Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset, titled "Global COVID-19 Statistics - Jan 2025," contains the latest COVID-19 statistics collected from the Worldometer website on Jan 09, 2025. The data includes crucial metrics such as the total number of cases, deaths, recoveries, and active cases for countries around the world. The information is extracted from the comprehensive table provided by Worldometer, which is widely regarded as a reliable source for real-time coronavirus statistics. Source and Collection Date Source: Worldometer Coronavirus Page Date of Collection: Jan 09, 2025
This dataset was created by atakan Demir
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F128750%2F66baee67b3e35bf9656ff816e692527e%2Fsnapshot_worldometer_july4.png?generation=1593988535797227&alt=media" alt="">
The dataset contains data about the numbers of tests, cases, deaths, serious/critical cases, active cases and recovered cases in each country for every day since April 18, and also contains the population of each country to calculate per-capita penetration of the virus
I've removed data from the "Diamond Princess" and "MS Zaandam" since they are not countries
Additionally, an auxiliray table with information about the fraction of the general population at different age groups for every country is added (taken from Wikipedia). This is specifically relevant since COVID-19 death rate is very much age dependent.
The people at "www.worldometers.info" collecting and maintaining this site really are doing very important work "https://www.worldometers.info/coronavirus/#countries">https://www.worldometers.info/coronavirus/#countries
Data about age structure for every country comes from wikipedia
It's possible to use this dataset for various purposes and analyses My goal will be to use the additional data about the number of tests performed in each country to estimate the true death and infection rates of COVID-19
UPDATED till 10/04/2020 23:59:59
Worldometer Covid-19 Data is available as csv file. Uploading it here for using it in Kaggle kernels and getting insights from the broader DS community.
(2019-nCoV) is a virus (more specifically, a coronavirus) identified as the cause of an outbreak of respiratory illness first detected in Wuhan, China. Early on, many of the patients in the outbreak in Wuhan, China reportedly had some link to a large seafood and animal market, suggesting animal-to-person spread. However, a growing number of patients reportedly have not had exposure to animal markets, indicating person-to-person spread is occurring. At this time, it’s unclear how easily or sustainably this virus is spreading between people - CDC
Country - List of countries affected by covid-19 Total Cases - Cumulative number of confirmed cases till date New Cases - New confirmed cases each day Total Deaths - Cumulative number of deaths till date New Deaths - New death cases each day Total Recovered - Cumulative number of recovered cases till date Active Cases - Cumulative number of recovered cases till date Serious, Critical - Cumulative number of Serious/Critical cases till date Tot Cases/1M pop - Cumulative number of confirmed cases till date per million population Deaths/1M pop - Cumulative number of deaths till date per million population Total Tests - Cumulative number of test till date Tests/1M pop - Cumulative number of test till date per million population
Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
This data was collected as part of a university research paper where COVID-19 cases were analysed using a cross-sectional regression model as at 17th May 2020. In order to better understand COVID-19 cases growth at a country level I decided to create a dataset containing key dates in the progression of the virus globally.
210 rows, 6 columns.
This dataset contains data relating to COVID-19 cases for 210 countries globally. Data was collected using the most recent and reliable information as at 17th May 2020. The majority of data was collected from Worldometer. https://www.worldometers.info/coronavirus/#countries
This dataset contains dates for the 1st coronavirus case, 100th coronavirus case, and (50th coronavirus case per 1 million people) for 210 countries. Data is also provided for the number of days between the 1st case and the 100th as well as the 1st case and the 50th per 1 million people.
Data prior to 15th February 2020, was not easily accessible at the country level from Worldometer. Therefore any dates prior to 15th February 2020 were not sourced from Worldometer but reputable government and local media sources.
Blanks (null values) indicate that the country in question has not reached either 50 coronavirus cases per 1 million people or 100 coronavirus cases. These were left blank.
I would like to acknowledge Worldometer for providing the vast majority of the data in this file. Worldometer is a website that provides real time statistics on topics such as coronavirus cases. Its sources include government official reports as well as trusted local media sources all of which are referenced on their website.
Hopefully this data can be used to better understand the growth of COVID-19 cases globally.
Late in December 2019, the World Health Organisation (WHO) China Country Office obtained information about severe pneumonia of an unknown cause, detected in the city of Wuhan in Hubei province, China. This later turned out to be the novel coronavirus disease (COVID-19), an infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) of the coronavirus family. The disease causes respiratory illness characterized by primary symptoms like cough, fever, and in more acute cases, difficulty in breathing. WHO later declared COVID-19 as a Pandemic because of its fast rate of spread across the Globe.
