Facebook
TwitterThe COVID-19 pandemic increased the global death rate, reaching *** in 2021, but had little to no significant impact on birth rates, causing population growth to dip slightly. On a global level, population growth is determined by the difference between the birth and death rates, known as the rate of natural change. On a national or regional level, migration also affects population change. Ongoing trends Since the middle of the 20th century, the global birth rate has been well above the global death rate; however, the gap between these figures has grown closer in recent years. The death rate is projected to overtake the birth rate in the 2080s, which means that the world's population will then go into decline. In the future, death rates will increase due to ageing populations across the world and a plateau in life expectancy. Why does this change? There are many reasons for the decline in death and birth rates in recent decades. Falling death rates have been driven by a reduction in infant and child mortality, as well as increased life expectancy. Falling birth rates were also driven by the reduction in child mortality, whereby mothers would have fewer children as survival rates rose - other factors include the drop in child marriage, improved contraception access and efficacy, and women choosing to have children later in life.
Facebook
TwitterAs of 2023, the countries with the highest death rates worldwide were Monaco, Bulgaria, and Latvia. In these countries, there were ** to ** deaths per 1,000 people. The country with the lowest death rate is Qatar, where there is just *** death per 1,000 people. Leading causes of death The leading causes of death worldwide are, by far, cardiovascular diseases, accounting for ** percent of all deaths in 2021. That year, there were **** million deaths worldwide from ischaemic heart disease and **** million from stroke. Interestingly, a worldwide survey from that year found that people greatly underestimate the proportion of deaths caused by cardiovascular disease, but overestimate the proportion of deaths caused by suicide, interpersonal violence, and substance use disorders. Death in the United States In 2023, there were around **** million deaths in the United States. The leading causes of death in the United States are currently heart disease and cancer, accounting for a combined ** percent of all deaths in 2023. Lung and bronchus cancer is the deadliest form of cancer worldwide, as well as in the United States. In the U.S. this form of cancer is predicted to cause around ****** deaths among men alone in the year 2025. Prostate cancer is the second-deadliest cancer for men in the U.S. while breast cancer is the second deadliest for women. In 2023, the tenth leading cause of death in the United States was COVID-19. Deaths due to COVID-19 resulted in a significant rise in the total number of deaths in the U.S. in 2020 and 2021 compared to 2019, and it was the third leading cause of death in the U.S. during those years.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2022 based on 196 countries was 8.24 deaths per 1000 people. The highest value was in the Central African Republic: 55.13 deaths per 1000 people and the lowest value was in Qatar: 0.93 deaths per 1000 people. The indicator is available from 1960 to 2023. Below is a chart for all countries where data are available.
Facebook
TwitterCOVID-19 rate of death, or the known deaths divided by confirmed cases, was over ten percent in Yemen, the only country that has 1,000 or more cases. This according to a calculation that combines coronavirus stats on both deaths and registered cases for 221 different countries. Note that death rates are not the same as the chance of dying from an infection or the number of deaths based on an at-risk population. By April 26, 2022, the virus had infected over 510.2 million people worldwide, and led to a loss of 6.2 million. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. Note that Statista aims to also provide domestic source material for a more complete picture, and not to just look at one particular source. Examples are these statistics on the confirmed coronavirus cases in Russia or the COVID-19 cases in Italy, both of which are from domestic sources. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
A word on the flaws of numbers like this
People are right to ask whether these numbers are at all representative or not for several reasons. First, countries worldwide decide differently on who gets tested for the virus, meaning that comparing case numbers or death rates could to some extent be misleading. Germany, for example, started testing relatively early once the country’s first case was confirmed in Bavaria in January 2020, whereas Italy tests for the coronavirus postmortem. Second, not all people go to see (or can see, due to testing capacity) a doctor when they have mild symptoms. Countries like Norway and the Netherlands, for example, recommend people with non-severe symptoms to just stay at home. This means not all cases are known all the time, which could significantly alter the death rate as it is presented here. Third and finally, numbers like this change very frequently depending on how the pandemic spreads or the national healthcare capacity. It is therefore recommended to look at other (freely accessible) content that dives more into specifics, such as the coronavirus testing capacity in India or the number of hospital beds in the UK. Only with additional pieces of information can you get the full picture, something that this statistic in its current state simply cannot provide.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Real-time data on deaths per day worldwide
Facebook
TwitterIn 2023, Germany had an overall crude death rate of 12 per 1,000 people. In comparison, the death rate in South Korea was six per 1,000 people. This statistic represents a ranking of select developed and developing countries based on death rates as of 2023.
