7 datasets found
  1. COVID-19 cases and deaths per million in 210 countries as of July 13, 2022

    • statista.com
    Updated Jul 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). COVID-19 cases and deaths per million in 210 countries as of July 13, 2022 [Dataset]. https://www.statista.com/statistics/1104709/coronavirus-deaths-worldwide-per-million-inhabitants/
    Explore at:
    Dataset updated
    Jul 13, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

    The difficulties of death figures

    This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.

    Where are these numbers coming from?

    The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

  2. COVID-19 Tweets, Vaccination, and Deaths Data

    • kaggle.com
    zip
    Updated May 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arya Gavande (2025). COVID-19 Tweets, Vaccination, and Deaths Data [Dataset]. https://www.kaggle.com/datasets/aryagavande/covid-19-tweets-vaccination-and-deaths-data/code
    Explore at:
    zip(357725 bytes)Available download formats
    Dataset updated
    May 29, 2025
    Authors
    Arya Gavande
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    This dataset merges three distinct data sources to explore the relationship between COVID-19 death rates, vaccination efforts, and public sentiment on Twitter from December 25, 2020 to March 29, 2022. It includes 2,000 cleaned rows with 16 variables, created by combining global health statistics and social media sentiment data.

    Sources & Variables:

    1. COVID-19 Deaths Data (scraped from Worldometer - COVID-19 Deaths via BeautifulSoup):

      • Date: Date of record
      • daily_increase_percent: % change in deaths from previous day
      • Season: Derived from date (Winter, Spring, Summer, Fall)
    2. Tweet Sentiment Data : COVID Vaccine Tweets Dataset

      • Date: Tweet timestamp
      • text_sentiment: Sentiment label (positive, neutral, negative) from NLTK’s SentimentIntensityAnalyzer
      • user_verified: Whether the user is verified
      • user_since_days: Age of the Twitter account (in days)
      • country: Cleaned user location
    3. Vaccination Data : Vaccination Dataset

      • Date: Date of record
      • total_vaccinations_per_hundred: Doses per 100 people
      • daily_vaccinations: Daily dose count
      • vaccine_group: Grouped vaccine type (e.g., mRNA, Viral Vector)
      • country: Country name

    Preprocessing Summary:

    • Merged by Date and country
    • Cleaned invalid country names (e.g., “moon”, “nowhere”)
    • Standardized all datetime formats
    • Removed entries with missing or unreliable values
    • Created derived variables: Season, user_since_days, vaccine_group

    This dataset was used in a final data science project to:

    • Classify public sentiment toward vaccines using health indicators
    • Predict daily COVID-19 death counts using sentiment and vaccination data
  3. COVID-19 cases worldwide as of May 2, 2023, by country or territory

    • statista.com
    • avatarcrewapp.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, COVID-19 cases worldwide as of May 2, 2023, by country or territory [Dataset]. https://www.statista.com/statistics/1043366/novel-coronavirus-2019ncov-cases-worldwide-by-country/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    As of May 2, 2023, the outbreak of the coronavirus disease (COVID-19) had been confirmed in almost every country in the world. The virus had infected over 687 million people worldwide, and the number of deaths had reached almost 6.87 million. The most severely affected countries include the U.S., India, and Brazil.

    COVID-19: background information COVID-19 is a novel coronavirus that had not previously been identified in humans. The first case was detected in the Hubei province of China at the end of December 2019. The virus is highly transmissible and coughing and sneezing are the most common forms of transmission, which is similar to the outbreak of the SARS coronavirus that began in 2002 and was thought to have spread via cough and sneeze droplets expelled into the air by infected persons.

    Naming the coronavirus disease Coronaviruses are a group of viruses that can be transmitted between animals and people, causing illnesses that may range from the common cold to more severe respiratory syndromes. In February 2020, the International Committee on Taxonomy of Viruses and the World Health Organization announced official names for both the virus and the disease it causes: SARS-CoV-2 and COVID-19, respectively. The name of the disease is derived from the words corona, virus, and disease, while the number 19 represents the year that it emerged.

