In 2025, there were around 1.53 billion people worldwide who spoke English either natively or as a second language, slightly more than the 1.18 billion Mandarin Chinese speakers at the time of survey. Hindi and Spanish accounted for the third and fourth most widespread languages that year. Languages in the United States The United States does not have an official language, but the country uses English, specifically American English, for legislation, regulation, and other official pronouncements. The United States is a land of immigration, and the languages spoken in the United States vary as a result of the multicultural population. The second most common language spoken in the United States is Spanish or Spanish Creole, which over than 43 million people spoke at home in 2023. There were also 3.5 million Chinese speakers (including both Mandarin and Cantonese),1.8 million Tagalog speakers, and 1.57 million Vietnamese speakers counted in the United States that year. Different languages at home The percentage of people in the United States speaking a language other than English at home varies from state to state. The state with the highest percentage of population speaking a language other than English is California. About 45 percent of its population was speaking a language other than English at home in 2023.
In 2023, around 43.37 million people in the United States spoke Spanish at home. In comparison, approximately 998,179 people were speaking Russian at home during the same year. The distribution of the U.S. population by ethnicity can be accessed here. A ranking of the most spoken languages across the world can be accessed here.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Find out which are the top 10 most spoken languages in the world according to GeoNames and preserve the data containing the information needed, as some countries get split or merged, some languages get extinct, etc.
As of February 2025, English was the most popular language for web content, with over 49.4 percent of websites using it. Spanish ranked second, with six percent of web content, while the content in the German language followed, with 5.6 percent. English as the leading online language United States and India, the countries with the most internet users after China, are also the world's biggest English-speaking markets. The internet user base in both countries combined, as of January 2023, was over a billion individuals. This has led to most of the online information being created in English. Consequently, even those who are not native speakers may use it for convenience. Global internet usage by regions As of October 2024, the number of internet users worldwide was 5.52 billion. In the same period, Northern Europe and North America were leading in terms of internet penetration rates worldwide, with around 97 percent of its populations accessing the internet.
Mexico is the country with the largest number of native Spanish speakers in the world. As of 2024, 132.5 million people in Mexico spoke Spanish with a native command of the language. Colombia was the nation with the second-highest number of native Spanish speakers, at around 52.7 million. Spain came in third, with 48 million, and Argentina fourth, with 46 million. Spanish, a world language As of 2023, Spanish ranked as the fourth most spoken language in the world, only behind English, Chinese, and Hindi, with over half a billion speakers. Spanish is the official language of over 20 countries, the majority on the American continent, nonetheless, it's also one of the official languages of Equatorial Guinea in Africa. Other countries have a strong influence, like the United States, Morocco, or Brazil, countries included in the list of non-Hispanic countries with the highest number of Spanish speakers. The second most spoken language in the U.S. In the most recent data, Spanish ranked as the language, other than English, with the highest number of speakers, with 12 times more speakers as the second place. Which comes to no surprise following the long history of migrations from Latin American countries to the Northern country. Moreover, only during the fiscal year 2022. 5 out of the top 10 countries of origin of naturalized people in the U.S. came from Spanish-speaking countries.