Facebook
TwitterThe Global Subnational Infant Mortality Rates, Version 2.01 consist of Infant Mortality Rate (IMR) estimates for 234 countries and territories, 143 of which include subnational Units. The data are benchmarked to the year 2015 (Version 1 was benchmarked to the year 2000), and are drawn from national offices, Demographic and Health Surveys (DHS), Multiple Indicator Cluster Surveys (MICS), and other sources from 2006 to 2014. In addition to Infant Mortality Rates, Version 2.01 includes crude estimates of births and infant deaths, which could be aggregated or disaggregated to different geographies to calculate infant mortality rates at different scales or resolutions, where births are the rate denominator and infant deaths are the rate numerator. Boundary inputs are derived primarily from the Gridded Population of the World, Version 4 (GPWv4) data collection. National and subnational data are mapped to grid cells at a spatial resolution of 30 arc-seconds (~1 km) (Version 1 has a spatial resolution of 1/4 degree, ~28 km at the equator), allowing for easy integration with demographic, environmental, and other spatial data.
Facebook
TwitterNumber of deaths and mortality rates, by age group, sex, and place of residence, 1991 to most recent year.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
France FR: Death Rate: Crude: per 1000 People data was reported at 8.800 Ratio in 2016. This records a decrease from the previous number of 8.900 Ratio for 2015. France FR: Death Rate: Crude: per 1000 People data is updated yearly, averaging 9.500 Ratio from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 11.400 Ratio in 1960 and a record low of 8.300 Ratio in 2007. France FR: Death Rate: Crude: per 1000 People data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s France – Table FR.World Bank.WDI: Population and Urbanization Statistics. Crude death rate indicates the number of deaths occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;
Facebook
TwitterThe Poverty Mapping Project: Global Subnational Infant Mortality Rates data set consists of estimates of infant mortality rates for the year 2000. The infant mortality rate for a region or country is defined as the number of children who die before their first birthday for every 1,000 live births. The data products include a shapefile (vector data) of rates, grids (raster data) of rates (per 10,000 live births in order to preserve precision in integer format), births (the rate denominator) and deaths (the rate numerator), and a tabular data set of the same and associated data. Over 10,000 national and subnational Units are represented in the tabular and grid data sets, while the shapefile uses approximately 1,000 Units in order to protect the intellectual property of source data sets for Brazil, China, and Mexico. This data set is produced by the Columbia University Center for International Earth Science Information Network (CIESIN).
Facebook
TwitterThis dataset was created by akfaliq
Facebook
TwitterBased on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Trends in Covid total deaths per million. The latest data for over 100 countries around the world.
Facebook
Twitterhttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasetshttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasets
Title: Mortality Rate (Under-5, Per 1000 Live Births)
Subtitle: Exploring global trends in child survival and health advancements.
Detailed Description:
This dataset contains the under-5 mortality rate, measured as the number of deaths per 1,000 live births for children under five years of age. Sourced from the World Bank, it highlights progress in child survival and health outcomes globally over decades.
Key Highlights: - Annual data for countries worldwide. - Metric: Mortality rate (under-5, per 1000 live births). - Use cases: Analyze trends, compare regional disparities, and correlate mortality rates with health and economic indicators.
Data Cleaning:
Visualizations:
Descriptive Analysis:
Create a Kaggle notebook with: 1. Data Cleaning: Show how missing or inconsistent values are handled. 2. EDA: Include visualizations like heatmaps, scatterplots, and line charts. 3. Insights: Highlight significant findings, such as countries with notable improvements in child survival. 4. Optional Predictive Modeling: Use regression or time-series models to project future trends.
GitHub Link: https://github.com/yourusername/Under5_Mortality_Trends
Kaggle Link: https://www.kaggle.com/datasets/yourusername/under5-mortality-rate
Post Title:
📉 Global Trends in Under-5 Mortality Rates 🌍
Post Body:
I’m excited to share my latest dataset on under-5 mortality rates (per 1,000 live births), sourced from the World Bank. This dataset highlights progress in global health and child survival, spanning decades and covering countries worldwide.
📂 Explore the Dataset:
- GitHub Repository: https://github.com/yourusername/Under5_Mortality_Trends
- Kaggle Dataset: https://www.kaggle.com/datasets/yourusername/under5-mortality-rate
Child survival is a fundamental measure of global health progress. This dataset is ideal for:
- Trend Analysis: Explore how under-5 mortality rates have evolved globally.
- Regional Comparisons: Identify disparities in child survival rates across regions.
- Correlations: Study the relationship between mortality rates and economic indicators like healthcare expenditure or GDP per capita.
📈 Get Involved:
- Use the dataset for your own analyses and visualizations.
- Share your insights and findings.
- Upvote the Kaggle dataset to help others discover it!
❓ What trends or correlations do you find in the data?
- Which country or region has shown the most improvement?
- What factors would you analyze further?
Let me know your thoughts, and feel free to share this resource with others who might benefit! 🌟
Let me know if you'd like assistance with EDA or visualization templates!
