shadows and large variation in local zenith angles decrease the accuracy of the GLanCE product in regions with complex topography, especially at high latitudes. * Mapping results may include artifacts from variation in data density in overlap zones between Landsat scenes relative to mapping results in non-overlap zones. * Regions with low observation density due to cloud cover, especially in the tropics, and/or poor data density (e.g. Alaska, Siberia, West Africa) have lower map quality. * Artifacts from the Landsat 7 Scan Line Corrector failure are occasionally evident in the GLanCE map product. High proportions of missing data in regions with snow and ice at high elevations result in missing data in the GLanCE SDSs.* The GlanCE data product tends to modestly overpredict developed land cover in arid regions.

  15. Share of population living in extreme poverty, by country, varying years...

    • data.amerigeoss.org
    • data.apps.fao.org
    png, wms, zip
    Updated Mar 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2023). Share of population living in extreme poverty, by country, varying years (FGGD) [Dataset]. https://data.amerigeoss.org/dataset/847f3f50-8519-11db-b9b2-000d939bc5d8
    Explore at:
    zip, wms, pngAvailable download formats
    Dataset updated
    Mar 14, 2023
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    The FGGD extreme poverty map is a global vector datalayer at scale 1:5 000 000. The map depicts the differences among countries with respect to the national population estimated to be living in extreme poverty as of the latest year for which data was available in 2005. Data have been compiled by FAO from data reported in World Bank, WDI Online, as of April 2005.

    Data publication: 2007-06-25

    Supplemental Information:

    This dataset is contained in Module 3 "Socio-economics and nutrition indicators" of Food Insecurity, Poverty and Environment Global GIS Database (FGGD) (FAO, 2007).

    Contact points:

    Metadata Contact: FAO-Data

    Resource Contact: Mirella Salvatore

    Resource constraints:

    copyright

    Online resources:

    Share of population living in extreme poverty, by country, varying years

  16. d

    Matrixian Map (global map data)

    • datarade.ai
    Updated Oct 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matrixian (2020). Matrixian Map (global map data) [Dataset]. https://datarade.ai/data-products/matrixian-map-matrixian-group
    Explore at:
    Dataset updated
    Oct 8, 2020
    Dataset authored and provided by
    Matrixian
    Area covered
    Serbia, Guatemala, Switzerland, Germany, Saudi Arabia, Norway, Kyrgyzstan, Afghanistan, Saint Martin (French part), New Caledonia
    Description

    For many people data is seen as abstract information. It is therefore valuable to use Matrixian Map, an interactive map that shows an enormous amount of data in one figure. It helps to make complex analyzes understandable, to see new opportunities and to make data-driven decisions.

    With our large amount of consumer, real estate, mobility and logistics data we can design very extensive maps. Whether it concerns a map that shows your (potential) customers, shows on which roofs solar panels can be placed or indicates when shopping areas can be supplied, with our knowledge of households, companies and objects, almost anything is possible!

  17. d

    Irys | Map Data Insights | Global | Real-Time & Historical Mobility Data

    • datarade.ai
    Updated Aug 23, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Irys (2023). Irys | Map Data Insights | Global | Real-Time & Historical Mobility Data [Dataset]. https://datarade.ai/data-products/irys-map-data-insights-global-real-time-historical-mo-irys
    Explore at:
    .json, .csv, .xls, .sqlAvailable download formats
    Dataset updated
    Aug 23, 2023
    Dataset authored and provided by
    Irys
    Area covered
    Cuba, Mozambique, Qatar, United Arab Emirates, Korea (Democratic People's Republic of), Taiwan, New Caledonia, Falkland Islands (Malvinas), Bhutan, Panama
    Description

    Irys specializes in collecting and curating high-quality geolocation signals from millions of connected devices across the globe. Our real-time and historical foot traffic data, categorized under Map Data, is sourced through partnerships with tier-1 mobile applications and app developers. The advanced aggregated location data covers the entire world, providing valuable insights for diverse use-cases related to Transport and Logistic Data, Mobile Location Data, Mobility Data, and IP Address Data.