https://catalogue.elra.info/static/from_media/metashare/licences/ELRA_END_USER.pdfhttps://catalogue.elra.info/static/from_media/metashare/licences/ELRA_END_USER.pdf
https://catalogue.elra.info/static/from_media/metashare/licences/ELRA_VAR.pdfhttps://catalogue.elra.info/static/from_media/metashare/licences/ELRA_VAR.pdf
The GlobalPhone corpus developed in collaboration with the Karlsruhe Institute of Technology (KIT) was designed to provide read speech data for the development and evaluation of large continuous speech recognition systems in the most widespread languages of the world, and to provide a uniform, multilingual speech and text database for language independent and language adaptive speech recognition as well as for language identification tasks. The entire GlobalPhone corpus enables the acquisition of acoustic-phonetic knowledge of the following 22 spoken languages: Arabic (ELRA-S0192), Bulgarian (ELRA-S0319), Chinese-Mandarin (ELRA-S0193), Chinese-Shanghai (ELRA-S0194), Croatian (ELRA-S0195), Czech (ELRA-S0196), French (ELRA-S0197), German (ELRA-S0198), Hausa (ELRA-S0347), Japanese (ELRA-S0199), Korean (ELRA-S0200), Polish (ELRA-S0320), Portuguese (Brazilian) (ELRA-S0201), Russian (ELRA-S0202), Spanish (Latin America) (ELRA-S0203), Swahili (ELRA-S0375), Swedish (ELRA-S0204), Tamil (ELRA-S0205), Thai (ELRA-S0321), Turkish (ELRA-S0206), Ukrainian (ELRA-S0377), and Vietnamese (ELRA-S0322).In each language about 100 sentences were read from each of the 100 speakers. The read texts were selected from national newspapers available via Internet to provide a large vocabulary. The read articles cover national and international political news as well as economic news. The speech is available in 16bit, 16kHz mono quality, recorded with a close-speaking microphone (Sennheiser 440-6). The transcriptions are internally validated and supplemented by special markers for spontaneous effects like stuttering, false starts, and non-verbal effects like laughing and hesitations. Speaker information like age, gender, occupation, etc. as well as information about the recording setup complement the database. The entire GlobalPhone corpus contains over 450 hours of speech spoken by more than 2100 native adult speakers.Data is shortened by means of the shorten program written by Tony Robinson. Alternatively, the data could be delivered unshorten.The Polish part of GlobalPhone was collected from altogether 102 native speakers in Poland, of which 48 speakers were female and 54 speakers were male. The majority of speakers are between 20 and 39 years old, the age distribution ranges from 18 to 65 years. Most of the speakers are non-smokers in good health conditions. Each speaker read on average about 100 utterances from newspaper articles, in total we recorded 10130 utterances. The speech was recorded using a close-talking microphone Sennheiser HM420 in a push-to-talk scenario. All data were recorded at 16kHz and 16bit resolution in PCM format. The data collection took place in small and large rooms, about half of the recordings took place under very quiet noise conditions, the other half with moderate background noise. Information on recording place and environmental noise conditions are provided in a separate speaker session file for each speaker. The text data used for reco...
http://data.europa.eu/eli/dec/2011/833/ojhttp://data.europa.eu/eli/dec/2011/833/oj
Language is a controlled vocabulary that lists world languages and language varieties, including sign languages. Its main purpose is to support activities associated with the publication process. The full set of languages contains more than 8000 language varieties, each identified by a code equivalent to the ISO 639-3 code. Concepts are aligned with the ISO 639 international standard, which is issued in several parts: ISO 639-1 contains strictly two alphabetic letters (alpha-2), ISO 639-2/B (B = bibliographic) is used for bibliographic purpose (alpha-3), ISO 639-2/T (T = terminology) is used for technical purpose (alpha-3), ISO 639-3 covers all the languages and macro-languages of the world (alpha-3); the values are compliant with ISO 639-2/T. If an authority code is needed for a language without an assigned ISO code, an alphanumeric code is created to avoid confusion with the strictly alphabetic ISO codes. Labels are provided in all 24 official EU languages for the most frequently used languages. Language is under governance of the Interinstitutional Metadata and Formats Committee (IMFC). It is maintained by the Publications Office of the European Union and disseminated on the EU Vocabularies website. It is a corporate reference data asset covered by the Corporate Reference Data Management policy of the European Commission.
As of 2024, JavaScript and HTML/CSS were the most commonly used programming languages among software developers around the world, with more than 62 percent of respondents stating that they used JavaScript and just around 53 percent using HTML/CSS. Python, SQL, and TypeScript rounded out the top five most widely used programming languages around the world. Programming languages At a very basic level, programming languages serve as sets of instructions that direct computers on how to behave and carry out tasks. Thanks to the increased prevalence of, and reliance on, computers and electronic devices in todayâs society, these languages play a crucial role in the everyday lives of people around the world. An increasing number of people are interested in furthering their understanding of these tools through courses and bootcamps, while current developers are constantly seeking new languages and resources to learn to add to their skills. Furthermore, programming knowledge is becoming an important skill to possess within various industries throughout the business world. Job seekers with skills in Python, R, and SQL will find their knowledge to be among the most highly desirable data science skills and likely assist in their search for employment.
