The World Top Incomes Database provides statistical information on the shares of top income groups for 30 countries. The construction of this database was possible thanks to the research of over thirty contributing authors. There has been a marked revival of interest in the study of the distribution of top incomes using tax data. Beginning with the research by Thomas Piketty of the long-run distribution of top incomes in France, a succession of studies has constructed top income share time series over the long-run for more than twenty countries to date. These projects have generated a large volume of data, which are intended as a research resource for further analysis. In using data from income tax records, these studies use similar sources and methods as the pioneering work by Kuznets for the United States.The findings of recent research are of added interest, since the new data provide estimates covering nearly all of the twentieth century -a length of time series unusual in economics. In contrast to existing international databases, generally restricted to the post-1970 or post-1980 period, the top income data cover a much longer period, which is important because structural changes in income and wealth distributions often span several decades. The data series is fairly homogenous across countries, annual, long-run, and broken down by income source for several cases. Users should be aware also about their limitations. Firstly, the series measure only top income shares and hence are silent on how inequality evolves elsewhere in the distribution. Secondly, the series are largely concerned with gross incomes before tax. Thirdly, the definition of income and the unit of observation (the individual vs. the family) vary across countries making comparability of levels across countries more difficult. Even within a country, there are breaks in comparability that arise because of changes in tax legislation affecting the definition of income, although most studies try to correct for such changes to create homogenous series. Finally and perhaps most important, the series might be biased because of tax avoidance and tax evasion. The first theme of the research programme is the assembly and analysis of historical evidence from fiscal records on the long-run development of economic inequality. “Long run” is a relative term, and here it means evidence dating back before the Second World War, and extending where possible back into the nineteenth century. The time span is determined by the sources used, which are based on taxes on incomes, earnings, wealth and estates. Perspective on current concerns is provided by the past, but also by comparison with other countries. The second theme of the research programme is that of cross-country comparisons. The research is not limited to OECD countries and will draw on evidence globally. In order to understand the drivers of inequality, it is necessary to consider the sources of economic advantage. The third theme is the analysis of the sources of income, considering separately the roles of earned incomes and property income, and examining the historical and comparative evolution of earned and property income, and their joint distribution. The fourth theme is the long-run trend in the distribution of wealth and its transmission through inheritance. Here again there are rich fiscal data on the passing of estates at death. The top income share series are constructed, in most of the cases presented in this database, using tax statistics (China is an exception; for the time being the estimates come from households surveys). The use of tax data is often regarded by economists with considerable disbelief. These doubts are well justified for at least two reasons. The first is that tax data are collected as part of an administrative process, which is not tailored to the scientists' needs, so that the definition of income, income unit, etc., are not necessarily those that we would have chosen. This causes particular difficulties for comparisons across countries, but also for time-series analysis where there have been substantial changes in the tax system, such as the moves to and from the joint taxation of couples. Secondly, it is obvious that those paying tax have a financial incentive to present their affairs in a way that reduces tax liabilities. There is tax avoidance and tax evasion. The rich, in particular, have a strong incentive to understate their taxable incomes. Those with wealth take steps to ensure that the return comes in the form of asset appreciation, typically taxed at lower rates or not at all. Those with high salaries seek to ensure that part of their remuneration comes in forms, such as fringe benefits or stock-options which receive favorable tax treatment. Both groups may make use of tax havens that allow income to be moved beyond the reach of the national tax net. These shortcomings limit what can be said from tax data, but this does not mean that the data are worthless. Like all economic data, they measure with error the 'true' variable in which we are interested. References Atkinson, Anthony B. and Thomas Piketty (2007). Top Incomes over the Twentieth Century: A Contrast between Continental European and English-Speaking Countries (Volume 1). Oxford: Oxford University Press, 585 pp. Atkinson, Anthony B. and Thomas Piketty (2010). Top Incomes over the Twentieth Century: A Global Perspective (Volume 2). Oxford: Oxford University Press, 776 pp. Atkinson, Anthony B., Thomas Piketty and Emmanuel Saez (2011). Top Incomes in the Long Run of History, Journal of Economic Literature, 49(1), pp. 3-71. Kuznets, Simon (1953). Shares of Upper Income Groups in Income and Savings. New York: National Bureau of Economic Research, 707 pp. Piketty, Thomas (2001). Les Hauts Revenus en France au 20ème siècle. Paris: Grasset, 807 pp. Piketty, Thomas (2003). Income Inequality in France, 1901-1998, Journal of Political Economy, 111(5), pp. 1004-42.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Source: https://www.wider.unu.edu/database/wiid User Guide: https://www.wider.unu.edu/sites/default/files/WIID/PDF/WIID-User_Guide_06MAY2020.pdf
The World Income Inequality Database (WIID) contains information on income inequality in various countries and is maintained by the United Nations University-World Institute for Development Economics Research (UNU-WIDER). The database was originally compiled during 1997-99 for the research project Rising Income Inequality and Poverty Reduction, directed by Giovanni Andrea Corina. A revised and updated version of the database was published in June 2005 as part of the project Global Trends in Inequality and Poverty, directed by Tony Shorrocks and Guang Hua Wan. The database was revised in 2007 and a new version was launched in May 2008.
