Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Abstract: Supplement of the article Grothe O, Kaplan A, Kouz K, Saugel B. "Computer program for error grid analysis in arterial blood pressure method comparison studies" to provide the error grid analysis suggested in Saugel B, Grothe O, Nicklas JY. "Error Grid Analysis for Arterial Pressure Method Comparison Studies. Anesthesia and analgesia 2018;126:1177-85. TechnicalRemarks: Detailed information for usage is provided in the article. Cite this as Grothe, Oliver, Kaplan, Anika, Kouz, Karim, Saugel, Bernd (2023). Dataset: Software and example data for error grid analysis. https://doi.org/10.35097/1179 DOI retrieved: 2023
The experiment here was to demonstrate that we can reliably measure the Reference Waveforms designed in the IEEE P1765 proposed standard and calculate EVM along with the associated uncertainties. The measurements were performed using NIST's calibrated sampling oscilloscope and were traceable to the primary standards.We have uploaded the following two datasets. (1) Table 3 contains the EVM values (in %) for the Reference Waveforms 1--7 after performing the uncertainty analyses. The Monte Carlo means are also compared with the ideal values from the calculations in the IEEE P1765 standard.(2) Figure 3 shows the complete EVM distribution upon performing uncertainty analysis for Reference Waveform 3 as an example. Each of the entries in Table 3 is associated with an EVM distribution similar to that shown in Fig. 3.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Sample data for exercises in Further Adventures in Data Cleaning.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Mean absolute error of the standard error of the estimated log odds ratio calculated from the proposed method and two naive methods.
The Medicare Fee-for-Service (FFS) Comprehensive Error Rate Testing (CERT) dataset provides information on a random sample of FFS claims to determine if they were paid properly under Medicare coverage, coding, and payment rules. The dataset contains information on type of FFS claim, Diagnosis Related Group (DRG) and Healthcare Common Procedure Coding System (HCPCS) codes, provider type, type of bill, review decision, and error code.
Please note, each reporting year (RY) contains claims submitted July 1 two years before the report through June 30 one year before the report. For example, the 2024 data contains claims submitted July 1, 2022 through June 30, 2023.
This layer contains 2010-2014 American Community Survey (ACS) 5-year data, and contains estimates and margins of error. The layer shows children by age group by parents' labor force participation. This is shown by tract, county, and state boundaries. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.This layer is symbolized to show the percent of children with no available (residential) parent in the labor force. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Vintage: 2010-2014ACS Table(s): B23008 Data downloaded from: Census Bureau's API for American Community Survey Date of API call: November 11, 2020National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer has associated layers containing the most recent ACS data available by the U.S. Census Bureau. Click here to learn more about ACS data releases and click here for the associated boundaries layer. The reason this data is 5+ years different from the most recent vintage is due to the overlapping of survey years. It is recommended by the U.S. Census Bureau to compare non-overlapping datasets.Boundaries come from the US Census TIGER geodatabases. Boundary vintage (2014) appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2023 American Community Survey 1-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We introduce a “backward” Bayesian method to assist sponsors formulating early phase Go/No-Go criteria based on the ultimate efficacy or safety target which is usually clearer for Phase 3. Derived from the definition of success for Phase 3, involving prior information and cost of later phases, this work presents the quantitative relationships among the following factors: previous and current study results, study designs (e.g., sample size, duration, or dose), true effect, target probability of success (PoS), expected financial loss, expected probability of terminating a potentially successful asset. An example is given to demonstrate how to accomplish these objectives for an exponential model describing the trajectory of weight loss. The expected loss and the probability of terminating a valuable compound are plotted against a range of criteria. The sponsors can then optimize the Go/No-Go criteria based on their tolerance for their objectives. This method can also be generalized to other nonlinear models. A byproduct of this work is to highlight the naivety of conventional gut feeling approaches in early internal decision making process by explicitly identifying the necessary, albeit elaborate, information and assumptions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Bayes’ estimates and posterior standard deviations for logistic model: Sex ∼ age + weight + age * weight under the three measurement protocols. Coefficients are on the log-odds scale.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Bad Axe population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Bad Axe. The dataset can be utilized to understand the population distribution of Bad Axe by age. For example, using this dataset, we can identify the largest age group in Bad Axe.