Papua New Guinea is the most linguistically diverse country in the world. As of 2025, it was home to 840 different languages. Indonesia ranked second with 709 languages spoken. In the United States, 335 languages were spoken in that same year.
There are over 7,000 human languages in the world. The World Atlas of Language Structures (WALS) contains information on the structure of 2,679 of them. It also includes information about where languages are used. WALS is widely-cited and used in the linguistics research community.
The World Atlas of Language Structures (WALS) is a large database of structural (phonological, grammatical, lexical) properties of languages gathered from descriptive materials (such as reference grammars) by a team of 55 authors. The atlas provides information on the location, linguistic affiliation and basic typological features of a great number of the world's languages
WALS Online is a publication of the (Max Planck Institute for Evolutionary Anthropology)[http://www.eva.mpg.de/]. It is a separate publication, edited by Dryer, Matthew S. & Haspelmath, Martin (Leipzig: Max Planck Institute for Evolutionary Anthropology, 2013) The main programmer is Robert Forkel.
This dataset includes three files:
This dataset is licensed under a Creative Commons Attribution 4.0 International License .
The World Atlas of Language Structures was edited by Matthew Dryer and Martin Haspelmath. If you use this data in your work, please include the following citation:
Dryer, Matthew S. & Haspelmath, Martin (eds.) 2013. The World Atlas of Language Structures Online. Leipzig: Max Planck Institute for Evolutionary Anthropology. (Available online at http://wals.info, Accessed on September 7, 2017.)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Advancements in deep learning have revolutionized numerous real-world applications, including image recognition, visual question answering, and image captioning. Among these, image captioning has emerged as a critical area of research, with substantial progress achieved in Arabic, Chinese, Uyghur, Hindi, and predominantly English. However, despite Urdu being a morphologically rich and widely spoken language, research in Urdu image captioning remains underexplored due to a lack of resources. This study creates a new Urdu Image Captioning Dataset (UCID) called UC-23-RY to fill in the gaps in Urdu image captioning. The Flickr30k dataset inspired the 159,816 Urdu captions in the dataset. Additionally, it suggests deep learning architectures designed especially for Urdu image captioning, including NASNetLarge-LSTM and ResNet-50-LSTM. The NASNetLarge-LSTM and ResNet-50-LSTM models achieved notable BLEU-1 scores of 0.86 and 0.84 respectively, as demonstrated through evaluation in this study accessing the modelâs impact on caption quality. Additionally, it provides useful datasets and shows how well-suited sophisticated deep learning models are for improving automatic Urdu image captioning.