The COVID-19 datasets organized by continent contain daily level information about the COVID-19 cases in the different continents of the world. It is a time-series data and the number of cases on any given day is cumulative. The original datasets can be found on this John Hopkins University Github repository. I will be updating the COVID-19 datasets on a regular basis with every update from John Hopkins University. I have also included the World COVID-19 tests data scraped from Worldometer and 2020 world population also scraped from worldometer.
COVID-19 cases
covid19_world.csv
. It contains the cumulative number of COVID-19 cases from around the world since January 22, 2020, as compiled by John Hopkins University.
covid19_asia.csv
, covid19_africa.csv
, covid19_europe.csv
, covid19_northamerica.csv
, covid19.southamerica.csv
, covid19_oceania.csv
, and covid19_others.csv
. These contain the cumulative number of COVID-19 cases organized by the continent.
Field description - ObservationDate: Date of observation in YY/MM/DD - Country_Region: name of Country or Region - Province_State: name of Province or State - Confirmed: the number of COVID-19 confirmed cases - Deaths: the number of deaths from COVID-19 - Recovered: the number of recovered cases - Active: the number of people still infected with COVID-19 Note: Active = Confirmed - (Deaths + Recovered)
COVID-19 tests
covid19_tests.csv
. It contains the cumulative number of COVID tests data from worldometer conducted since the onset of the pandemic. Data available from June 01, 2020.
Field description Date: date in YY/MM/DD Country, Other: Country, Region, or dependency TotalTests: cumulative number of tests up till that date Population: population of Country, Region, or dependency Tests/1M pop: tests per 1 million of the population 1 Testevery X ppl: 1 test for every X number of people
2020 world population
world_population(2020).csv
. It contains the 2020 world population as reported by woldometer.
Field description Country (or dependency): Country or dependency Population (2020): population in 2020 Yearly Change: yearly change in population as a percentage Net Change: the net change in population Density(P/km2): population density Land Area(km2): land area Migrants(net): net number of migrants Fert. Rate: Fertility Rate Med. Age: median age Urban pop: urban population World Share: share of the world population as a percentage
As of May 2, 2023, the outbreak of the coronavirus disease (COVID-19) had been confirmed in almost every country in the world. The virus had infected over 687 million people worldwide, and the number of deaths had reached almost 6.87 million. The most severely affected countries include the U.S., India, and Brazil.
COVID-19: background information COVID-19 is a novel coronavirus that had not previously been identified in humans. The first case was detected in the Hubei province of China at the end of December 2019. The virus is highly transmissible and coughing and sneezing are the most common forms of transmission, which is similar to the outbreak of the SARS coronavirus that began in 2002 and was thought to have spread via cough and sneeze droplets expelled into the air by infected persons.
Naming the coronavirus disease Coronaviruses are a group of viruses that can be transmitted between animals and people, causing illnesses that may range from the common cold to more severe respiratory syndromes. In February 2020, the International Committee on Taxonomy of Viruses and the World Health Organization announced official names for both the virus and the disease it causes: SARS-CoV-2 and COVID-19, respectively. The name of the disease is derived from the words corona, virus, and disease, while the number 19 represents the year that it emerged.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
WHO declared COVID-19 as the global pandemic. Data science and research communities all over the world came together to fight against it in this tough time. This dataset contains the datewise updates of the number of confirmed, deaths, recovered, quarantine and released from quarantine cases for Bangladesh. Hopefully it will help the local community to find meaningful insight and find the pattern of the pandemic which may save millions of life.
All of data are taken from the Govt.site, WHO, DGHS and Worldometer open source data. The dataset contains all data from the date of March 1, 2020 to April 3, 2020.