Key observations
The largest age group in Bad Axe, MI was for the group of age 60 to 64 years years with a population of 278 (9.19%), according to the ACS 2018-2022 5-Year Estimates. At the same time, the smallest age group in Bad Axe, MI was the 75 to 79 years years with a population of 59 (1.95%). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Bad Axe Population by Age. You can refer the same here
In order to develop various methods of comparable data collection on health and health system responsiveness WHO started a scientific survey study in 2000-2001. This study has used a common survey instrument in nationally representative populations with modular structure for assessing health of indviduals in various domains, health system responsiveness, household health care expenditures, and additional modules in other areas such as adult mortality and health state valuations.
The health module of the survey instrument was based on selected domains of the International Classification of Functioning, Disability and Health (ICF) and was developed after a rigorous scientific review of various existing assessment instruments. The responsiveness module has been the result of ongoing work over the last 2 years that has involved international consultations with experts and key informants and has been informed by the scientific literature and pilot studies.
Questions on household expenditure and proportionate expenditure on health have been borrowed from existing surveys. The survey instrument has been developed in multiple languages using cognitive interviews and cultural applicability tests, stringent psychometric tests for reliability (i.e. test-retest reliability to demonstrate the stability of application) and most importantly, utilizing novel psychometric techniques for cross-population comparability.
The study was carried out in 61 countries completing 71 surveys because two different modes were intentionally used for comparison purposes in 10 countries. Surveys were conducted in different modes of in- person household 90 minute interviews in 14 countries; brief face-to-face interviews in 27 countries and computerized telephone interviews in 2 countries; and postal surveys in 28 countries. All samples were selected from nationally representative sampling frames with a known probability so as to make estimates based on general population parameters.
The survey study tested novel techniques to control the reporting bias between different groups of people in different cultures or demographic groups ( i.e. differential item functioning) so as to produce comparable estimates across cultures and groups. To achieve comparability, the selfreports of individuals of their own health were calibrated against well-known performance tests (i.e. self-report vision was measured against standard Snellen's visual acuity test) or against short descriptions in vignettes that marked known anchor points of difficulty (e.g. people with different levels of mobility such as a paraplegic person or an athlete who runs 4 km each day) so as to adjust the responses for comparability . The same method was also used for self-reports of individuals assessing responsiveness of their health systems where vignettes on different responsiveness domains describing different levels of responsiveness were used to calibrate the individual responses.
This data are useful in their own right to standardize indicators for different domains of health (such as cognition, mobility, self care, affect, usual activities, pain, social participation, etc.) but also provide a better measurement basis for assessing health of the populations in a comparable manner. The data from the surveys can be fed into composite measures such as "Healthy Life Expectancy" and improve the empirical data input for health information systems in different regions of the world. Data from the surveys were also useful to improve the measurement of the responsiveness of different health systems to the legitimate expectations of the population.
Sample survey data [ssd]
Provinces of Indonesia have been selected according to level of development and the rural-urban distribution. The postal department maintains a list of zip codes in the country. Zip codes were selected across cities and villages in these provinces. Local post offices co-operated and picked 10 households from each of the zip code regions (approximately every 6th ) and hand delivered the letters to these households. The postman wrote the name of the respondent on the letter while delivering and then collected them back after a few days.
Mail Questionnaire [mail]
Data Coding At each site the data was coded by investigators to indicate the respondent status and the selection of the modules for each respondent within the survey design. After the interview was edited by the supervisor and considered adequate it was entered locally.
Data Entry Program A data entry program was developed in WHO specifically for the survey study and provided to the sites. It was developed using a database program called the I-Shell (short for Interview Shell), a tool designed for easy development of computerized questionnaires and data entry (34). This program allows for easy data cleaning and processing.
The data entry program checked for inconsistencies and validated the entries in each field by checking for valid response categories and range checks. For example, the program didn’t accept an age greater than 120. For almost all of the variables there existed a range or a list of possible values that the program checked for.