https://catalogue.elra.info/static/from_media/metashare/licences/ELRA_VAR.pdfhttps://catalogue.elra.info/static/from_media/metashare/licences/ELRA_VAR.pdf
https://catalogue.elra.info/static/from_media/metashare/licences/ELRA_END_USER.pdfhttps://catalogue.elra.info/static/from_media/metashare/licences/ELRA_END_USER.pdf
The GlobalPhone corpus developed in collaboration with the Karlsruhe Institute of Technology (KIT) was designed to provide read speech data for the development and evaluation of large continuous speech recognition systems in the most widespread languages of the world, and to provide a uniform, multilingual speech and text database for language independent and language adaptive speech recognition as well as for language identification tasks. The entire GlobalPhone corpus enables the acquisition of acoustic-phonetic knowledge of the following 22 spoken languages: Arabic (ELRA-S0192), Bulgarian (ELRA-S0319), Chinese-Mandarin (ELRA-S0193), Chinese-Shanghai (ELRA-S0194), Croatian (ELRA-S0195), Czech (ELRA-S0196), French (ELRA-S0197), German (ELRA-S0198), Hausa (ELRA-S0347), Japanese (ELRA-S0199), Korean (ELRA-S0200), Polish (ELRA-S0320), Portuguese (Brazilian) (ELRA-S0201), Russian (ELRA-S0202), Spanish (Latin America) (ELRA-S0203), Swahili (ELRA-S0375), Swedish (ELRA-S0204), Tamil (ELRA-S0205), Thai (ELRA-S0321), Turkish (ELRA-S0206), Ukrainian (ELRA-S0377), and Vietnamese (ELRA-S0322).In each language about 100 sentences were read from each of the 100 speakers. The read texts were selected from national newspapers available via Internet to provide a large vocabulary. The read articles cover national and international political news as well as economic news. The speech is available in 16bit, 16kHz mono quality, recorded with a close-speaking microphone (Sennheiser 440-6). The transcriptions are internally validated and supplemented by special markers for spontaneous effects like stuttering, false starts, and non-verbal effects like laughing and hesitations. Speaker information like age, gender, occupation, etc. as well as information about the recording setup complement the database. The entire GlobalPhone corpus contains over 450 hours of speech spoken by more than 2100 native adult speakers.Data is shortened by means of the shorten program written by Tony Robinson. Alternatively, the data could be delivered unshorten.The Japanese corpus was produced using the Nikkei Shinbun newspaper. It contains recordings of 149 speakers (104 males, 44 females, 1 unspecified) recorded in Tokyo, Japan. The following age distribution has been obtained: 22 speakers are below 19, 90 speakers are between 20 and 29, 5 speakers are between 30 and 39, 2 speakers are between 40 and 49, and 1 speaker is over 50 (28 speakers age is unknown).
http://catalogue.elra.info/static/from_media/metashare/licences/ELRA_VAR.pdfhttp://catalogue.elra.info/static/from_media/metashare/licences/ELRA_VAR.pdf
http://catalogue.elra.info/static/from_media/metashare/licences/ELRA_END_USER.pdfhttp://catalogue.elra.info/static/from_media/metashare/licences/ELRA_END_USER.pdf
The GlobalPhone corpus developed in collaboration with the Karlsruhe Institute of Technology (KIT) was designed to provide read speech data for the development and evaluation of large continuous speech recognition systems in the most widespread languages of the world, and to provide a uniform, multilingual speech and text database for language independent and language adaptive speech recognition as well as for language identification tasks.
The entire GlobalPhone corpus enables the acquisition of acoustic-phonetic knowledge of the following 22 spoken languages: Arabic (ELRA-S0192), Bulgarian (ELRA-S0319), Chinese-Mandarin (ELRA-S0193), Chinese-Shanghai (ELRA-S0194), Croatian (ELRA-S0195), Czech (ELRA-S0196), French (ELRA-S0197), German (ELRA-S0198), Hausa (ELRA-S0347), Japanese (ELRA-S0199), Korean (ELRA-S0200), Polish (ELRA-S0320), Portuguese (Brazilian) (ELRA-S0201), Russian (ELRA-S0202), Spanish (Latin America) (ELRA-S0203), Swahili (ELRA-S0375), Swedish (ELRA-S0204), Tamil (ELRA-S0205), Thai (ELRA-S0321), Turkish (ELRA-S0206), Ukrainian (ELRA-S0377), and Vietnamese (ELRA-S0322).
In each language about 100 sentences were read from each of the 100 speakers. The read texts were selected from national newspapers available via Internet to provide a large vocabulary. The read articles cover national and international political news as well as economic news. The speech is available in 16bit, 16kHz mono quality, recorded with a close-speaking microphone (Sennheiser 440-6). The transcriptions are internally validated and supplemented by special markers for spontaneous effects like stuttering, false starts, and non-verbal effects like laughing and hesitations. Speaker information like age, gender, occupation, etc. as well as information about the recording setup complement the database. The entire GlobalPhone corpus contains over 450 hours of speech spoken by more than 2100 native adult speakers.
Data is shortened by means of the shorten program written by Tony Robinson. Alternatively, the data could be delivered unshorten.