  4. COVID-19 In Denmark

    • kaggle.com
    zip
    Updated Aug 12, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christian Lillelund (2020). COVID-19 In Denmark [Dataset]. https://www.kaggle.com/christianlillelund/covid19-in-denmark
    Explore at:
    zip(11090 bytes)Available download formats
    Dataset updated
    Aug 12, 2020
    Authors
    Christian Lillelund
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    Denmark
    Description

    https://videnskab.dk/files/styles/columns_12_12_desktop/public/article_media/shutterstock_1779839909.jpg?itok=kYzSroNA%C3%97tamp=1596709364" alt="">

    Introduction

    Coronavirus disease 2019 (COVID‑19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It was first identified in December 2019 in Wuhan, Hubei, China, and has resulted in an ongoing pandemic. As of 12 August 2020, more than 20.2 million cases have been reported across 188 countries and territories, resulting in more than 741,000 deaths. More than 12.5 million people have recovered. Most people infected with the COVID-19 virus will experience mild to moderate respiratory illness and recover without requiring special treatment. Older people, and those with underlying medical problems like cardiovascular disease, diabetes, chronic respiratory disease, and cancer are more likely to develop serious illness.

    These numbers are sampled exclusively from Denmark between 11th of March 2020 and 9th of August 2020.

    Content

    This contains 10 data files:

    • Cases_by_age.csv: Current number of confirmed cases for each age group.
    • Cases_by_sex.csv: Current number of confirmed cases for men and women.
    • Deaths_over_time.csv: The death toll for each day.
    • Municipality_test_pos.csv: Number of tested and confirmed cases for each Danish municipality.
    • Newly_admitted_over_time.csv: Number of newly hospitalised people for each region per day.
    • Region_summary.csv: Number of tested and confirmed cases for each Danish region.
    • Rt_cases.csv: Reproduction rate each day. A key measure of how fast the virus is growing.
    • Rt_hospitalised.csv: Reproduction rate for hospitalised cases.
    • Test_pos_over_time.csv: Number of new positive cases over time and total tested.
    • Test_regions.csv: Number of tests done in each Danish region.

    Wiki about COVID-19 in Denmark: https://en.wikipedia.org/wiki/COVID-19_pandemic_in_Denmark Dashboard with information on COVID-19 in Denmark: https://experience.arcgis.com/experience/aa41b29149f24e20a4007a0c4e13db1d Currentcase count: https://www.worldometers.info/coronavirus/country/denmark/

  5. Data set: 50 Muslim-majority countries and 50 richest non-Muslim countries...

    • figshare.com
    txt
    Updated Jun 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ponn P Mahayosnand; Gloria Gheno (2023). Data set: 50 Muslim-majority countries and 50 richest non-Muslim countries based on GDP: Total number of COVID-19 cases and deaths on September 18, 2020 [Dataset]. http://doi.org/10.6084/m9.figshare.14034938.v2
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Ponn P Mahayosnand; Gloria Gheno
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Associated with manuscript titled: Fifty Muslim-majority countries have fewer COVID-19 cases and deaths than the 50 richest non-Muslim countriesThe objective of this research was to determine the difference in the total number of COVID-19 cases and deaths between Muslim-majority and non-Muslim countries, and investigate reasons for the disparities. Methods: The 50 Muslim-majority countries had more than 50.0% Muslims with an average of 87.5%. The non-Muslim country sample consisted of 50 countries with the highest GDP while omitting any Muslim-majority countries listed. The non-Muslim countries’ average percentage of Muslims was 4.7%. Data pulled on September 18, 2020 included the percentage of Muslim population per country by World Population Review15 and GDP per country, population count, and total number of COVID-19 cases and deaths by Worldometers.16 The data set was transferred via an Excel spreadsheet on September 23, 2020 and analyzed. To measure COVID-19’s incidence in the countries, three different Average Treatment Methods (ATE) were used to validate the results. Results published as a preprint at https://doi.org/10.31235/osf.io/84zq5(15) Muslim Majority Countries 2020 [Internet]. Walnut (CA): World Population Review. 2020- [Cited 2020 Sept 28]. Available from: http://worldpopulationreview.com/country-rankings/muslim-majority-countries (16) Worldometers.info. Worldometer. Dover (DE): Worldometer; 2020 [cited 2020 Sept 28]. Available from: http://worldometers.info

  6. Covid-19 Global Dataset

    • kaggle.com
    zip
    Updated May 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joseph Assaker (2022). Covid-19 Global Dataset [Dataset]. https://www.kaggle.com/josephassaker/covid19-global-dataset
    Explore at:
    zip(2032435 bytes)Available download formats
    Dataset updated
    May 15, 2022
    Authors
    Joseph Assaker
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    For the latest analysis and visualizations of the COVID-19 pandemic, check out my constantly updated EDA notebook here 📈.