The database contains data on inequality in the distribution of income in various countries. The central variable in the dataset is the Gini index, a measure of income distribution in a society. In addition, the dataset contains information on income shares by quintile or decile. The database contains data for 159 countries, including some historical entities. The temporal coverage varies substantially across countries. For some countries there is only one data entry; in other cases there are over 100 data points. The earliest entry is from 1867 (United Kingdom), the latest from 2003. The majority of the data (65%) cover the years from 1980 onwards. The 2008 update (version WIID2c) includes some major updates and quality improvements, in fact leading to a reduced number of variables in the new version. The new version has 334 new observations and several revisions/ corrections made in 2007 and 2008.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Income Share Held by Highest 10% data was reported at 30.600 % in 2016. This records an increase from the previous number of 30.100 % for 2013. United States US: Income Share Held by Highest 10% data is updated yearly, averaging 30.100 % from Dec 1979 (Median) to 2016, with 11 observations. The data reached an all-time high of 30.600 % in 2016 and a record low of 25.300 % in 1979. United States US: Income Share Held by Highest 10% data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Poverty. Percentage share of income or consumption is the share that accrues to subgroups of population indicated by deciles or quintiles.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are from the Luxembourg Income Study database. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.
There has been a marked revival of interest in the study of the distribution of top incomes using tax data. Beginning with the research by Thomas Piketty (2001, 2003) of the long-run distribution of top incomes in France, a succession of studies has constructed top income share time series over the long-run for more than twenty countries to date.
http://www.ritholtz.com/blog/wp-content/uploads/2011/06/top-income.png" alt="Top income share 1914-2008" title="Top income share 1914-2008">
These projects have generated a large volume of data, which are intended as a research resource for further analysis. The world top incomes database aims to providing convenient on line access to all the existent series. This is an ongoing endeavour, and we will progressively update the base with new observations, as authors extend the series forwards and backwards. Despite the database's name, we will also add information on the distribution of earnings and the distribution of wealth. As the map below shows, around forty-five further countries are under study, and will be incorporated at some point (see Work in Progress).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Brazil BR: Income Share Held by Highest 10% data was reported at 41.000 % in 2022. This records a decrease from the previous number of 41.600 % for 2021. Brazil BR: Income Share Held by Highest 10% data is updated yearly, averaging 44.550 % from Dec 1981 (Median) to 2022, with 38 observations. The data reached an all-time high of 51.100 % in 1989 and a record low of 39.500 % in 2020. Brazil BR: Income Share Held by Highest 10% data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Brazil – Table BR.World Bank.WDI: Social: Poverty and Inequality. Percentage share of income or consumption is the share that accrues to subgroups of population indicated by deciles or quintiles.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).
Comparing the *** selected regions regarding the gini index , South Africa is leading the ranking (**** points) and is followed by Namibia with **** points. At the other end of the spectrum is Slovakia with **** points, indicating a difference of *** points to South Africa. The Gini coefficient here measures the degree of income inequality on a scale from * (=total equality of incomes) to *** (=total inequality).The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in more than *** countries and regions worldwide. All input data are sourced from international institutions, national statistical offices, and trade associations. All data has been are processed to generate comparable datasets (see supplementary notes under details for more information).
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
this graphs is ourdataworld :
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F00b0f9cc2bd8326c60fd0ea3b5dbe4b7%2Finequality.png?generation=1710013947537354&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F1978511abe249d3081a3a95bae2ef7d5%2Fincome-share-top-1-before-tax-wid-extrapolations.png?generation=1710013977201099&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F2a5a54725f65801ba75b6ab07bc5cb9f%2Fincome-share-top-1-before-tax-wid-extrapolations%20(1).png?generation=1710013994341360&alt=media" alt="">
How are incomes and wealth distributed between people? Both within countries and across the world as a whole?
