88 datasets found
  1. g

    Priemerný vek pri úmrtí (okresy)

    • demo.georchestra.org
    • geopresovregion.sk
    ogc:wfs +2
    Updated Mar 9, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Štatistický úrad SR (2020). Priemerný vek pri úmrtí (okresy) [Dataset]. https://demo.georchestra.org/geonetwork/srv/api/records/f84fda67-5b7b-4000-a477-ab00078b8aeb
    Explore at:
    www:download-1.0-http--download, ogc:wms-1.3.0-http-get-map, ogc:wfsAvailable download formats
    Dataset updated
    Mar 9, 2020
    Dataset provided by
    Prešovský samosprávny kraj - kontakt
    Authors
    Štatistický úrad SR
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitationshttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitations

    Area covered
    Description

    Priemerný vek pri úmrtí (v rokoch). Vážený aritmetický priemer počtu rokov pri úmrtí. Údaje sú dostupné od roku 1993 a sú aktualizované ročne - okresná úroveň. Zdroj: Štatistický úrad Slovenskej republiky, http://datacube.statistics.sk/

    ---English--- Mean age at death (years). Weighted arithmetic mean of deaths. Data available since 1993 and updated annually - district level Source: Statistical Office of the Slovak Republic

  2. W

    VITAL STATISTICS, MALAYSIA

    • cloud.csiss.gmu.edu
    Updated Jul 1, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Malaysia (2019). VITAL STATISTICS, MALAYSIA [Dataset]. https://cloud.csiss.gmu.edu/uddi/dataset/vital-statistics-malaysia-1051
    Explore at:
    Dataset updated
    Jul 1, 2019
    Dataset provided by
    Malaysia
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Malaysia
    Description

    This data set shows crude birth rate in Malaysia. The rates are per 1,000 population. More Info : https://www.statistics.gov.my

  3. Počet a podiel platných hlasov odovzdaných pre politické strany podľa...

    • data.wu.ac.at
    • cloud.csiss.gmu.edu
    csv
    Updated Dec 30, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Štatistický úrad SR (2015). Počet a podiel platných hlasov odovzdaných pre politické strany podľa okresov, krajov a SR [Dataset]. https://data.wu.ac.at/schema/data_gov_sk/YmIxMTM1MjMtMjlmYS00ZTYzLWI5OTgtNWZlMWE1YjczM2E4
    Explore at:
    csvAvailable download formats
    Dataset updated
    Dec 30, 2015
    Dataset provided by
    Štatistický úrad Slovenskej republiky
    License

    http://www.opendefinition.org/licenses/cc-by-sahttp://www.opendefinition.org/licenses/cc-by-sa

    Area covered
    7637f352d24c04780f5aec517da0b7d5fc11aa50
    Description

    Výsledky volieb do Národnej rady SR 2010

  4. d

    Pond Creek Coal Zone County Statistics (Geology) in Kentucky, West Virginia,...

    • catalog.data.gov
    • data.usgs.gov
    • +3more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Pond Creek Coal Zone County Statistics (Geology) in Kentucky, West Virginia, and Virginia [Dataset]. https://catalog.data.gov/dataset/pond-creek-coal-zone-county-statistics-geology-inkentucky-west-virginia-and-virginia
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Kentucky, West Virginia
    Description

    This dataset is a polygon coverage of counties limited to the extent of the Pond Creek coal bed resource areas and attributed with statistics on the thickness of the Pond Creek coal zone, its elevation, and overburden thickness, in feet. The file has been generalized from detailed geologic coverages found elsewhere in Professional Paper 1625-C.

  5. Hydrographic and Impairment Statistics Database: EDIS

    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    • gimi9.com
    • +2more
    Updated Dec 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Hydrographic and Impairment Statistics Database: EDIS [Dataset]. https://res1catalogd-o-tdatad-o-tgov.vcapture.xyz/dataset/hydrographic-and-impairment-statistics-database-edis-f235c
    Explore at:
    Dataset updated
    Dec 11, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    Hydrographic and Impairment Statistics (HIS) is a National Park Service (NPS) Water Resources Division (WRD) project established to track certain goals created in response to the Government Performance and Results Act of 1993 (GPRA). One water resources management goal established by the Department of the Interior under GRPA requires NPS to track the percent of its managed surface waters that are meeting Clean Water Act (CWA) water quality standards. This goal requires an accurate inventory that spatially quantifies the surface water hydrography that each bureau manages and a procedure to determine and track which waterbodies are or are not meeting water quality standards as outlined by Section 303(d) of the CWA. This project helps meet this DOI GRPA goal by inventorying and monitoring in a geographic information system for the NPS: (1) CWA 303(d) quality impaired waters and causes; and (2) hydrographic statistics based on the United States Geological Survey (USGS) National Hydrography Dataset (NHD). Hydrographic and 303(d) impairment statistics were evaluated based on a combination of 1:24,000 (NHD) and finer scale data (frequently provided by state GIS layers).