    Context

    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the strain of coronavirus that causes coronavirus disease 2019 (COVID-19), the respiratory illness responsible for the COVID-19 pandemic.

    Since its first identification in December 2019 in Wuhan, China, this virus has taken the world by storm. Some people prefer to look at the positive side of things and how this pandemic has brought forward several positive changes. However, the collateral damages produced by this pandemic cannot be overlooked. From the Economic impact to Mental Health impacts, this pandemic period will arguably be one of the hardest periods we'll encounter in our lives. That being said, we always have to arm ourselves with hope. With the new advancements in the vaccine studies, let's hope to wake up from this nightmare as soon as possible.

    “Hope is being able to see that there is light despite all of the darkness.” – Desmond Tutu

    As for the reason for me building this dataset, it's because I couldn't get my hands on an easily digestible and up-to-date dataset of Covid-19, so, I decided to build my own using Python and web scraping techniques. I will also update this dataset as frequently as possible!

    Content

    This data was scraped from woldometers.info on 2022-05-14 by Joseph Assaker.

    225 countries are represented in this data.

    All of countries have records dating from 2020-2-15 until 2022-05-14 (820 days per country). That's with the exception of China, which has records dating from 2020-1-22 until 2022-05-14 (844 days per country), and Palau which has records dating from 2021-8-25 until 2022-05-14 (263 days per country)..

    Summary Data Columns Description:

    • country: designates the Country in which the the row's data was observed.
    • continent: designates the Continent of the observed country.
    • total_confirmed: designates the total number of confirmed cases in the observed country.
    • total_deaths: designates the total number of confirmed deaths in the observed country.
    • total_recovered: designates the total number of confirmed recoveries in the observed country.
    • active_cases: designates the number of active cases in the observed country.
    • serious_or_critical: designates the estimated number of cases in serious or critical conditions in the observed country.
    • total_cases_per_1m_population: designates the number of total cases per 1 million population in the observed country.
    • total_deaths_per_1m_population: designates the number of total deaths per 1 million population in the observed country.
    • total_tests: designates the number of total tests done in the observed country.
    • total_tests_per_1m_population: designates the number of total test done per 1 million population in the observed country.
    • population: designates the population count in the observed country.

    Daily Data Columns Description:

    • date: designates the date of observation of the row's data in YYYY-MM-DD format.
    • country: designates the Country in which the the row's data was observed.
    • cumulative_total_cases: designates the cumulative number of confirmed cases as of the row's date, for the row's country.
    • daily_new_cases: designates the daily new number of confirmed cases on the row's date, for the row's country.
    • active_cases: designates the number of active cases (i.e., confirmed cases that still didn't recover nor die) on the row's date, for the row's country.
    • cumulative_total_deaths: designates the cumulative number of confirmed deaths as of the row's date, for the row's country.
    • daily_new_deaths: designates the daily new number of confirmed deaths on the row's date, for the row's country.

    Acknowledgements

    As previously mentioned, all the data present in this dataset is scraped from worldometers.info.

    Inspiration

    Going through this data, Kagglers can visualize various trends in their own country, or compare several countries. One can also combine this dataset with other news and key points in time (lockdowns, new UK mutation, Holidays, etc.) in order to study the effects of these events on the progression of Covid-19 in a multitude of countries. Implementing time series analysis on this dataset would also be an amazing idea! Getting a deep learning algorithm to learn from this sea of data and try to predict the future turn of events could be quite interesting!

  7. Coronavirus (COVID-19) In-depth Dataset

    • kaggle.com
    zip
    Updated May 29, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pranjal Verma (2021). Coronavirus (COVID-19) In-depth Dataset [Dataset]. https://www.kaggle.com/pranjalverma08/coronavirus-covid19-indepth-dataset
    Explore at:
    zip(9882078 bytes)Available download formats
    Dataset updated
    May 29, 2021
    Authors
    Pranjal Verma
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    Context

    Covid-19 Data collected from various sources on the internet. This dataset has daily level information on the number of affected cases, deaths, and recovery from the 2019 novel coronavirus. Please note that this is time-series data and so the number of cases on any given day is the cumulative number.