The Portuguese (Brazilian) corpus was produced using the Folha de Sao Paulo newspaper. It contains recordings of 102 speakers (54 males, 48 females) recorded in Porto Velho and Sao Paulo, Brazil. The following age distribution has been obtained: 6 speakers are below 19, 58 speakers are between 20 and 29, 27 speakers are between 30 and 39, 5 speakers are between 40 and 49, and 5 speakers are over 50 (1 speaker age is unknown).
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Dataset Card for "XLingHealth"
XLingHealth is a Cross-Lingual Healthcare benchmark for clinical health inquiry that features the top four most spoken languages in the world: English, Spanish, Chinese, and Hindi.
Statistics
Dataset
HealthQA 1,134 7.72 ± 2.41 242.85 ± 221.88
LiveQA 246 41.76 ± 37.38 115.25 ± 112.75
MedicationQA 690 6.86 ± 2.83 61.50 ± 69.44
JamPatoisNLI provides the first dataset for natural language inference in a creole language, Jamaican Patois. Many of the most-spoken low-resource languages are creoles. These languages commonly have a lexicon derived from a major world language and a distinctive grammar reflecting the languages of the original speakers and the process of language birth by creolization. This gives them a distinctive place in exploring the effectiveness of transfer from large monolingual or multilingual pretrained models. While our work, along with previous work, shows that transfer from these models to low-resource languages that are unrelated to languages in their training set is not very effective, we would expect stronger results from transfer to creoles. Indeed, our experiments show considerably better results from few-shot learning of JamPatoisNLI than for such unrelated languages, and help us begin to understand how the unique relationship between creoles and their high-resource base languages affect cross-lingual transfer. JamPatoisNLI, which consists of naturally-occurring premises and expert-written hypotheses, is a step towards steering research into a traditionally underserved language and a useful benchmark for understanding cross-lingual NLP.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Advancements in deep learning have revolutionized numerous real-world applications, including image recognition, visual question answering, and image captioning. Among these, image captioning has emerged as a critical area of research, with substantial progress achieved in Arabic, Chinese, Uyghur, Hindi, and predominantly English. However, despite Urdu being a morphologically rich and widely spoken language, research in Urdu image captioning remains underexplored due to a lack of resources. This study creates a new Urdu Image Captioning Dataset (UCID) called UC-23-RY to fill in the gaps in Urdu image captioning. The Flickr30k dataset inspired the 159,816 Urdu captions in the dataset. Additionally, it suggests deep learning architectures designed especially for Urdu image captioning, including NASNetLarge-LSTM and ResNet-50-LSTM. The NASNetLarge-LSTM and ResNet-50-LSTM models achieved notable BLEU-1 scores of 0.86 and 0.84 respectively, as demonstrated through evaluation in this study accessing the modelâs impact on caption quality. Additionally, it provides useful datasets and shows how well-suited sophisticated deep learning models are for improving automatic Urdu image captioning.
https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order
The Mandarin Learning market has seen significant growth over the past decade, reflecting the increasing global interest in China as a major economic powerhouse and cultural influencer. With Mandarin being the most spoken language in the world, the demand for Mandarin language education has spiked, creating a divers
Japan Centre of Excellence (JACEEX), is a brand under Jaceex Ventures LLP. Jaceex has been formed with a vision to create a world class workforce with skill sets, work and business ethics, sincerity and devotion as well as other great positive traits found in the Japanese workforce which has been responsible for having built world class Enterprises. For the Indian Students and youths stepping into this world, our objective is to provide life changing opportunity in the form of skill and work in Japan Japan Centre of Excellence (JACEEX) provides an integrated course schedule of learning through exploration, scrutiny and self reflection. We are offering Japanese Language and Culture training-Basic, Intermediate and High Levels. Our training is designed to make the trainee eligible to certify themselves with the globally recognised Japanese Language Proficiency Test (JLPT) Examination . This will help in building careers with Japanese companies in Japan , in India and also self employment.We also have the facility of Virtual Live class platform
There are over 500 known languages in Nigeria. While the official language is English, its use is largely confined to urban elites. The most commonly used languages are Hausa, Yoruba, Igbo (Ibo) and Fulfulde. Edo, Efik, Adamawa Fulfulde, Idoma, and Central Kanuri are also widely spoken. The area of greatest diversity is the âMiddle Beltâ, the band of territory stretching across the country between the large language blocs of the north and the south. The reason for this diversity remains unclear, but three of Africa's four language families meet in the Middle Belt of Nigeria. This has had sociolinguistic consequences where frequent conflicts have erupted between the culture and language of particular groups.