    Our commitment to privacy compliance is paramount. We ensure that all data is collected in accordance with privacy regulations, accompanied by clear and compliant privacy notices. Our opt-in/out management allows for transparent control over data collection, use, and distribution to third parties.

    Discover the power of foot traffic data with Irys – where precision meets privacy.

  18. Digital Map Market Analysis, Size, and Forecast 2025-2029: North America (US...

    • technavio.com
    Updated Jun 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Digital Map Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, and UK), APAC (China, India, Indonesia, Japan, and South Korea), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/digital-map-market-industry-analysis
    Explore at:
    Dataset updated
    Jun 18, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Global, United States
    Description

    Snapshot img

    Digital Map Market Size 2025-2029

    The digital map market size is forecast to increase by USD 31.95 billion at a CAGR of 31.3% between 2024 and 2029.

    The market is driven by the increasing adoption of intelligent Personal Digital Assistants (PDAs) and the availability of location-based services. PDAs, such as smartphones and smartwatches, are becoming increasingly integrated with digital map technologies, enabling users to navigate and access real-time information on-the-go. The integration of Internet of Things (IoT) enables remote monitoring of cars and theft recovery. Location-based services, including mapping and navigation apps, are a crucial component of this trend, offering users personalized and convenient solutions for travel and exploration. However, the market also faces significant challenges.
    Ensuring the protection of sensitive user information is essential for companies operating in this market, as trust and data security are key factors in driving user adoption and retention. Additionally, the competition in the market is intense, with numerous players vying for market share. Companies must differentiate themselves through innovative features, user experience, and strong branding to stand out in this competitive landscape. Security and privacy concerns continue to be a major obstacle, as the collection and use of location data raises valid concerns among consumers.
    

    What will be the Size of the Digital Map Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free Sample

    In the market, cartographic generalization and thematic mapping techniques are utilized to convey complex spatial information, transforming raw data into insightful visualizations. Choropleth maps and dot density maps illustrate distribution patterns of environmental data, economic data, and demographic data, while spatial interpolation and predictive modeling enable the estimation of hydrographic data and terrain data in areas with limited information. Urban planning and land use planning benefit from these tools, facilitating network modeling and location intelligence for public safety and emergency management.

    Spatial regression and spatial autocorrelation analyses provide valuable insights into urban development trends and patterns. Network analysis and shortest path algorithms optimize transportation planning and logistics management, enhancing marketing analytics and sales territory optimization. Decision support systems and fleet management incorporate 3D building models and real-time data from street view imagery, enabling effective resource management and disaster response. The market in the US is experiencing robust growth, driven by the integration of Geographic Information Systems (GIS), Global Positioning Systems (GPS), and advanced computer technology into various industries.

    How is this Digital Map Industry segmented?

    The digital map industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Application
    
      Navigation
      Geocoders
      Others
    
    
    Type
    
      Outdoor
      Indoor
    
    
    Solution
    
      Software
      Services
    
    
    Deployment
    
      On-premises
      Cloud
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        UK
    
    
      APAC
    
        China
        India
        Indonesia
        Japan
        South Korea
    
    
      Rest of World (ROW)
    

    By Application Insights

    The navigation segment is estimated to witness significant growth during the forecast period. Digital maps play a pivotal role in various industries, particularly in automotive applications for driver assistance systems. These maps encompass raster data, aerial photography, government data, and commercial data, among others. Open-source data and proprietary data are integrated to ensure map accuracy and up-to-date information. Map production involves the use of GPS technology, map projections, and GIS software, while map maintenance and quality control ensure map accuracy. Location-based services (LBS) and route optimization are integral parts of digital maps, enabling real-time navigation and traffic data.

    Data validation and map tiles ensure data security. Cloud computing facilitates map distribution and map customization, allowing users to access maps on various devices, including mobile mapping and indoor mapping. Map design, map printing, and reverse geocoding further enhance the user experience. Spatial analysis and data modeling are essential for data warehousing and real-time navigation. The automotive industry's increasing adoption of connected cars and long-term evolution (LTE) technologies have fueled the demand for digital maps. These maps enable driver assistance app

  19. g

    World Data Bank II: North America, South America, Europe, Africa, Asia -...