Date- Specific Date
Confirmed - The number of confirmed cases
Recovered - The number of recovered cases
Deaths- The number of death cases
Quarantine - The number of quarantined cases
Released From Quarantine - The number of released quarantine cases
As the dataset contains datewise updates of the coronavirus cases in Bangladesh, feel free to prepare meaningful insights from the data. Share and collaborate to find the factors of pandemic for Bangladesh, make time series calculation and so on. Don't forget to suggest useful dataset to merge along with this dataset. Thanks.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Associated with manuscript titled: Fifty Muslim-majority countries have fewer COVID-19 cases and deaths than the 50 richest non-Muslim countriesThe objective of this research was to determine the difference in the total number of COVID-19 cases and deaths between Muslim-majority and non-Muslim countries, and investigate reasons for the disparities. Methods: The 50 Muslim-majority countries had more than 50.0% Muslims with an average of 87.5%. The non-Muslim country sample consisted of 50 countries with the highest GDP while omitting any Muslim-majority countries listed. The non-Muslim countries’ average percentage of Muslims was 4.7%. Data pulled on September 18, 2020 included the percentage of Muslim population per country by World Population Review15 and GDP per country, population count, and total number of COVID-19 cases and deaths by Worldometers.16 The data set was transferred via an Excel spreadsheet on September 23, 2020 and analyzed. To measure COVID-19’s incidence in the countries, three different Average Treatment Methods (ATE) were used to validate the results. Results published as a preprint at https://doi.org/10.31235/osf.io/84zq5(15) Muslim Majority Countries 2020 [Internet]. Walnut (CA): World Population Review. 2020- [Cited 2020 Sept 28]. Available from: http://worldpopulationreview.com/country-rankings/muslim-majority-countries (16) Worldometers.info. Worldometer. Dover (DE): Worldometer; 2020 [cited 2020 Sept 28]. Available from: http://worldometers.info
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data for COVID-19 Coronavirus Pandemic from Worldometer (March 27, 2020)
https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy
According to Cognitive Market Research, the global alcohol-based hand sanitizer market size is USD 2351.2 million in 2023 and will expand at a compound annual growth rate (CAGR) of 3.60% from 2023 to 2030.
North America held the major market of more than 40% of the global revenue with a market size of USD 940.5 million in 2023 and will grow at a compound annual growth rate (CAGR) of 1.8% from 2023 to 2030
Europe accounted for a share of over 30% of the global market size of USD 705.4 million
Asia Pacific held the market of more than 23% of the global revenue with a market size of USD 540.8 million in 2023 and will grow at a compound annual growth rate (CAGR) of 5.6% from 2023 to 2030
Latin America market of more than 5% of the global revenue with a market size of USD 117.6 million in 2023 and will grow at a compound annual growth rate (CAGR) of 3.0% from 2023 to 2030
Middle East and Africa held the major market of more than 2% of the global revenue with a market size of USD 47.02 million in 2023 and will grow at a compound annual growth rate (CAGR) of 3.3% from 2023 to 2030
Enhanced Focus on Hand Sanitization to Provide Viable Market Output
Consumer behavior has been significantly impacted by the global coronavirus outbreak, which has also encouraged consumers to improve their personal hygiene, especially their hand hygiene.
As of February 23, 2022, approximately 43 million individuals worldwide have been infected by the coronavirus, with 6.5 million cases still active and 0.59 million deaths recorded, according to Worldometer.
Source-www.worldometers.info/coronavirus/coronavirus-death-toll/
France, Russia, the United States, and the United Kingdom are the nations most badly impacted. As a result, customers became alarmed by the rising number of virus-related deaths and began paying more attention to hand hygiene as a defense against getting sick. The World Health Organization, the Centers for Disease Control and Prevention, and medical professionals everywhere advise using hand sanitizers as well. They assert that applying an alcohol-based hand rub is one of the best defenses against the virus. The alcohol-based hand sanitizer market is currently growing because of this factor.
Increasing Consciousness and Governmental Efforts to Propel Market Growth
The public's increasing awareness of the importance of hand hygiene, sparked by government and health organization campaigns, is driving a notable increase in the alcohol-based hand sanitizer industry. Consumer demand for alcohol-based hand sanitizer has surged as a result of awareness of the product's critical role in stopping the transmission of infectious diseases. The market has had significant effects from the COVID-19 pandemic. The virus is extremely contagious, thus there is an immediate need for strong disinfection procedures. The alcohol-based hand sanitizer have become a popular and practical answer to this problem. Continuous market expansion is the outcome of the pandemic's indelible habit of alcohol-based hand sanitizer use in daily routines.
Key Dynamics of
Alcohol based Hand Sanitizer Market
Key Drivers of
Alcohol based Hand Sanitizer Market
Heightened Hygiene Awareness Following the Pandemic: The COVID-19 pandemic has profoundly altered consumer habits, establishing hand hygiene as a lasting priority in homes, workplaces, and public areas. Even after the pandemic, the consistent use of hand sanitizers has become ingrained in both personal and institutional practices. Alcohol-based hand sanitizers are especially favored due to their demonstrated efficacy in eliminating 99.9% of bacteria and viruses. Health organizations such as the WHO and CDC advocate for a minimum of 60% alcohol content in sanitizers, further supporting their utilization.
Increasing Utilization in Healthcare and Commercial Settings: Hospitals, clinics, laboratories, food service sectors, and corporate offices are adopting alcohol-based sanitizers as vital tools for infection control. Hand sanitizing stations have become a common feature in commercial buildings, transportation hubs, educational institutions, and retail centers. Institutional purchasers generally buy in bulk and favor alcohol-based formulations for their rapid action and comprehensive germ protection.
