38 datasets found
  1. Worldometer Population Data

    • kaggle.com
    zip
    Updated Jul 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Subashanan Nair (2024). Worldometer Population Data [Dataset]. https://www.kaggle.com/datasets/noir1112/worldometer-population-data
    Explore at:
    zip(590905 bytes)Available download formats
    Dataset updated
    Jul 31, 2024
    Authors
    Subashanan Nair
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Dataset Description: Worldometer Data Introduction This dataset contains detailed information on the population statistics of various countries, compiled from Worldometer. It includes demographic data such as yearly population changes, migration numbers, fertility rates, and urbanization metrics over multiple years.

    Dataset Overview Total Entries: 4,104 Total Columns: 14 Columns Description country (object):

    The name of the country. Example: 'India', 'China'. year (float64):

    The year for which the data is recorded. Example: 2024, 2023. population (object):

    The total population for the given year. Example: '1,441,719,852', '1,428,627,663'. yearly_change_pct (object):

    The percentage change in population from the previous year. Example: '0.92%', '0.81%'. yearly_change (object):

    The absolute change in population from the previous year. Example: '13,092,189', '11,454,490'. migrants (object):

    The net number of migrants for the given year. Example: '-486,784', '-486,136'. median_age (object):

    The median age of the population. Example: '28.6', '28.2'. fertility_rate (object):

    The fertility rate for the given year. Example: '1.98', '2.00'. density_p_km2 (object):

    The population density per square kilometer. Example: '485', '481'. urban_pop_pct (object):

    The percentage of the population living in urban areas. Example: '36.8%', '36.3%'. urban_pop (object):

    The total urban population for the given year. Example: '530,387,142', '518,239,122'. share_of_world_pop_pct (object):

    The country's share of the world's population as a percentage. Example: '17.76%', '17.77%'. world_pop (object):

    The total world population for the given year. Example: '8,118,835,999', '8,045,311,447'. global_rank (float64):

    The global population rank of the country for the given year. Example: '1.0', '2.0'. Data Quality Missing Values:

    Some columns have missing values which need to be handled before analysis. Columns with significant missing data: year, population, yearly_change_pct, yearly_change, migrants, median_age, fertility_rate, density_p_km2, urban_pop_pct, urban_pop, share_of_world_pop_pct, world_pop, global_rank. Data Types:

    Most columns are of type object due to the presence of commas and percentage signs. Conversion to appropriate numeric types (e.g., integers, floats) is required for analysis. Potential Uses Demographic Analysis: Study population growth trends, migration patterns, and changes in fertility rates. Urbanization Studies: Analyze urban population growth and density changes over time. Global Ranking: Evaluate and compare the population statistics of different countries. Conclusion This dataset provides a comprehensive view of the world population trends over the years. Cleaning and preprocessing steps, including handling missing values and converting data types, will be necessary to prepare the data for analysis. This dataset can be valuable for researchers, demographers, and data scientists interested in population studies and demographic trends.

    File Details Filename: worldometer_data.csv Size: 4104 rows x 14 columns Format: CSV Source Website: Worldometer Scraped Using: Scrapy

  2. World Population by Countries (2025)

    • kaggle.com
    zip
    Updated Jan 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Samith Chimminiyan (2025). World Population by Countries (2025) [Dataset]. https://www.kaggle.com/datasets/samithsachidanandan/world-population-by-countries-2025
    Explore at:
    zip(9000 bytes)Available download formats
    Dataset updated
    Jan 23, 2025
    Authors
    Samith Chimminiyan
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Area covered
    World
    Description

    Description

    This Dataset contains details of World Population by country. According to the worldometer, the current population of the world is 8.2 billion people. Highest populated country is India followed by China and USA.