On this page, you can find all our data, visualizations, and writing relating to economic inequality.
This evidence demonstrates that inequality in many countries is substantial and, in numerous instances, has been escalating. Global economic inequality is extensive and exacerbated by intersecting disparities in health, education, and various other dimensions.
However, economic inequality is not uniformly increasing. In many countries, it has declined or remained steady. Furthermore, global inequality – following two centuries of ascent – is presently decreasing as well.
The significant variations observed across countries and over time are pivotal. They indicate that high and rising inequality is not inevitable and that the current extent of inequality is subject to change.
About this data This data explorer offers various inequality indicators measured according to two distinct definitions of income sourced from different outlets.
Data from the World Inequality Database pertains to inequality prior to taxes and benefits. Data from the World Bank pertains to either income post taxes and benefits or consumption, contingent on the country and year. For additional details regarding the definitions and methodologies underlying this data, refer to the accompanying article below, where you can also delve into and juxtapose a broader spectrum of indicators from various sources.
This statistic shows the inequality of income distribution in China from 2005 to 2023 based on the Gini Index. In 2023, China reached a score of ************ points. The Gini Index is a statistical measure that is used to represent unequal distributions, e.g. income distribution. It can take any value between 1 and 100 points (or 0 and 1). The closer the value is to 100 the greater is the inequality. 40 or 0.4 is the warning level set by the United Nations. The Gini Index for South Korea had ranged at about **** in 2022. Income distribution in China The Gini coefficient is used to measure the income inequality of a country. The United States, the World Bank, the US Central Intelligence Agency, and the Organization for Economic Co-operation and Development all provide their own measurement of the Gini coefficient, varying in data collection and survey methods. According to the United Nations Development Programme, countries with the largest income inequality based on the Gini index are mainly located in Africa and Latin America, with South Africa displaying the world's highest value in 2022. The world's most equal countries, on the contrary, are situated mostly in Europe. The United States' Gini for household income has increased by around ten percent since 1990, to **** in 2023. Development of inequality in China Growing inequality counts as one of the biggest social, economic, and political challenges to many countries, especially emerging markets. Over the last 20 years, China has become one of the world's largest economies. As parts of the society have become more and more affluent, the country's Gini coefficient has also grown sharply over the last decades. As shown by the graph at hand, China's Gini coefficient ranged at a level higher than the warning line for increasing risk of social unrest over the last decade. However, the situation has slightly improved since 2008, when the Gini coefficient had reached the highest value of recent times.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Greece GR: Income Share Held by Highest 10% data was reported at 26.200 % in 2015. This records an increase from the previous number of 26.100 % for 2014. Greece GR: Income Share Held by Highest 10% data is updated yearly, averaging 26.000 % from Dec 2003 (Median) to 2015, with 13 observations. The data reached an all-time high of 26.700 % in 2006 and a record low of 24.600 % in 2003. Greece GR: Income Share Held by Highest 10% data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Greece – Table GR.World Bank.WDI: Poverty. Percentage share of income or consumption is the share that accrues to subgroups of population indicated by deciles or quintiles.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are from the Luxembourg Income Study database. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.
Based on the degree of inequality in income distribution measured by the Gini coefficient, Colombia was the most unequal country in Latin America as of 2022. Colombia's Gini coefficient amounted to 54.8. The Dominican Republic recorded the lowest Gini coefficient at 37, even below Uruguay and Chile, which are some of the countries with the highest human development indexes in Latin America. The Gini coefficient explained The Gini coefficient measures the deviation of the distribution of income among individuals or households in a given country from a perfectly equal distribution. A value of 0 represents absolute equality, whereas 100 would be the highest possible degree of inequality. This measurement reflects the degree of wealth inequality at a certain moment in time, though it may fail to capture how average levels of income improve or worsen over time. What affects the Gini coefficient in Latin America? Latin America, as other developing regions in the world, generally records high rates of inequality, with a Gini coefficient ranging between 37 and 55 points according to the latest available data from the reporting period 2010-2023. According to the Human Development Report, wealth redistribution by means of tax transfers improves Latin America's Gini coefficient to a lesser degree than it does in advanced economies. Wider access to education and health services, on the other hand, have been proven to have a greater direct effect in improving Gini coefficient measurements in the region.