  6. Bureau of Labor Statistics Unemployment and Inflation

    • redivis.com
    • columbia.redivis.com
    application/jsonl +7
    Updated Dec 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Columbia Data Platform Demo (2020). Bureau of Labor Statistics Unemployment and Inflation [Dataset]. https://redivis.com/datasets/ymdq-1a9mgdxff
    Explore at:
    arrow, avro, csv, parquet, spss, application/jsonl, stata, sasAvailable download formats
    Dataset updated
    Dec 14, 2020
    Dataset provided by
    Redivis Inc.
    Authors
    Columbia Data Platform Demo
    Time period covered
    Jan 1, 1939 - Dec 31, 2020
    Description

    Abstract

    This dataset includes economic statistics on inflation, prices, unemployment, and pay & benefits provided by the Bureau of Labor Statistics (BLS)

    Documentation

    Update frequency: Monthly Dataset source: U.S. Bureau of Labor Statistics Terms of use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset. See the GCP Marketplace listing for more details and sample queries: https://console.cloud.google.com/marketplace/details/bls-public-data/bureau-of-labor-statistics

  7. Statistical Area 2 Higher Geographies 2021 (generalised)

    • datafinder.stats.govt.nz
    csv, dwg, geodatabase +6
    Updated Dec 7, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ (2020). Statistical Area 2 Higher Geographies 2021 (generalised) [Dataset]. https://datafinder.stats.govt.nz/layer/105174-statistical-area-2-higher-geographies-2021-generalised/
    Explore at:
    pdf, geopackage / sqlite, mapinfo mif, shapefile, csv, dwg, kml, mapinfo tab, geodatabaseAvailable download formats
    Dataset updated
    Dec 7, 2020
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Area covered
    Description

    This dataset is the definitive version of annually released statistical area 2 (SA2) boundaries concorded to higher geographies for 2021 as defined by Stats NZ. this version contains 2,259 categories.

    This statistical area 2 higher geographies file is a correspondence, or concordance, which relates SA2s to larger geographic areas or 'higher geographies'. The higher geographies contained in this concordance are: territorial authority (TA) and regional council (REGC). For more information on the individual higher geographies, refer to each geography’s metadata.

    SA2s were introduced as part of the Statistical Standard for Geographic Areas 2018 (SSGA2018) which replaced the New Zealand Standard Areas Classification (NZSAC1992). The SA2 geography replaces the (NZSAC1992) area unit geography.

    Names are provided with and without tohutō/macrons, as applicable. Column names for those without macrons are suffixed ‘ascii’. For further information on individual higher geographies, refer to each geography’s metadata.

    This generalised version has been simplified for rapid drawing and is designed for thematic or web mapping purposes.

    Digital boundary data became freely available on 1 July 2007.

  8. e

    Rodinný stav obyvateľstva podľa pohlavia a 5-ročných vekových skupín

    • data.europa.eu
    csv, json, ods, xml
    Updated Jun 10, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Štatistický úrad SR (2016). Rodinný stav obyvateľstva podľa pohlavia a 5-ročných vekových skupín [Dataset]. https://data.europa.eu/data/datasets/https-statdata-statistics-sk-public-api-dc-opendata-cube-dataset-00000002-0000-0000-0000-000000000017?locale=es
    Explore at:
    csv, json, ods, xmlAvailable download formats
    Dataset updated
    Jun 10, 2016
    Dataset authored and provided by
    Štatistický úrad SR
    Description

    Rodinný stav obyvateľstva podľa pohlavia a 5-ročných vekových skupín

  9. 2018 Census individual part 2 total NZ by statistical area 1 (2018 Census...