    Attribute Information

    • Rank : Country Rank by Population.
    • Country : Name of the Country.
    • Population(2024) : Current Population of each Country.
    • Yearly Change : Percentage Yearly Change in Population.
    • Net Change : Net change in the Population.
    • Density (P/Km²) : Population density (population per square km)
    • Land Area(Km²) : Total land area of the Country.
    • Migrants (net) : Total number of migrants.
    • Fertility Rate : Fertility rate
    • Median Age : Median age of the population
    • Urban Pop % : Percentage of urban population
    • World Share : Share to the word with population.

    Acknowledgements

    https://www.worldometers.info/world-population/population-by-country/

    Image by Gerd Altmann from Pixabay

  3. 🌍 World Population by Country 2025 (Latest)

    • kaggle.com
    zip
    Updated Oct 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Asadullah Shehbaz (2025). 🌍 World Population by Country 2025 (Latest) [Dataset]. https://www.kaggle.com/datasets/asadullahcreative/world-population-by-country-2025
    Explore at:
    zip(9275 bytes)Available download formats
    Dataset updated
    Oct 15, 2025
    Authors
    Asadullah Shehbaz
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    World
    Description

    Have you ever wondered how the population landscape of our planet looks in 2025? This dataset brings together the latest population statistics for 233 countries and territories, carefully collected from Worldometers.info — one of the most trusted global data sources.

    📊 It reveals how countries are growing, shrinking, and evolving demographically. From population density to fertility rate, from migration trends to urbanization, every number tells a story about humanity’s future.

    🌆 You can explore which nations are rapidly expanding, which are aging, and how urban populations are transforming global living patterns. This dataset includes key metrics like yearly population change, net migration, land area, fertility rate, and each country’s share of the world population.

    🧠 Ideal for data analysis, visualization, and machine learning, it can be used to study global trends, forecast population growth, or build engaging dashboards in Python, R, or Tableau. It’s also perfect for students and researchers exploring geography, demographics, or development studies.

    📈 Whether you’re analyzing Asia’s population boom, Europe’s aging curve, or Africa’s youthful surge — this dataset gives you a complete view of the world’s demographic balance in 2025. 🌎 With 233 rows and 12 insightful columns, it’s ready for your next EDA, visualization, or predictive modeling project.

    🚀 Dive in, explore the data, and uncover what the world looks like — one country at a time.

  4. Countries by population 2021 (Worldometer)

    • kaggle.com
    zip
    Updated Aug 16, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Artem Zapara (2021). Countries by population 2021 (Worldometer) [Dataset]. https://www.kaggle.com/datasets/artemzapara/countries-by-population-2021-worldometer
    Explore at:
    zip(8163 bytes)Available download formats
    Dataset updated
    Aug 16, 2021
    Authors
    Artem Zapara
    Description

    Context

    This dataset is a clean CSV file with the most recent estimates of the population of the countries according to Wolrdometer. The data is taken from the following link: https://www.worldometers.info/world-population/population-by-country/

    Content

    The data has been generated by websraping the aforementioned link on the 16th August 2021. Below is the code used to make CSV data in Python 3.8: import requests from bs4 import BeautifulSoup import pandas as pd url = "https://www.worldometers.info/world-population/population-by-country/" r = requests.get(url) soup = BeautifulSoup(r.content) countries = soup.find_all("table")[0] dataframe = pd.read_html(str(countries))[0] dataframe.to_csv("countries_by_population_2021.csv", index=False)

    Acknowledgements

    The creation of this dataset would not be possible without a team of Worldometers, a data aggregation website.

  5. World Demographic Data by Country (1955-2020)

    • zenodo.org
    csv
    Updated Nov 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ruben Deulofeu Gomez; Ruben Deulofeu Gomez (2020). World Demographic Data by Country (1955-2020) [Dataset]. http://doi.org/10.5281/zenodo.4264387
    Explore at:
    csvAvailable download formats
    Dataset updated
    Nov 9, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Ruben Deulofeu Gomez; Ruben Deulofeu Gomez
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    Demographic data set of countries of the world (1955-2020). This dataset is created using Web Scraping technics on webpage: https://www.worldometers.info/population/.