South Africa had the highest inequality in income distribution in 2024, with a Gini score of **. Its South African neighbor, Namibia, followed in second. The Gini coefficient measures the deviation of income (or consumption) distribution among individuals or households within a country from a perfectly equal distribution. A value of 0 represents absolute equality, and a value of 100 represents absolute inequality. All the 20 most unequal countries in the world were either located in Africa or Latin America & The Caribbean.
In 2023, according to the Gini coefficient, household income distribution in the United States was 0.47. This figure was at 0.43 in 1990, which indicates an increase in income inequality in the U.S. over the past 30 years. What is the Gini coefficient? The Gini coefficient, or Gini index, is a statistical measure of economic inequality and wealth distribution among a population. A value of zero represents perfect economic equality, and a value of one represents perfect economic inequality. The Gini coefficient helps to visualize income inequality in a more digestible way. For example, according to the Gini coefficient, the District of Columbia and the state of New York have the greatest amount of income inequality in the U.S. with a score of 0.51, and Utah has the greatest income equality with a score of 0.43. The Gini coefficient around the world The Gini coefficient is also an effective measure to help picture income inequality around the world. For example, in 2018 income inequality was highest in South Africa, while income inequality was lowest in Slovenia.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Income Share Held by Highest 20% data was reported at 46.900 % in 2016. This records an increase from the previous number of 46.400 % for 2013. United States US: Income Share Held by Highest 20% data is updated yearly, averaging 46.000 % from Dec 1979 (Median) to 2016, with 11 observations. The data reached an all-time high of 46.900 % in 2016 and a record low of 41.200 % in 1979. United States US: Income Share Held by Highest 20% data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Poverty. Percentage share of income or consumption is the share that accrues to subgroups of population indicated by deciles or quintiles. Percentage shares by quintile may not sum to 100 because of rounding.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are from the Luxembourg Income Study database. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.
Income share held by highest 20% of Italy dipped by 2.41% from 41.50 % in 2021 to 40.50 % in 2022. Since the 1.46% rise in 2020, income share held by highest 20% decreased by 2.88% in 2022. Percentage share of income or consumption is the share that accrues to subgroups of population indicated by deciles or quintiles. Percentage shares by quintile may not sum to 100 because of rounding.
Income share held by highest 20% of Panama dipped by 3.78% from 55.60 % in 2021 to 53.50 % in 2023. Since the 1.49% rise in 2019, income share held by highest 20% decreased by 1.65% in 2023. Percentage share of income or consumption is the share that accrues to subgroups of population indicated by deciles or quintiles. Percentage shares by quintile may not sum to 100 because of rounding.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Share of Net Worth Held by the Top 1% (99th to 100th Wealth Percentiles) (WFRBST01134) from Q3 1989 to Q1 2025 about net worth, wealth, percentile, Net, and USA.
Income share held by highest 10% of Chile dropped by 7.51% from 37.30 % in 2020 to 34.50 % in 2022. Since the 0.27% upward trend in 2017, income share held by highest 10% slumped by 6.50% in 2022. Percentage share of income or consumption is the share that accrues to subgroups of population indicated by deciles or quintiles.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Yemen YE: Income Share Held by Highest 20% data was reported at 44.700 % in 2014. This records an increase from the previous number of 43.200 % for 2005. Yemen YE: Income Share Held by Highest 20% data is updated yearly, averaging 43.200 % from Dec 1998 (Median) to 2014, with 3 observations. The data reached an all-time high of 44.700 % in 2014 and a record low of 42.400 % in 1998. Yemen YE: Income Share Held by Highest 20% data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Yemen – Table YE.World Bank.WDI: Poverty. Percentage share of income or consumption is the share that accrues to subgroups of population indicated by deciles or quintiles. Percentage shares by quintile may not sum to 100 because of rounding.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are from the Luxembourg Income Study database. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.
Income share held by highest 10% of Cabo Verde dropped by 12.94% from 37.10 % in 2007 to 32.30 % in 2015. Since the 12.91% slump in 2007, income share held by highest 10% slumped by 12.94% in 2015. Percentage share of income or consumption is the share that accrues to subgroups of population indicated by deciles or quintiles.
Income share held by highest 20% of Georgia increased by 3.69% from 40.60 % in 2022 to 42.10 % in 2023. Percentage share of income or consumption is the share that accrues to subgroups of population indicated by deciles or quintiles. Percentage shares by quintile may not sum to 100 because of rounding.