    • datafinder.stats.govt.nz
    csv, dbf (dbase iii) +4
    Updated Apr 7, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ (2020). 2018 Census individual part 2 total NZ by statistical area 1 (2018 Census only) look up table [Dataset]. https://datafinder.stats.govt.nz/table/104570-2018-census-individual-part-2-total-nz-by-statistical-area-1-2018-census-only-look-up-table/
    Explore at:
    geopackage / sqlite, mapinfo tab, geodatabase, mapinfo mif, dbf (dbase iii), csvAvailable download formats
    Dataset updated
    Apr 7, 2020
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Area covered
    New Zealand
    Description

    This lookup table relates to the web service 2018 Census individual part 2 by SA1. The web service contains data from the 2018 Census only, no data from previous censuses has been included.

    The individual (part 2) dataset is displayed by statistical area 1 geography and contains information on: • Religious affiliation (total responses) • Cigarette smoking behaviour • Difficulty seeing even if wearing glasses • Difficulty hearing even if using a hearing aid • Difficulty walking or climbing steps • Difficulty remembering or concentrating • Difficulty washing all over or dressing • Difficulty communicating using your usual language for example being understood by others • Legally registered relationship status • Partnership status in current relationship • Individual home ownership • Number of children born • Highest qualification • Study participation • Total personal income (grouped), including median total personal income • Sources of personal income (total responses) • Main means of travel to education, by usual residence address (2018 only) • Main means of travel to education, by educational institution address (2018 only)

    The data uses fixed random rounding to protect confidentiality. Some counts of less than 6 are suppressed according to 2018 confidentiality rules. Values of ‘-999’ indicate suppressed data, and values of ‘Null’ indicate data not collected.

    For further information on this dataset please refer to the Statistical area 1 dataset for 2018 Census webpage - footnotes for individual part 2, Excel workbooks, and CSV files are available to download. Data quality ratings for 2018 Census variables, summarising the quality rating and priority levels for 2018 Census variables, are available.

    For information on the statistical area 1 geography please refer to the Statistical standard for geographic areas 2018.

  10. Hydrographic and Impairment Statistics Database: THRB

    • catalog.data.gov
    • datasets.ai
    • +2more
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Hydrographic and Impairment Statistics Database: THRB [Dataset]. https://catalog.data.gov/dataset/hydrographic-and-impairment-statistics-database-thrb
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    Hydrographic and Impairment Statistics (HIS) is a National Park Service (NPS) Water Resources Division (WRD) project established to track certain goals created in response to the Government Performance and Results Act of 1993 (GPRA). One water resources management goal established by the Department of the Interior under GRPA requires NPS to track the percent of its managed surface waters that are meeting Clean Water Act (CWA) water quality standards. This goal requires an accurate inventory that spatially quantifies the surface water hydrography that each bureau manages and a procedure to determine and track which waterbodies are or are not meeting water quality standards as outlined by Section 303(d) of the CWA. This project helps meet this DOI GRPA goal by inventorying and monitoring in a geographic information system for the NPS: (1) CWA 303(d) quality impaired waters and causes; and (2) hydrographic statistics based on the United States Geological Survey (USGS) National Hydrography Dataset (NHD). Hydrographic and 303(d) impairment statistics were evaluated based on a combination of 1:24,000 (NHD) and finer scale data (frequently provided by state GIS layers).

  11. Slovakia SK: Foreign Direct Investment Income: Outward: Total: Montserrat

    • ceicdata.com
    Updated Jan 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Slovakia SK: Foreign Direct Investment Income: Outward: Total: Montserrat [Dataset]. https://www.ceicdata.com/en/slovakia/foreign-direct-investment-income-by-region-and-country-oecd-member-annual/sk-foreign-direct-investment-income-outward-total-montserrat
    Explore at:
    Dataset updated
    Jan 15, 2025
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2014 - Dec 1, 2023
    Area covered
    Slovakia
    Description