  6. Dataset World Population by Worldometer website

    • kaggle.com
    zip
    Updated Sep 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Isma Dian Damara (2025). Dataset World Population by Worldometer website [Dataset]. https://www.kaggle.com/datasets/ismadiandamara/dataset-world-population-by-worldometer-website
    Explore at:
    zip(8367 bytes)Available download formats
    Dataset updated
    Sep 15, 2025
    Authors
    Isma Dian Damara
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Area covered
    World
    Description

    This dataset was obtained through web scraping from Worldometer, a website that provides real-time global statistics. The data was collected in September 2025.

    Column Description

    • Population: The total number of inhabitants of a country in a given year.
    • Yearly Change (%): The percentage growth in population per year compared to the previous year.
    • Net Change: The difference in the number of inhabitants added each year (in numbers, not percentages).
    • Density (P/Km²): Population density, calculated as the number of people per square kilometer (people per km²).
    • Land Area (Km²): The land area of a country in square kilometers (excluding water areas).
    • Migrants (net): Net migration figures (immigrants minus emigrants). Positive → more people entering, Negative → more people leaving.
    • Fertility Rate: The average number of children born to a woman throughout her lifetime.
    • Median Age: The middle age of the population (half are younger than this number, half are older).
    • Urban Population (%): The percentage of the population living in urban areas.
    • World Share (%): The percentage of a country's population compared to the total world population.
  7. A

    SADC RVAA estimated population

    • data.amerigeoss.org
    • data.humdata.org
    xlsx
    Updated Oct 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Humanitarian Data Exchange (2021). SADC RVAA estimated population [Dataset]. https://data.amerigeoss.org/de/dataset/742ce728-ae2a-43d8-aacf-884e37e5c85a
    Explore at:
    xlsx(10475)Available download formats
    Dataset updated
    Oct 12, 2021
    Dataset provided by
    UN Humanitarian Data Exchange
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Estimated population data based on the latest United Nations Population Division estimates and http://www.worldometers.info/world-population/population-by-country/

  8. Population Dataset Country-Wise

    • kaggle.com
    zip
    Updated Oct 5, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Akshit Batra (2020). Population Dataset Country-Wise [Dataset]. https://www.kaggle.com/akshitbatra/population-dataset-countrywise
    Explore at:
    zip(229745 bytes)Available download formats
    Dataset updated
    Oct 5, 2020
    Authors
    Akshit Batra
    Description

    Context

    Learning Web Scraping in order to build my own datasets, and this is the first one in the learning process. Let's try and build great datasets in the future for better analysis and predictions.

    Content

    Scraped the data on March 10, 2020, from https://www.worldometers.info/world-population/population-by-country/ Dataset represents the population count country-wise for a specific time period.

    Acknowledgements

    Firstly, Thanks to the Content creator on the website https://www.worldometers.info, who provides reliable data on the internet. Secondly, To the Tutor who taught me how to scrape websites.

    Inspiration

    Is this dataset valuable? Where can we utilize this dataset in data science?