In addition, the data was entered twice to capture other data entry errors. The data entry program was able to warn the user whenever a value that did not match the first entry was entered at the second data entry. In this case the program asked the user to resolve the conflict by choosing either the 1st or the 2nd data entry value to be able to continue. After the second data entry was completed successfully, the data entry program placed a mark in the database in order to enable the checking of whether this process had been completed for each and every case.
Data Transfer The data entry program was capable of exporting the data that was entered into one compressed database file which could be easily sent to WHO using email attachments or a file transfer program onto a secure server no matter how many cases were in the file. The sites were allowed the use of as many computers and as many data entry personnel as they wanted. Each computer used for this purpose produced one file and they were merged once they were delivered to WHO with the help of other programs that were built for automating the process. The sites sent the data periodically as they collected it enabling the checking procedures and preliminary analyses in the early stages of the data collection.
Data quality checks Once the data was received it was analyzed for missing information, invalid responses and representativeness. Inconsistencies were also noted and reported back to sites.
Data Cleaning and Feedback After receipt of cleaned data from sites, another program was run to check for missing information, incorrect information (e.g. wrong use of center codes), duplicated data, etc. The output of this program was fed back to sites regularly. Mainly, this consisted of cases with duplicate IDs, duplicate cases (where the data for two respondents with different IDs were identical), wrong country codes, missing age, sex, education and some other important variables.
This layer contains 2010-2014 American Community Survey (ACS) 5-year data, and contains estimates and margins of error. The layer shows health insurance coverage sex and race by age group. This is shown by tract, county, and state boundaries. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Sums may add to more than the total, as people can be in multiple race groups (for example, Hispanic and Black). Later vintages of this layer have a different age group for children that includes age 18. This layer is symbolized to show the percent of population with no health insurance coverage. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Vintage: 2010-2014ACS Table(s): B27010, C27001B, C27001C, C27001D, C27001E, C27001F, C27001G, C27001H, C27001I (Not all lines of these tables are available in this layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: November 28, 2020National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer has associated layers containing the most recent ACS data available by the U.S. Census Bureau. Click here to learn more about ACS data releases and click here for the associated boundaries layer. The reason this data is 5+ years different from the most recent vintage is due to the overlapping of survey years. It is recommended by the U.S. Census Bureau to compare non-overlapping datasets.Boundaries come from the US Census TIGER geodatabases. Boundary vintage (2014) appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
In order to develop various methods of comparable data collection on health and health system responsiveness WHO started a scientific survey study in 2000-2001. This study has used a common survey instrument in nationally representative populations with modular structure for assessing health of indviduals in various domains, health system responsiveness, household health care expenditures, and additional modules in other areas such as adult mortality and health state valuations.
The health module of the survey instrument was based on selected domains of the International Classification of Functioning, Disability and Health (ICF) and was developed after a rigorous scientific review of various existing assessment instruments. The responsiveness module has been the result of ongoing work over the last 2 years that has involved international consultations with experts and key informants and has been informed by the scientific literature and pilot studies.
Questions on household expenditure and proportionate expenditure on health have been borrowed from existing surveys. The survey instrument has been developed in multiple languages using cognitive interviews and cultural applicability tests, stringent psychometric tests for reliability (i.e. test-retest reliability to demonstrate the stability of application) and most importantly, utilizing novel psychometric techniques for cross-population comparability.
The study was carried out in 61 countries completing 71 surveys because two different modes were intentionally used for comparison purposes in 10 countries. Surveys were conducted in different modes of in- person household 90 minute interviews in 14 countries; brief face-to-face interviews in 27 countries and computerized telephone interviews in 2 countries; and postal surveys in 28 countries. All samples were selected from nationally representative sampling frames with a known probability so as to make estimates based on general population parameters.
The survey study tested novel techniques to control the reporting bias between different groups of people in different cultures or demographic groups ( i.e. differential item functioning) so as to produce comparable estimates across cultures and groups. To achieve comparability, the selfreports of individuals of their own health were calibrated against well-known performance tests (i.e. self-report vision was measured against standard Snellen's visual acuity test) or against short descriptions in vignettes that marked known anchor points of difficulty (e.g. people with different levels of mobility such as a paraplegic person or an athlete who runs 4 km each day) so as to adjust the responses for comparability . The same method was also used for self-reports of individuals assessing responsiveness of their health systems where vignettes on different responsiveness domains describing different levels of responsiveness were used to calibrate the individual responses.