ISO3 - International Organization for Standardization 3-digit country code
LANG_FAM - Language family
LANG_SUBGP - Language sub-family
SOURCE_DT - Primary source creation date
SOURCE - Primary source
Collection
This shapefile created by using Anthromapper consists of language layers that have been based on The World Language Mapping System (WLMS). Geographical terrain features, combined with a watershed model, were also used to predict the likely extent of ethnic and linguistic influence. The HGIS and metadata were supplemented with anthropological information from peer-reviewed journals and published books. The interpretation of names often produces multiple spellings of the same language; therefore similarly spelled or phonetic titles may be referencing the same language group.
The data included herein have not been derived from a registered survey and should be considered approximate unless otherwise defined. While rigorous steps have been taken to ensure the quality of each dataset, DigitalGlobe Analytics is not responsible for the accuracy and completeness of data compiled from outside sources.
Sources (HGIS)
Anthromapper. DigitalGlobe Analytics, April 2013.
World Language Mapping System (WLMS) Version 16. World GeoDatasets, April 2013.
Sources (Metadata)
Roger, Blench. "Position Paper: The Dimensions of Ethnicity, Language, and Culture in Nigeria." Last modified 2013. Accessed March 26, 2013. http://www.rogerblench.info.
Roger, Blench. âThe Status of the Languages of Central Nigeria.â Last modified 2013. Accessed March 26, 2013. http://www.rogerblench.info.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Advancements in deep learning have revolutionized numerous real-world applications, including image recognition, visual question answering, and image captioning. Among these, image captioning has emerged as a critical area of research, with substantial progress achieved in Arabic, Chinese, Uyghur, Hindi, and predominantly English. However, despite Urdu being a morphologically rich and widely spoken language, research in Urdu image captioning remains underexplored due to a lack of resources. This study creates a new Urdu Image Captioning Dataset (UCID) called UC-23-RY to fill in the gaps in Urdu image captioning. The Flickr30k dataset inspired the 159,816 Urdu captions in the dataset. Additionally, it suggests deep learning architectures designed especially for Urdu image captioning, including NASNetLarge-LSTM and ResNet-50-LSTM. The NASNetLarge-LSTM and ResNet-50-LSTM models achieved notable BLEU-1 scores of 0.86 and 0.84 respectively, as demonstrated through evaluation in this study accessing the modelâs impact on caption quality. Additionally, it provides useful datasets and shows how well-suited sophisticated deep learning models are for improving automatic Urdu image captioning.
In 2025, there were around 1.53 billion people worldwide who spoke English either natively or as a second language, slightly more than the 1.18 billion Mandarin Chinese speakers at the time of survey. Hindi and Spanish accounted for the third and fourth most widespread languages that year. Languages in the United States The United States does not have an official language, but the country uses English, specifically American English, for legislation, regulation, and other official pronouncements. The United States is a land of immigration, and the languages spoken in the United States vary as a result of the multicultural population. The second most common language spoken in the United States is Spanish or Spanish Creole, which over than 43 million people spoke at home in 2023. There were also 3.5 million Chinese speakers (including both Mandarin and Cantonese),1.8 million Tagalog speakers, and 1.57 million Vietnamese speakers counted in the United States that year. Different languages at home The percentage of people in the United States speaking a language other than English at home varies from state to state. The state with the highest percentage of population speaking a language other than English is California. About 45 percent of its population was speaking a language other than English at home in 2023.