    Slovakia SK: Foreign Direct Investment Income: Outward: Total: Montserrat data was reported at 0.000 EUR mn in 2023. This stayed constant from the previous number of 0.000 EUR mn for 2022. Slovakia SK: Foreign Direct Investment Income: Outward: Total: Montserrat data is updated yearly, averaging 0.000 EUR mn from Dec 2014 (Median) to 2023, with 9 observations. The data reached an all-time high of 0.000 EUR mn in 2023 and a record low of 0.000 EUR mn in 2023. Slovakia SK: Foreign Direct Investment Income: Outward: Total: Montserrat data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s Slovakia – Table SK.OECD.FDI: Foreign Direct Investment Income: by Region and Country: OECD Member: Annual. Treatment of debt FDI transactions and positions between fellow enterprises: directional basis according to the residency of the ultimate controlling parent (extended directional principle). Resident Special Purpose Entities (SPEs) do not exist or are not significant and are recorded as zero in the FDI database. Valuation method used for listed inward and outward equity positions: Market value, Own funds at book value. Valuation method used for unlisted inward and outward equity positions: Own funds at book value. Valuation method used for inward and outward debt positions: Nominal value.; FDI statistics are available by geographic allocation, vis-à-vis single partner countries worldwide and geographical and economic zones aggregates. Partner country allocation can be subject to confidentiality restrictions. Geographic allocation of inward and outward FDI transactions and positions is according to the immediate counterparty. Intercompany debt between related financial intermediaries, including permanent debt, are excluded from FDI transactions and positions. Direct investment relationships are identified according to the criteria of the Framework for Direct Investment Relationships (FDIR) method. Debt between fellow enterprises are completely covered. Collective investment institutions are not covered as direct investment enterprises. Non-profit institutions serving households are covered as direct investors. FDI statistics are available by industry sectors according to ISIC4 classification. Industry sector allocation can be subject to confidentiality restrictions. Inward FDI transactions and positions are allocated to the activity of the resident direct investment enterprise. Outward FDI transactions are allocated according to the activity of the non resident direct investment enterprise. Outward FDI positions are allocated according to the activity of the non resident direct investment enterprise. Statistical unit: Unspecified.

  12. O

    SOUTHERN EXPRESS CREEK

    • data.qld.gov.au
    Updated May 10, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Geological Survey of Queensland (2023). SOUTHERN EXPRESS CREEK [Dataset]. https://www.data.qld.gov.au/dataset/bh017025
    Explore at:
    Dataset updated
    May 10, 2023
    Dataset authored and provided by
    Geological Survey of Queensland
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description
  13. w

    Consolidated Exposures – Immediate and Ultimate Risk Basis

    • data.wu.ac.at
    • researchdata.edu.au
    • +1more
    xls
    Updated Aug 23, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Reserve Bank of Australia (2015). Consolidated Exposures – Immediate and Ultimate Risk Basis [Dataset]. https://data.wu.ac.at/schema/data_gov_au/ODViOGM0ZDktMjYxYS00ZDE2LWFmNjQtOTNlZmI5MDhkMzc4
    Explore at:
    xls(105984.0)Available download formats
    Dataset updated
    Aug 23, 2015
    Dataset provided by
    Reserve Bank of Australia
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Description

    In March 2003, banks and selected Registered Financial Corporations (RFCs) began reporting their international assets, liabilities and country exposures to APRA in ARF/RRF 231 International Exposures. This return is the basis of the data provided by Australia to the Bank for International Settlements (BIS) for its International Banking Statistics (IBS) data collection. APRA ceased the RFC data collection after September 2010.

    The IBS data are based on the methodology described in the BIS Guide on International Financial Statistics (see http://www.bis.org/statistics/intfinstatsguide.pdf; Part II International banking statistics). Data reported for Australia, and other countries, on the BIS website are expressed in United States dollars (USD).

    Data are recorded on an end-quarter basis.

    This statistical table contains two data worksheets - one presenting data expressed in Australian dollar (AUD) terms and the other in USD terms.

    There are two sets of IBS data: locational data, which are used to gauge the role of banks and financial centres in the intermediation of international capital flows; and consolidated data, which can be used to monitor the country risk exposure of national banking systems. Only consolidated data are reported in this statistical table.

    ‘Total banks and RFCs’ is also reported in USD equivalent amounts, using the end-quarter AUD/USD exchange rate from statistical table F11.

    The consolidated data reported in this statistical table are on the international exposures of banks (and RFCs between March 2003 and September 2010) operating in Australia. The types of assets included here are consistent with the locational data in statistical table B12.1. However, the consolidated data differ from the locational data in three key ways: foreign currency positions with Australian residents are excluded (whereas they are included in the locational data); claims between different offices of the same institution (e.g. between the head office and its subsidiary) are netted (whereas positions, including intra-group positions, are reported on a gross basis in the locational data); and on-balance sheet derivatives are not included in international claims or foreign claims, but are included separately under ‘Derivatives’ in statistical table B13.2. Foreign-owned reporting entities report on an unconsolidated basis.