Robust Product Availability Across Distribution Channels: The extensive availability of alco...
Many places around the world have experienced population growth in the past decade and even population decline due to the COVID pandemic. According to worldometer’s current statistics the global population continues to thrive reaching a little over 8 billion and still growing. Although, Kazakhstan only ranks 64 we can see that they have a decent 1.21 percent yearly change with the net change being about 225,000 to the total of 19 million. When we look at their 2021 stats from Our World in Data for birth rates and death rates per 1,000 people, we can see that they are still a growing population as the birth rate (21.54) is double the death rate (10.23). Birthrates measure the number of births in a population by using a percentage or a ratio per 1,000 people and Death rates measure using the same methods (Marston, Knox, Liverman, Del Casino, Robbins, 2019, p. 39). Not only does this contribute to the growing population, but groups of people who weren’t living there whose ethnicity is from Kazakhstan are moving back into their home country. Ethnicity is defined as a “state of belonging to a social group that has a common national or cultural tradition; socially created system of rules about who belongs to a particular group” (Marston, Knox, Liverman, Del Casino, Robbins, 2019, p. 36). Population growth isn’t necessarily a bad thing as long as it is sustainable, but for Kazakhstan population growth can be dangerous as generally they have been struggling with basic economic rights and are being directed to the northern region.
Die kumulative Zahl der bestätigten SARS CoV-2-Infektionen beläuft sich laut Worldometer bis zum 10. Juli 2023¹ auf weltweit über 691 Millionen. Darunter waren zuletzt rund 20,6 Millionen aktive Fälle. Die Zahl der Todesopfer in Zusammenhang mit dem Virus liegt bei mehr als 6,8 Millionen. Wo nahm der Corona-Ausbruch seinen Anfang? Am 31. Dezember 2019 wurde das WHO-Länderbüro China über Fälle von Lungenentzündung unbekannter Ätiologie informiert, die in der Millionenmetropole Wuhan in der Provinz Hubei festgestellt wurden. Ein neuartiges Coronavirus (SARS-CoV-2) wurde am 7. Januar von den chinesischen Behörden als das verursachende Virus identifiziert. Ursprünglicher Infektionsort war der Wuhaner Großhandelsmarkt für Fische und Meeresfrüchte, von wo sich das Virus binnen weniger Wochen erst in den Nachbarländern und dann über die ganze Welt ausbreitete. Am 11. März 2020 schließlich erklärte die WHO den Corona-Ausbruch zur globalen Pandemie. Drei Jahre später, zu Beginn des Jahres 2023 steht die Pandemie vielerorts an der Schwelle, sich zu einer Endemie zu entwickeln. Anfang Mai schließlich erklärt die WHO den internationalen Gesundheitsnotstand für beendet und hebt damit die höchste Alarmstufe auf. Die meisten Länder hatten jedoch bereits zuvor den überwiegenden Teil oder alle Corona-Schutzmaßnahmen aufgehoben. Was sind Coronaviren? Coronaviren (CoV) sind eine unter Säugetieren und Vögeln weit verbreitete Virusfamilie. Beim Menschen verursachen sie vorwiegend milde Erkältungskrankheiten, können aber mitunter schwere Lungenentzündungen hervorrufen und gar zum Tod führen. Coronaviren sind genetisch hochvariabel, und einzelne Virusspezies können durch Überwindung der Artenbarriere auch mehrere Wirtspezies infizieren. Durch solche Artübertritte sind beim Menschen unter anderem Infektionen mit dem SARS-assoziierten Coronavirus (SARS-CoV) sowie mit dem 2012 neu aufgetretenen Middle East respiratory syndrome coronavirus (MERS-CoV) entstanden. Auch die Corona-Pandemie 2019-2023 wurde durch ein neuartiges Coronavirus, dem SARS-CoV-2-Erreger, ausgelöst. Die durch diesen hervorgerufene Erkrankung erhielt den Namen COVID-19.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset, titled "Global COVID-19 Statistics - Jan 2025," contains the latest COVID-19 statistics collected from the Worldometer website on Jan 09, 2025. The data includes crucial metrics such as the total number of cases, deaths, recoveries, and active cases for countries around the world. The information is extracted from the comprehensive table provided by Worldometer, which is widely regarded as a reliable source for real-time coronavirus statistics. Source and Collection Date Source: Worldometer Coronavirus Page Date of Collection: Jan 09, 2025