  9. Data set: 50 Muslim-majority countries and 50 richest non-Muslim countries...

    • figshare.com
    txt
    Updated Jun 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ponn P Mahayosnand; Gloria Gheno (2023). Data set: 50 Muslim-majority countries and 50 richest non-Muslim countries based on GDP: Total number of COVID-19 cases and deaths on September 18, 2020 [Dataset]. http://doi.org/10.6084/m9.figshare.14034938.v2
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Ponn P Mahayosnand; Gloria Gheno
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Associated with manuscript titled: Fifty Muslim-majority countries have fewer COVID-19 cases and deaths than the 50 richest non-Muslim countriesThe objective of this research was to determine the difference in the total number of COVID-19 cases and deaths between Muslim-majority and non-Muslim countries, and investigate reasons for the disparities. Methods: The 50 Muslim-majority countries had more than 50.0% Muslims with an average of 87.5%. The non-Muslim country sample consisted of 50 countries with the highest GDP while omitting any Muslim-majority countries listed. The non-Muslim countries’ average percentage of Muslims was 4.7%. Data pulled on September 18, 2020 included the percentage of Muslim population per country by World Population Review15 and GDP per country, population count, and total number of COVID-19 cases and deaths by Worldometers.16 The data set was transferred via an Excel spreadsheet on September 23, 2020 and analyzed. To measure COVID-19’s incidence in the countries, three different Average Treatment Methods (ATE) were used to validate the results. Results published as a preprint at https://doi.org/10.31235/osf.io/84zq5(15) Muslim Majority Countries 2020 [Internet]. Walnut (CA): World Population Review. 2020- [Cited 2020 Sept 28]. Available from: http://worldpopulationreview.com/country-rankings/muslim-majority-countries (16) Worldometers.info. Worldometer. Dover (DE): Worldometer; 2020 [cited 2020 Sept 28]. Available from: http://worldometers.info

  10. Population by Country - 2020

    • kaggle.com
    zip
    Updated Feb 10, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tanu N Prabhu (2020). Population by Country - 2020 [Dataset]. https://www.kaggle.com/datasets/tanuprabhu/population-by-country-2020/versions/1
    Explore at:
    zip(7616 bytes)Available download formats
    Dataset updated
    Feb 10, 2020
    Authors
    Tanu N Prabhu
    Description

    Context

    I always wanted to access a data set that was related to the world’s population (Country wise). But I could not find a properly documented data set. Rather, I just created one manually.

    Content

    Now I knew I wanted to create a dataset but I did not know how to do so. So, I started to search for the content (Population of countries) on the internet. Obviously, Wikipedia was my first search. But I don't know why the results were not acceptable. And also there were only I think 190 or more countries. So then I surfed the internet for quite some time until then I stumbled upon a great website. I think you probably have heard about this. The name of the website is Worldometer. This is exactly the website I was looking for. This website had more details than Wikipedia. Also, this website had more rows I mean more countries with their population.

    Once I got the data, now my next hard task was to download it. Of course, I could not get the raw form of data. I did not mail them regarding the data. Now I learned a new skill which is very important for a data scientist. I read somewhere that to obtain the data from websites you need to use this technique. Any guesses, keep reading you will come to know in the next paragraph.

    https://fiverr-res.cloudinary.com/images/t_main1,q_auto,f_auto/gigs/119580480/original/68088c5f588ec32a6b3a3a67ec0d1b5a8a70648d/do-web-scraping-and-data-mining-with-python.png" alt="alt text">

    You are right its, Web Scraping. Now I learned this so that I could convert the data into a CSV format. Now I will give you the scraper code that I wrote and also I somehow found a way to directly convert the pandas data frame to a CSV(Comma-separated fo format) and store it on my computer. Now just go through my code and you will know what I'm talking about.

    Below is the code that I used to scrape the code from the website

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F3200273%2Fe814c2739b99d221de328c72a0b2571e%2FCapture.PNG?generation=1581314967227445&alt=media" alt="">

    Acknowledgements

    Now I couldn't have got the data without Worldometer. So special thanks to the website. It is because of them I was able to get the data.

    Inspiration

    As far as I know, I don't have any questions to ask. You guys can let me know by finding your ways to use the data and let me know via kernel if you find something interesting

  11. Z

    Statistics Corona

    • data-staging.niaid.nih.gov
    • data.niaid.nih.gov
    Updated Apr 13, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Daniel Orbegoso (2021). Statistics Corona [Dataset]. https://data-staging.niaid.nih.gov/resources?id=zenodo_4682076
    Explore at:
    Dataset updated
    Apr 13, 2021
    Authors
    Daniel Orbegoso
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this dataset we can find information related to the population of all the countries listed in the website Worldometers. The dataset is composed, among others, with information like Country, Total Cases, New Cases or TotalDeaths. The dataset was created with the idea to implement it in any project where this information could help to fight against Covid-19.