    The consolidated data are split by type of exposure. ‘International claims’ refers to all cross-border claims plus foreign offices’ local claims on residents in foreign currencies; foreign claims refers to all cross-border claims plus foreign offices’ local claims on residents in both local and foreign currencies; immediate risk claims (expressed by the BIS as claims on an immediate borrower basis) cover claims based on the country where the immediate counterparty resides; and ultimate risk claims cover immediate exposures adjusted (via guarantees and other risk transfers) to reflect the location of the ultimate counterparty/risk.

    Foreign offices include the overseas branches, subsidiaries and joint ventures of a bank (or RFC between March 2003 and September 2010).

    Risk transfers are those transfers of risk from the country of the immediate borrower to the country of ultimate risk as a result of guarantees, collateral, and where the counterparty is a legally dependent branch of a bank headquartered in another country. The risk reallocation includes loans to Australian borrowers that are guaranteed by foreign entities and therefore represent outward risk transfers from Australia, which increase the ultimate exposure to the country of the guarantor. Similarly, foreign lending that is guaranteed by Australian entities is reported as an inward risk transfer to Australia, which reduces the ultimate exposure to the country of the foreign borrower. The risk reallocation also includes transfers between different economic sectors (banks, public sector and non-bank private sector) in the same country.

    Foreign claims on an ultimate risk basis are shown for the following types of reporting entity: Australian-owned banks (i.e. those with their parent entity legally incorporated in Australia); foreign subsidiary banks; branches of foreign banks; RFCs; and Australian-owned entities (i.e. Australian-owned banks and RFCs). The RFC data are only available between March 2003 and September 2010.

    ‘Foreign claims (ultimate risk basis) – Aust-owned entities’ is also reported in USD equivalent amounts, using the end-quarter AUD/USD exchange rate from statistical table F11.

  14. N

    Pike, New York Population Breakdown by Gender

    • neilsberg.com
    csv, json
    Updated Sep 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Pike, New York Population Breakdown by Gender [Dataset]. https://www.neilsberg.com/research/datasets/6549aeeb-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 14, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Pike, New York
    Variables measured
    Male Population, Female Population, Male Population as Percent of Total Population, Female Population as Percent of Total Population
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Pike town by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Pike town across both sexes and to determine which sex constitutes the majority.

    Key observations

    There is a slight majority of male population, with 52.36% of total population being male. Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.

    Variables / Data Columns

    • Gender: This column displays the Gender (Male / Female)
    • Population: The population of the gender in the Pike town is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each gender as a proportion of Pike town total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Pike town Population by Gender. You can refer the same here

  15. N

    Six Mile Grove Township, Minnesota Population Breakdown by Gender and Age

    • neilsberg.com
    csv, json
    Updated Sep 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Six Mile Grove Township, Minnesota Population Breakdown by Gender and Age [Dataset]. https://www.neilsberg.com/research/datasets/6796696e-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 14, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Minnesota, Six Mile Grove Township
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Six Mile Grove township by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Six Mile Grove township. The dataset can be utilized to understand the population distribution of Six Mile Grove township by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Six Mile Grove township. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Six Mile Grove township.

    Key observations

    Largest age group (population): Male # 5-9 years (10) | Female # 0-4 years (17). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the Six Mile Grove township population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Six Mile Grove township is shown in the following column.
    • Population (Female): The female population in the Six Mile Grove township is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in Six Mile Grove township for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Six Mile Grove township Population by Gender. You can refer the same here

  16. N

    Pryor Creek, OK Population Breakdown by Gender and Age

    • neilsberg.com
    csv, json
    Updated Sep 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Pryor Creek, OK Population Breakdown by Gender and Age [Dataset]. https://www.neilsberg.com/research/datasets/676ab84d-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Sep 14, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Oklahoma, Pryor
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Pryor Creek by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Pryor Creek. The dataset can be utilized to understand the population distribution of Pryor Creek by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Pryor Creek. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Pryor Creek.