The World Top Incomes Database provides statistical information on the shares of top income groups for 30 countries. The construction of this database was possible thanks to the research of over thirty contributing authors. There has been a marked revival of interest in the study of the distribution of top incomes using tax data. Beginning with the research by Thomas Piketty of the long-run distribution of top incomes in France, a succession of studies has constructed top income share time series over the long-run for more than twenty countries to date. These projects have generated a large volume of data, which are intended as a research resource for further analysis. In using data from income tax records, these studies use similar sources and methods as the pioneering work by Kuznets for the United States.The findings of recent research are of added interest, since the new data provide estimates covering nearly all of the twentieth century -a length of time series unusual in economics. In contrast to existing international databases, generally restricted to the post-1970 or post-1980 period, the top income data cover a much longer period, which is important because structural changes in income and wealth distributions often span several decades. The data series is fairly homogenous across countries, annual, long-run, and broken down by income source for several cases. Users should be aware also about their limitations. Firstly, the series measure only top income shares and hence are silent on how inequality evolves elsewhere in the distribution. Secondly, the series are largely concerned with gross incomes before tax. Thirdly, the definition of income and the unit of observation (the individual vs. the family) vary across countries making comparability of levels across countries more difficult. Even within a country, there are breaks in comparability that arise because of changes in tax legislation affecting the definition of income, although most studies try to correct for such changes to create homogenous series. Finally and perhaps most important, the series might be biased because of tax avoidance and tax evasion. The first theme of the research programme is the assembly and analysis of historical evidence from fiscal records on the long-run development of economic inequality. “Long run” is a relative term, and here it means evidence dating back before the Second World War, and extending where possible back into the nineteenth century. The time span is determined by the sources used, which are based on taxes on incomes, earnings, wealth and estates. Perspective on current concerns is provided by the past, but also by comparison with other countries. The second theme of the research programme is that of cross-country comparisons. The research is not limited to OECD countries and will draw on evidence globally. In order to understand the drivers of inequality, it is necessary to consider the sources of economic advantage. The third theme is the analysis of the sources of income, considering separately the roles of earned incomes and property income, and examining the historical and comparative evolution of earned and property income, and their joint distribution. The fourth theme is the long-run trend in the distribution of wealth and its transmission through inheritance. Here again there are rich fiscal data on the passing of estates at death. The top income share series are constructed, in most of the cases presented in this database, using tax statistics (China is an exception; for the time being the estimates come from households surveys). The use of tax data is often regarded by economists with considerable disbelief. These doubts are well justified for at least two reasons. The first is that tax data are collected as part of an administrative process, which is not tailored to the scientists' needs, so that the definition of income, income unit, etc., are not necessarily those that we would have chosen. This causes particular difficulties for comparisons across countries, but also for time-series analysis where there have been substantial changes in the tax system, such as the moves to and from the joint taxation of couples. Secondly, it is obvious that those paying tax have a financial incentive to present their affairs in a way that reduces tax liabilities. There is tax avoidance and tax evasion. The rich, in particular, have a strong incentive to understate their taxable incomes. Those with wealth take steps to ensure that the return comes in the form of asset appreciation, typically taxed at lower rates or not at all. Those with high salaries seek to ensure that part of their remuneration comes in forms, such as fringe benefits or stock-options which receive favorable tax treatment. Both groups may make use of tax havens that allow income to be moved beyond the reach of the national tax net. These shortcomings limit what can be said from tax data, but this does not mean that the data are worthless. Like all economic data, they measure with error the 'true' variable in which we are interested. References Atkinson, Anthony B. and Thomas Piketty (2007). Top Incomes over the Twentieth Century: A Contrast between Continental European and English-Speaking Countries (Volume 1). Oxford: Oxford University Press, 585 pp. Atkinson, Anthony B. and Thomas Piketty (2010). Top Incomes over the Twentieth Century: A Global Perspective (Volume 2). Oxford: Oxford University Press, 776 pp. Atkinson, Anthony B., Thomas Piketty and Emmanuel Saez (2011). Top Incomes in the Long Run of History, Journal of Economic Literature, 49(1), pp. 3-71. Kuznets, Simon (1953). Shares of Upper Income Groups in Income and Savings. New York: National Bureau of Economic Research, 707 pp. Piketty, Thomas (2001). Les Hauts Revenus en France au 20ème siècle. Paris: Grasset, 807 pp. Piketty, Thomas (2003). Income Inequality in France, 1901-1998, Journal of Political Economy, 111(5), pp. 1004-42.