This data are useful in their own right to standardize indicators for different domains of health (such as cognition, mobility, self care, affect, usual activities, pain, social participation, etc.) but also provide a better measurement basis for assessing health of the populations in a comparable manner. The data from the surveys can be fed into composite measures such as "Healthy Life Expectancy" and improve the empirical data input for health information systems in different regions of the world. Data from the surveys were also useful to improve the measurement of the responsiveness of different health systems to the legitimate expectations of the population.
Sample survey data [ssd]
Face-to-face [f2f]
Data Coding At each site the data was coded by investigators to indicate the respondent status and the selection of the modules for each respondent within the survey design. After the interview was edited by the supervisor and considered adequate it was entered locally.
Data Entry Program A data entry program was developed in WHO specifically for the survey study and provided to the sites. It was developed using a database program called the I-Shell (short for Interview Shell), a tool designed for easy development of computerized questionnaires and data entry (34). This program allows for easy data cleaning and processing.
The data entry program checked for inconsistencies and validated the entries in each field by checking for valid response categories and range checks. For example, the program didn’t accept an age greater than 120. For almost all of the variables there existed a range or a list of possible values that the program checked for.
In addition, the data was entered twice to capture other data entry errors. The data entry program was able to warn the user whenever a value that did not match the first entry was entered at the second data entry. In this case the program asked the user to resolve the conflict by choosing either the 1st or the 2nd data entry value to be able to continue. After the second data entry was completed successfully, the data entry program placed a mark in the database in order to enable the checking of whether this process had been completed for each and every case.
Data Transfer The data entry program was capable of exporting the data that was entered into one compressed database file which could be easily sent to WHO using email attachments or a file transfer program onto a secure server no matter how many cases were in the file. The sites were allowed the use of as many computers and as many data entry personnel as they wanted. Each computer used for this purpose produced one file and they were merged once they were delivered to WHO with the help of other programs that were built for automating the process. The sites sent the data periodically as they collected it enabling the checking procedures and preliminary analyses in the early stages of the data collection.
Data quality checks Once the data was received it was analyzed for missing information, invalid responses and representativeness. Inconsistencies were also noted and reported back to sites.
Data Cleaning and Feedback After receipt of cleaned data from sites, another program was run to check for missing information, incorrect information (e.g. wrong use of center codes), duplicated data, etc. The output of this program was fed back to sites regularly. Mainly, this consisted of cases with duplicate IDs, duplicate cases (where the data for two respondents with different IDs were identical), wrong country codes, missing age, sex, education and some other important variables.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Data and Documentation section...Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau''s Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities and towns and estimates of housing units for states and counties..Explanation of Symbols:An ''**'' entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate..An ''-'' entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution..An ''-'' following a median estimate means the median falls in the lowest interval of an open-ended distribution..An ''+'' following a median estimate means the median falls in the upper interval of an open-ended distribution..An ''***'' entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate..An ''*****'' entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate. .An ''N'' entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small..An ''(X)'' means that the estimate is not applicable or not available..Estimates of urban and rural population, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..While the 2009-2013 American Community Survey (ACS) data generally reflect the February 2013 Office of Management and Budget (OMB) definitions of metropolitan and micropolitan statistical areas; in certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB definitions due to differences in the effective dates of the geographic entities..The Census Bureau introduced a new set of disability questions in the 2008 ACS questionnaire. Accordingly, comparisons of disability data from 2008 or later with data from prior years are not recommended. For more information on these questions and their evaluation in the 2006 ACS Content Test, see the Evaluation Report Covering Disability..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables..Source: U.S. Census Bureau, 2009-2013 5-Year American Community Survey
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2023 American Community Survey 1-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Employment and unemployment estimates may vary from the official labor force data released by the Bureau of Labor Statistics because of differences in survey design and data collection. For guidance on differences in employment and unemployment estimates from different sources go to Labor Force Guidance..The "Employed" and "Unemployment rate" columns refer to the civilian population. For more information, see the ACS Subject Definitions..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