  12. COVID-19 cases and deaths per million in 210 countries as of July 13, 2022

    • statista.com
    Updated Jul 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). COVID-19 cases and deaths per million in 210 countries as of July 13, 2022 [Dataset]. https://www.statista.com/statistics/1104709/coronavirus-deaths-worldwide-per-million-inhabitants/
    Explore at:
    Dataset updated
    Jul 13, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

    The difficulties of death figures

    This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.

    Where are these numbers coming from?

    The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

  13. Population of each country in the world 2022

    • kaggle.com
    zip
    Updated Feb 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chutikarn Wongsung (2022). Population of each country in the world 2022 [Dataset]. https://www.kaggle.com/datasets/chutikarnwongsung/population-of-each-country-in-the-world-2022/discussion
    Explore at:
    zip(8361 bytes)Available download formats
    Dataset updated
    Feb 8, 2022
    Authors
    Chutikarn Wongsung
    Area covered
    World
    Description

    Context

    This dataset was scraped from Countries in the world by population (2022) and has not been cleaned yet.

    The information is current (2022); however, the column's name was stated as 2020. This list included both countries and dependent territories. Data based on the latest United Nations Population Division estimates.

    I couldn't find the metadata of this dataset, so I tried searching the description for some columns. I apologize if there are any errors and would be happy to hear your suggestions. The list contains the following columns:

    • Country (or dependency)
    • Population (2020)
    • Yearly Change = percent changes of population compare to the previous year.
    • Net Change = the net changes of population compare to the previous year
    • Density (P/Km²) = population density (people per sq. km of land area)
    • Land Area (Km²)
    • Migrants (net) = the net number of migrants
    • Fert. Rate = fertility rate = the average number of children that would be born to a woman over her lifetime
    • Med. Age = median age
    • Urban Pop % = urban population = the total population living in areas termed as urban by that country
    • World Share = world population share by country

    Acknowledgements

    We wouldn't be here without the help of others. Special thanks to Worldometer for the information provided.

  14. Countries in the World by Population 2022

    • kaggle.com
    zip
    Updated Mar 20, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anandhu H (2022). Countries in the World by Population 2022 [Dataset]. https://www.kaggle.com/datasets/anandhuh/countries-in-the-world-by-population-2022/discussion
    Explore at:
    zip(6677 bytes)Available download formats
    Dataset updated
    Mar 20, 2022
    Authors
    Anandhu H
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Area covered
    World
    Description

    Content

    This dataset contains current estimates (live population clock), historical data, and projected figures of world countries and dependent territories. Data based on the latest United Nations Population Division estimates.

    Attribute Information

    • Country/Other - Name of countries and dependent territories.
    • Population (2020) - Population in the year 2020
    • Yearly Change - Percentage Yearly Change in Population
    • Net Change - Net Change in Population
    • Density (P/Km²)- Population density (population per square km)
    • Land Area (Km²) - Land area of countries / dependent territories.
    • Migrants (net) - Total number of migrants
    • Fert. Rate - Fertility rate
    • Med. Age - Median age of the population
    • Urban Pop %- Percentage of urban population
    • World Share - Population share

    Source

    Link : https://www.worldometers.info/world-population/population-by-country/

    Updated Covid 19 Datasets

    Link : https://www.kaggle.com/anandhuh/datasets

    If you find it useful, please support by upvoting ❤️

    Thank You

  15. Country Population Growth Predictions

    • kaggle.com
    zip
    Updated Aug 31, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nick Adair (2022). Country Population Growth Predictions [Dataset]. https://www.kaggle.com/datasets/nickadair44/country-population-growth-preditions
    Explore at:
    zip(8009 bytes)Available download formats
    Dataset updated
    Aug 31, 2022
    Authors
    Nick Adair
    License

    https://cdla.io/permissive-1-0/https://cdla.io/permissive-1-0/

    Description

    A look at current country populations according to https://www.worldometers.info/world-population/population-by-country/

    Based on these figures, I calculated One, Ten and One Hundred year predictions based on current yearly growth rates.