    • search.gesis.org
    Updated Feb 16, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Intelligence Agency (2021). World Data Bank II: North America, South America, Europe, Africa, Asia - Archival Version [Dataset]. http://doi.org/10.3886/ICPSR08376
    Explore at:
    Dataset updated
    Feb 16, 2021
    Dataset provided by
    GESIS search
    ICPSR - Interuniversity Consortium for Political and Social Research
    Authors
    Central Intelligence Agency
    License

    https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de443095https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de443095

    Area covered
    North America, South America, Americas, Europe, World
    Description

    Abstract (en): The boundaries of five different geographic areas -- North America, South America, Europe, Africa, and Asia -- are digitally represented in this collection of data files that can be used in the production of computer maps. Each of the five areas is encoded in three distinct files: (1) coastline, islands, and lakes, (2) rivers, and (3) international boundaries. There is an additional file for North America (Part 4: North America: Internal Boundaries) delineating state lines in the United States and provincial boundaries in Canada. The data in each of the files is hierarchically structured into subordinate geographic features and ranks, which may be used for output plotting symbol definition. The mapping scale used to encode the data ranged from 1:1 million to 1:4 million. 2006-01-18 File CB8376.ALL.PDF was removed from any previous datasets and flagged as a study-level file, so that it will accompany all downloads. (1) There are seven variables and an unknown number of cases for each file. The number of records per case varies according to the number of latitude and longitude coordinates needed to display the particular geographic feature. (2) The codebook is provided by ICPSR as a Portable Document Format (PDF) file. The PDF file format was developed by Adobe Systems Incorporated and can be accessed using PDF reader software, such as the Adobe Acrobat Reader. Information on how to obtain a copy of the Acrobat Reader is provided on the ICPSR Web site.

  20. d

    Gridded Population of the World, Version 3 (GPWv3): Subnational...

    • catalog.data.gov
    • cmr.earthdata.nasa.gov
    • +1more
    Updated Apr 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SEDAC (2025). Gridded Population of the World, Version 3 (GPWv3): Subnational Administrative Boundaries [Dataset]. https://catalog.data.gov/dataset/gridded-population-of-the-world-version-3-gpwv3-subnational-administrative-boundaries
    Explore at:
    Dataset updated
    Apr 24, 2025
    Dataset provided by
    SEDAC
    Area covered
    World
    Description

    The Gridded Population of the World, Version 3 (GPWv3): Subnational Administrative Boundaries are the basis of the population data products in GPWv3. Due to copyright restrictions, only maps of the subnational administrative boundaries are available, the underlying data cannot be released. GPWv3 is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with Centro Internacional de Agricultura Tropical (CIAT).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
NCGE (2021). 10 powerful tools and maps with which to teach about population and demographics [Dataset]. https://library.ncge.org/documents/bae1d5f1cba243ea88d09b043b8444ee
Organization logo

10 powerful tools and maps with which to teach about population and demographics

Explore at:
Dataset updated
Jul 27, 2021
Dataset provided by
National Council for Geographic Educationhttp://www.ncge.org/
Authors
NCGE
License

Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically

Description

Author: Joseph Kerski, post_secondary_educator, Esri and University of DenverGrade/Audience: high school, ap human geography, post secondary, professional developmentResource type: lessonSubject topic(s): population, maps, citiesRegion: africa, asia, australia oceania, europe, north america, south america, united states, worldStandards: All APHG population tenets. Geography for Life cultural and population geography standards. Objectives: 1. Understand how population change and demographic characteristics are evident at a variety of scales in a variety of places around the world. 2. Understand the whys of where through analysis of change over space and time. 3. Develop skills using spatial data and interactive maps. 4. Understand how population data is communicated using 2D and 3D maps, visualizations, and symbology. Summary: Teaching and learning about demographics and population change in an effective, engaging manner is enriched and enlivened through the use of web mapping tools and spatial data. These tools, enabled by the advent of cloud-based geographic information systems (GIS) technology, bring problem solving, critical thinking, and spatial analysis to every classroom instructor and student (Kerski 2003; Jo, Hong, and Verma 2016).

Search
Clear search
Close search
Google apps
Main menu