This dataset contains underwater sound velocity and its associated error computed for two decades, 2006-2016 and 2090-2100, representative of present and future conditions. Sound speed has been calculated as a function of depth, temperature and salinity using the MacKenzie formula. The calculation of sound speed has been performed separately for all vertical levels contained in the input datasets, i.e., the Community Earth System Model (CESM) version 1 for the “business-as-usual†climate change scenario (RCP8.5) within the CESM Large Ensemble project (Kay et al., 2015) (called 'LENS' following Affatati et al., accepted). The first member of a 40-member ensemble has been considered. Sound speed and sound speed error averages have been computed for each month, in order to observe seasonal patterns. Result is a global-scale, three-dimensional dataset of sound speed and sound speed error for each of the considered input datasets. Data are provided in netCDF format and separately for each monthly mean. For example, SS_pres_01.nc is the Sound speed file containing the month average for January (01) in the decade 2006-2016. Similarly, SS_fut_01.nc is the Sound speed file containing the month average for January (01) in the decade 2090-2100.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2023 American Community Survey 1-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..The 60 years and over column of data refers to the age of the householder for the estimates of households, occupied housing units, owner-occupied housing units, and renter-occupied housing units lines..The age specified on the population 15 years and over, population 25 years and over, population 30 years and over, civilian population 18 years and over, civilian population 5 years and over, population 1 years and over, population 5 years and over, and population 16 years and over lines refer to the data shown in the "Total" column while the second column is limited to the population 60 years and over..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Data and Documentation section...Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Tell us what you think. Provide feedback to help make American Community Survey data more useful for you..Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau''s Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities and towns and estimates of housing units for states and counties..Explanation of Symbols:An ''**'' entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate..An ''-'' entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution..An ''-'' following a median estimate means the median falls in the lowest interval of an open-ended distribution..An ''+'' following a median estimate means the median falls in the upper interval of an open-ended distribution..An ''***'' entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate..An ''*****'' entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate. .An ''N'' entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small..An ''(X)'' means that the estimate is not applicable or not available..Estimates of urban and rural population, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..While the 2016 American Community Survey (ACS) data generally reflect the February 2013 Office of Management and Budget (OMB) definitions of metropolitan and micropolitan statistical areas; in certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB definitions due to differences in the effective dates of the geographic entities..Total includes people who reported Asian only, regardless of whether they reported one or more detailed Asian groups...Other Asian, specified. Includes respondents who provide a response of another Asian group not shown separately, such as Iwo Jiman, Maldivian, or Singaporean...Other Asian, not specified. Includes respondents who checked the "Other Asian" response category on the ACS questionnaire and did not write in a specific group or wrote in a generic term such as "Asian," or "Asiatic." ..Two or more Asian. Includes respondents who provided multiple Asian responses such as Asian Indian and Japanese; or Vietnamese, Chinese and Hmong...Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables..Source: U.S. Census Bureau, 2016 American Community Survey 1-Year Estimates
This layer shows median earnings by occupational group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Only full-time year-round workers included. Median earnings is based on earnings in past 12 months of survey. Occupation Groups based on Bureau of Labor Statistics (BLS)' Standard Occupation Classification (SOC). This layer is symbolized to show median earnings of the full-time, year-round civilian employed population. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B24021Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
The JPFHS is part of the worldwide Demographic and Health Surveys Program, which is designed to collect data on fertility, family planning, and maternal and child health. The primary objective of the Jordan Population and Family Health Survey (JPFHS) is to provide reliable estimates of demographic parameters, such as fertility, mortality, family planning, fertility preferences, as well as maternal and child health and nutrition that can be used by program managers and policy makers to evaluate and improve existing programs. In addition, the JPFHS data will be useful to researchers and scholars interested in analyzing demographic trends in Jordan, as well as those conducting comparative, regional or crossnational studies.