  16. Population by country in 2020

    • kaggle.com
    zip
    Updated Oct 21, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arkadiy Synovets (2020). Population by country in 2020 [Dataset]. https://www.kaggle.com/asynovets/population-by-country-2020
    Explore at:
    zip(7767 bytes)Available download formats
    Dataset updated
    Oct 21, 2020
    Authors
    Arkadiy Synovets
    Description

    This dataset provides data about countries' population in 2020.

    If you are interested in the source of data, here is the link: https://www.worldometers.info/world-population/.

  17. World Population by Countries 2020

    • kaggle.com
    zip
    Updated Jul 29, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Durgesh Samariya (2020). World Population by Countries 2020 [Dataset]. https://www.kaggle.com/datasets/themlphdstudent/world-population-by-countries-2020/suggestions
    Explore at:
    zip(7932 bytes)Available download formats
    Dataset updated
    Jul 29, 2020
    Authors
    Durgesh Samariya
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    Context

    Countries in the world by population (2020).

    Content

    Rank : Rank of country by population.
    Country : Name of country.
    Population : Population of country in 2020.
    YealyChange : Change in population from last year (2019) in percentage.
    NetChange: Net change in population from last year(2019).
    Density : Density of country in (P/Km²). 
    LandArea : Area of country in Km².
    Migrants : Number of migrants in 2020.
    FertilityRate : Fertility Rate in percentage in 2020.
    MedAge : Medium Age.
    UrbanPopPer : Urban Pop (%) in country.
    WorldShare : Share of population in world.
    

    Acknowledgements

    The data is scraped from the website Worldometers. Photo by Nicola Nuttall on Unsplash.

  18. Top_10_Populated_countries_1955to2050_forecasted

    • kaggle.com
    zip
    Updated Apr 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Danish Ammar (2024). Top_10_Populated_countries_1955to2050_forecasted [Dataset]. https://www.kaggle.com/datasets/danishammar/top-10-populated-countries-1955to2050-forcasted
    Explore at:
    zip(1565 bytes)Available download formats
    Dataset updated
    Apr 1, 2024
    Authors
    Danish Ammar
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    this is the data of Top 10 populated countries of world as on 30 March 2024 with history of their population from 1955. it also have forecasted population values of these countries from 2025 to 2050.

    here are the detail of columns

    1: year:1955 to 2050

    2: India: (population in millions)

    3: china: (population in millions)

    4: USA: (population in millions)

    5: Indonesia: (population in millions)

    6: Pakistan: (population in millions)

    7: Nigeria: (population in millions)

    8: Brazil: (population in millions)

    9: Bangladesh: (population in millions)

    10: Russia: (population in millions)

    11: Mexico: (population in millions)

    Acknowledgement This Dataset is created from https://www.worldometers.info/. If you want to learn more, you can visit the Website.

  19. Top 20 Countries' Population as Of 2020

    • kaggle.com
    zip
    Updated Feb 26, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Baasim Ahmed (2021). Top 20 Countries' Population as Of 2020 [Dataset]. https://www.kaggle.com/baasimahmed/top-20-countries-population-as-of-2020
    Explore at:
    zip(305309 bytes)Available download formats
    Dataset updated
    Feb 26, 2021
    Authors
    Baasim Ahmed
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    There's a story behind every dataset and here's your opportunity to share yours.

    Content

    What's inside is more than just rows and columns. Make it easy for others to get started by describing how you acquired the data and what time period it represents, too.

    Acknowledgements

    We wouldn't be here without the help of others. If you owe any attributions or thanks, include them here along with any citations of past research. Credits and Information Taken by https://www.worldometers.info/world-population/

    Inspiration

    Your data will be in front of the world's largest data science community. What questions do you want to see answered?