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The World Health Organization reported 6932591 Coronavirus Deaths since the epidemic began. In addition, countries reported 766440796 Coronavirus Cases. This dataset provides - World Coronavirus Deaths- actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for CORONAVIRUS DEATHS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Canada CA: Mortality Rate: Under-5: Female: per 1000 Live Births data was reported at 4.700 Ratio in 2023. This stayed constant from the previous number of 4.700 Ratio for 2022. Canada CA: Mortality Rate: Under-5: Female: per 1000 Live Births data is updated yearly, averaging 7.000 Ratio from Dec 1960 (Median) to 2023, with 64 observations. The data reached an all-time high of 28.600 Ratio in 1960 and a record low of 4.700 Ratio in 2023. Canada CA: Mortality Rate: Under-5: Female: per 1000 Live Births data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Canada – Table CA.World Bank.WDI: Social: Health Statistics. Under-five mortality rate, female is the probability per 1,000 that a newborn female baby will die before reaching age five, if subject to female age-specific mortality rates of the specified year.;Estimates developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.;Weighted average;Given that data on the incidence and prevalence of diseases are frequently unavailable, mortality rates are often used to identify vulnerable populations. Moreover, they are among the indicators most frequently used to compare socioeconomic development across countries. Under-five mortality rates are higher for boys than for girls in countries in which parental gender preferences are insignificant. Under-five mortality captures the effect of gender discrimination better than infant mortality does, as malnutrition and medical interventions have more significant impacts to this age group. Where female under-five mortality is higher, girls are likely to have less access to resources than boys. Aggregate data for LIC, UMC, LMC, HIC are computed based on the groupings for the World Bank fiscal year in which the data was released by the UN Inter-agency Group for Child Mortality Estimation. This is a sex-disaggregated indicator for Sustainable Development Goal 3.2.1 [https://unstats.un.org/sdgs/metadata/].
Facebook
TwitterThe deadliest energy source worldwide is coal. It is estimated that there are roughly 33 deaths from brown coal (also known as Lignite) and 25 deaths from coal per terawatt-hour (TWh) of electricity produced from these fossil fuels. While figures take into account accidents, the majority of deaths associated with coal come from air pollution. Air pollution deaths from fossil fuels Air pollution from coal-fired plants has been of growing concern as it has been linked to asthma, cancer, and heart disease. Burning coal can release toxic airborne pollutants such as mercury, sulfur dioxide, nitrogen oxides, and particulate matter. Eastern Asia accounts for roughly 31 percent of global deaths attributable to exposure to fine particulate matter (PM2.5) generated by fossil fuel combustion, which is perhaps unsurprising given the fact China and India are the two largest coal consumers in the world. Safest energy source Clean and renewable energy sources are unsurprisingly the least deadly energy sources, with 0.04 and 0.02 deaths associated with wind and solar per unit of electricity, respectively. Nuclear energy also has a low death rate, even after the inclusion of nuclear catastrophes like Chernobyl and Fukushima.
Facebook
TwitterThese datasets contain information about worldwide causes of death and also mortality rate for cardiovascular diseases.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
France FR: Mortality Rate Attributed to Unintentional Poisoning: Male: per 100,000 Male Population data was reported at 0.300 Ratio in 2016. This records a decrease from the previous number of 0.400 Ratio for 2015. France FR: Mortality Rate Attributed to Unintentional Poisoning: Male: per 100,000 Male Population data is updated yearly, averaging 0.400 Ratio from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 0.500 Ratio in 2000 and a record low of 0.300 Ratio in 2016. France FR: Mortality Rate Attributed to Unintentional Poisoning: Male: per 100,000 Male Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s France – Table FR.World Bank: Health Statistics. Mortality rate attributed to unintentional poisonings is the number of male deaths from unintentional poisonings in a year per 100,000 male population. Unintentional poisoning can be caused by household chemicals, pesticides, kerosene, carbon monoxide and medicines, or can be the result of environmental contamination or occupational chemical exposure.; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted average;
Facebook
TwitterThe COVID-19 pandemic increased the global death rate, reaching *** in 2021, but had little to no significant impact on birth rates, causing population growth to dip slightly. On a global level, population growth is determined by the difference between the birth and death rates, known as the rate of natural change. On a national or regional level, migration also affects population change. Ongoing trends Since the middle of the 20th century, the global birth rate has been well above the global death rate; however, the gap between these figures has grown closer in recent years. The death rate is projected to overtake the birth rate in the 2080s, which means that the world's population will then go into decline. In the future, death rates will increase due to ageing populations across the world and a plateau in life expectancy. Why does this change? There are many reasons for the decline in death and birth rates in recent decades. Falling death rates have been driven by a reduction in infant and child mortality, as well as increased life expectancy. Falling birth rates were also driven by the reduction in child mortality, whereby mothers would have fewer children as survival rates rose - other factors include the drop in child marriage, improved contraception access and efficacy, and women choosing to have children later in life.