The content of the 2002 JPFHS was significantly expanded from the 1997 survey to include additional questions on women’s status, reproductive health, and family planning. In addition, all women age 15-49 and children less than five years of age were tested for anemia.
National
Sample survey data
The estimates from a sample survey are affected by two types of errors: 1) nonsampling errors and 2) sampling errors. Nonsampling errors are the result of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2002 JPFHS to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2002 JPFHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2002 JPFHS sample is the result of a multistage stratified design and, consequently, it was necessary to use more complex formulas. The computer software used to calculate sampling errors for the 2002 JPFHS is the ISSA Sampling Error Module (ISSAS). This module used the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
Note: See detailed description of sample design in APPENDIX B of the survey report.
Face-to-face
The 2002 JPFHS used two questionnaires – namely, the Household Questionnaire and the Individual Questionnaire. Both questionnaires were developed in English and translated into Arabic. The Household Questionnaire was used to list all usual members of the sampled households and to obtain information on each member’s age, sex, educational attainment, relationship to the head of household, and marital status. In addition, questions were included on the socioeconomic characteristics of the household, such as source of water, sanitation facilities, and the availability of durable goods. The Household Questionnaire was also used to identify women who are eligible for the individual interview: ever-married women age 15-49. In addition, all women age 15-49 and children under five years living in the household were measured to determine nutritional status and tested for anemia.
The household and women’s questionnaires were based on the DHS Model “A” Questionnaire, which is designed for use in countries with high contraceptive prevalence. Additions and modifications to the model questionnaire were made in order to provide detailed information specific to Jordan, using experience gained from the 1990 and 1997 Jordan Population and Family Health Surveys. For each evermarried woman age 15 to 49, information on the following topics was collected:
In addition, information on births and pregnancies, contraceptive use and discontinuation, and marriage during the five years prior to the survey was collected using a monthly calendar.
Fieldwork and data processing activities overlapped. After a week of data collection, and after field editing of questionnaires for completeness and consistency, the questionnaires for each cluster were packaged together and sent to the central office in Amman where they were registered and stored. Special teams were formed to carry out office editing and coding of the open-ended questions.
Data entry and verification started after one week of office data processing. The process of data entry, including one hundred percent re-entry, editing and cleaning, was done by using PCs and the CSPro (Census and Survey Processing) computer package, developed specially for such surveys. The CSPro program allows data to be edited while being entered. Data processing operations were completed by the end of October 2002. A data processing specialist from ORC Macro made a trip to Jordan in October and November 2002 to follow up data editing and cleaning and to work on the tabulation of results for the survey preliminary report. The tabulations for the present final report were completed in December 2002.
A total of 7,968 households were selected for the survey from the sampling frame; among those selected households, 7,907 households were found. Of those households, 7,825 (99 percent) were successfully interviewed. In those households, 6,151 eligible women were identified, and complete interviews were obtained with 6,006 of them (98 percent of all eligible women). The overall response rate was 97 percent.
Note: See summarized response rates by place of residence in Table 1.1 of the survey report.
The estimates from a sample survey are affected by two types of errors: 1) nonsampling errors and 2) sampling errors. Nonsampling errors are the result of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2002 JPFHS to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2002 JPFHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2002 JPFHS sample is the result of a multistage stratified design and, consequently, it was necessary to use more complex formulas. The computer software used to calculate sampling errors for the 2002 JPFHS is the ISSA Sampling Error Module (ISSAS). This module used the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
Note: See detailed
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Abstract: Supplement of the article Grothe O, Kaplan A, Kouz K, Saugel B. "Computer program for error grid analysis in arterial blood pressure method comparison studies" to provide the error grid analysis suggested in Saugel B, Grothe O, Nicklas JY. "Error Grid Analysis for Arterial Pressure Method Comparison Studies. Anesthesia and analgesia 2018;126:1177-85. TechnicalRemarks: Detailed information for usage is provided in the article. Cite this as Grothe, Oliver, Kaplan, Anika, Kouz, Karim, Saugel, Bernd (2023). Dataset: Software and example data for error grid analysis. https://doi.org/10.35097/1179 DOI retrieved: 2023