    Content

    The dataset includes 28 files scrapped from various data sources mainly the John Hopkins GitHub repository, the ministry of health affairs India, worldometer, and Our World in Data website. The details of the files are as follows

    • countries-aggregated.csv A simple and cleaned data with 5 columns with self-explanatory names. -covid-19-daily-tests-vs-daily-new-confirmed-cases-per-million.csv A time-series data of daily test conducted v/s daily new confirmed case per million. Entity column represents Country name while code represents ISO code of the country. -covid-contact-tracing.csv Data depicting government policies adopted in case of contact tracing. 0 -> No tracing, 1-> limited tracing, 2-> Comprehensive tracing. -covid-stringency-index.csv The nine metrics used to calculate the Stringency Index are school closures; workplace closures; cancellation of public events; restrictions on public gatherings; closures of public transport; stay-at-home requirements; public information campaigns; restrictions on internal movements; and international travel controls. The index on any given day is calculated as the mean score of the nine metrics, each taking a value between 0 and 100. A higher score indicates a stricter response (i.e. 100 = strictest response). -covid-vaccination-doses-per-capita.csv A total number of vaccination doses administered per 100 people in the total population. This is counted as a single dose, and may not equal the total number of people vaccinated, depending on the specific dose regime (e.g. people receive multiple doses). -covid-vaccine-willingness-and-people-vaccinated-by-country.csv Survey who have not received a COVID vaccine and who are willing vs. unwilling vs. uncertain if they would get a vaccine this week if it was available to them. -covid_india.csv India specific data containing the total number of active cases, recovered and deaths statewide. -cumulative-deaths-and-cases-covid-19.csv A cumulative data containing death and daily confirmed cases in the world. -current-covid-patients-hospital.csv Time series data containing a count of covid patients hospitalized in a country -daily-tests-per-thousand-people-smoothed-7-day.csv Daily test conducted per 1000 people in a running week average. -face-covering-policies-covid.csv Countries are grouped into five categories: 1->No policy 2->Recommended 3->Required in some specified shared/public spaces outside the home with other people present, or some situations when social distancing not possible 4->Required in all shared/public spaces outside the home with other people present or all situations when social distancing not possible 5->Required outside the home at all times regardless of location or presence of other people -full-list-cumulative-total-tests-per-thousand-map.csv Full list of total tests conducted per 1000 people. -income-support-covid.csv Income support captures if the government is covering the salaries or providing direct cash payments, universal basic income, or similar, of people who lose their jobs or cannot work. 0->No income support, 1->covers less than 50% of lost salary, 2-> covers more than 50% of the lost salary. -internal-movement-covid.csv Showing government policies in restricting internal movements. Ranges from 0 to 2 where 2 represents the strictest. -international-travel-covid.csv Showing government policies in restricting international movements. Ranges from 0 to 2 where 2 represents the strictest. -people-fully-vaccinated-covid.csv Contains the count of fully vaccinated people in different countries. -people-vaccinated-covid.csv Contains the total count of vaccinated people in different countries. -positive-rate-daily-smoothed.csv Contains the positivity rate of various countries in a week running average. -public-gathering-rules-covid.csv Restrictions are given based on the size of public gatherings as follows: 0->No restrictions 1 ->Restrictions on very large gatherings (the limit is above 1000 people) 2 -> gatherings between 100-1000 people 3 -> gatherings between 10-100 people 4 -> gatherings of less than 10 people -school-closures-covid.csv School closure during Covid. -share-people-fully-vaccinated-covid.csv Share of people that are fully vaccinated. -stay-at-home-covid.csv Countries are grouped into four categories: 0->No measures 1->Recommended not to leave the house 2->Required to not leave the house with exceptions for daily exercise, grocery shopping, and ‘essent...
  8. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2022). COVID-19 cases and deaths per million in 210 countries as of July 13, 2022 [Dataset]. https://www.statista.com/statistics/1104709/coronavirus-deaths-worldwide-per-million-inhabitants/
Organization logo

COVID-19 cases and deaths per million in 210 countries as of July 13, 2022

Explore at:
163 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jul 13, 2022
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
Worldwide
Description

Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

The difficulties of death figures

This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.

Where are these numbers coming from?

The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

Search
Clear search
Close search
Google apps
Main menu