  20. Global Population Insights

    • kaggle.com
    zip
    Updated May 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shuvo Kumar Basak-4004 (2024). Global Population Insights [Dataset]. https://www.kaggle.com/datasets/shuvokumarbasak4004/global-population-insights
    Explore at:
    zip(744 bytes)Available download formats
    Dataset updated
    May 23, 2024
    Authors
    Shuvo Kumar Basak-4004
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    The Global Population Insights dataset offers a comprehensive overview of worldwide population demographics, encompassing key metrics such as population size, growth rate, population density, urbanization trends, and more. This dataset serves as a valuable resource for researchers, policymakers, and analysts interested in understanding the dynamics of global population trends and distributions. The data is sourced from reputable sources and is regularly updated to provide accurate and up-to-date information.

    **Source: Data is collected from Worldometers (https://www.worldometers.info/world-population/).

    Date: May 23, 2024.**

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Subashanan Nair (2024). Worldometer Population Data [Dataset]. https://www.kaggle.com/datasets/noir1112/worldometer-population-data
Organization logo

Worldometer Population Data

World population dataset scrapped from worldometer up to year 2024

Explore at:
4 scholarly articles cite this dataset (View in Google Scholar)
zip(590905 bytes)Available download formats
Dataset updated
Jul 31, 2024
Authors
Subashanan Nair
License

Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically

Description

Dataset Description: Worldometer Data Introduction This dataset contains detailed information on the population statistics of various countries, compiled from Worldometer. It includes demographic data such as yearly population changes, migration numbers, fertility rates, and urbanization metrics over multiple years.

Dataset Overview Total Entries: 4,104 Total Columns: 14 Columns Description country (object):

The name of the country. Example: 'India', 'China'. year (float64):

The year for which the data is recorded. Example: 2024, 2023. population (object):

The total population for the given year. Example: '1,441,719,852', '1,428,627,663'. yearly_change_pct (object):

The percentage change in population from the previous year. Example: '0.92%', '0.81%'. yearly_change (object):

The absolute change in population from the previous year. Example: '13,092,189', '11,454,490'. migrants (object):

The net number of migrants for the given year. Example: '-486,784', '-486,136'. median_age (object):

The median age of the population. Example: '28.6', '28.2'. fertility_rate (object):

The fertility rate for the given year. Example: '1.98', '2.00'. density_p_km2 (object):

The population density per square kilometer. Example: '485', '481'. urban_pop_pct (object):

The percentage of the population living in urban areas. Example: '36.8%', '36.3%'. urban_pop (object):

The total urban population for the given year. Example: '530,387,142', '518,239,122'. share_of_world_pop_pct (object):

The country's share of the world's population as a percentage. Example: '17.76%', '17.77%'. world_pop (object):

The total world population for the given year. Example: '8,118,835,999', '8,045,311,447'. global_rank (float64):

The global population rank of the country for the given year. Example: '1.0', '2.0'. Data Quality Missing Values:

Some columns have missing values which need to be handled before analysis. Columns with significant missing data: year, population, yearly_change_pct, yearly_change, migrants, median_age, fertility_rate, density_p_km2, urban_pop_pct, urban_pop, share_of_world_pop_pct, world_pop, global_rank. Data Types:

Most columns are of type object due to the presence of commas and percentage signs. Conversion to appropriate numeric types (e.g., integers, floats) is required for analysis. Potential Uses Demographic Analysis: Study population growth trends, migration patterns, and changes in fertility rates. Urbanization Studies: Analyze urban population growth and density changes over time. Global Ranking: Evaluate and compare the population statistics of different countries. Conclusion This dataset provides a comprehensive view of the world population trends over the years. Cleaning and preprocessing steps, including handling missing values and converting data types, will be necessary to prepare the data for analysis. This dataset can be valuable for researchers, demographers, and data scientists interested in population studies and demographic trends.

File Details Filename: worldometer_data.csv Size: 4104 rows x 14 columns Format: CSV Source Website: Worldometer Scraped Using: Scrapy

Search
Clear search
Close search
Google apps
Main menu