    Key observations

    Largest age group (population): Male # 5-9 years (460) | Female # 25-29 years (438). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the Pryor Creek population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Pryor Creek is shown in the following column.
    • Population (Female): The female population in the Pryor Creek is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in Pryor Creek for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Pryor Creek Population by Gender. You can refer the same here

  17. GCCSA-W21b Method of Travel to Work by Occupation-Census 2016

    • data.gov.au
    • researchdata.edu.au
    html
    Updated Jul 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of the Commonwealth of Australia - Australian Bureau of Statistics (2025). GCCSA-W21b Method of Travel to Work by Occupation-Census 2016 [Dataset]. https://www.data.gov.au/data/dataset/activity/au-govt-abs-census-gccsa-w21b-method-of-travel-to-work-by-occ-census-2016-gccsa-2016
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jul 31, 2025
    Dataset provided by
    Australian Bureau of Statisticshttp://abs.gov.au/
    Authors
    Government of the Commonwealth of Australia - Australian Bureau of Statistics
    License

    Attribution 2.5 (CC BY 2.5)https://creativecommons.org/licenses/by/2.5/
    License information was derived automatically

    Description

    GCCSA based data for Method of Travel to Work by Occupation, in Working Population Profile (WPP), 2016 Census. Count of employed persons aged 15 years and over. W21 is broken up into 2 sections (W21a - W21b), this section contains 'Two methods Bus and Ferry Managers' - 'Total Total'. The data is by GCCSA 2016 boundaries. Periodicity: 5-Yearly. Note: There are small random adjustments made to all cell values to protect the confidentiality of data. These adjustments may cause the sum of rows or columns to differ by small amounts from table totals. For more information visit the data source: http://www.abs.gov.au/census.

  18. T

    Women Veterans in 2023: VetPop2020 Estimates of Women, FY2000-2023

    • datahub.va.gov
    • data.va.gov
    • +1more
    application/rdfxml +5
    Updated Mar 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Center for Veterans Analysis and Statistics (2025). Women Veterans in 2023: VetPop2020 Estimates of Women, FY2000-2023 [Dataset]. https://www.datahub.va.gov/dataset/Women-Veterans-in-2023-VetPop2020-Estimates-of-Wom/3ypd-vvhe
    Explore at:
    xml, application/rdfxml, json, csv, tsv, application/rssxmlAvailable download formats
    Dataset updated
    Mar 13, 2025
    Dataset authored and provided by
    National Center for Veterans Analysis and Statistics
    Description

    Number and percent of women Veterans in fiscal years 2000 to 2023.

    Source: VetPop2020

  19. d

    PHCC Annual Statistical Summary

    • data.gov.qa
    csv, excel, json
    Updated May 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). PHCC Annual Statistical Summary [Dataset]. https://www.data.gov.qa/explore/dataset/phcc-annual-statistical-summary/
    Explore at:
    csv, json, excelAvailable download formats
    Dataset updated
    May 28, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset provides a yearly summary of the operational scope of the Primary Health Care Corporation (PHCC) in Qatar. It includes the number of operational health centers, total patient registrations, and total visits from 2020 to 2024. The dataset offers a high-level overview of the growth and utilization of primary healthcare services over time, supporting health sector evaluation and capacity planning.

  20. w

    Quarterly Census of Employment and Wages (QCEW) Historical Annual Data: 1975...

    • data.wu.ac.at
    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    • +4more
    csv, json, rdf, xml
    Updated Nov 5, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of New York (2015). Quarterly Census of Employment and Wages (QCEW) Historical Annual Data: 1975 - 2000 [Dataset]. https://data.wu.ac.at/schema/data_gov/MWI0NDIwOTAtNjdlNi00NjUzLTlhYTItYzMyNzYwNTQ2Yjdk
    Explore at:
    csv, rdf, xml, jsonAvailable download formats
    Dataset updated
    Nov 5, 2015
    Dataset provided by
    State of New York
    Description

    The Quarterly Census of Employment and Wages (QCEW) program (also known as ES-202) collects employment and wage data from employers covered by New York State's Unemployment Insurance (UI) Law. This program is a cooperative program with the U.S. Bureau of Labor Statistics. QCEW data encompass approximately 97 percent of New York's nonfarm employment, providing a virtual census of employees and their wages as well as the most complete universe of employment and wage data, by industry, at the State, regional and county levels. "Covered" employment refers broadly to both private-sector employees as well as state, county, and municipal government employees insured under the New York State Unemployment Insurance (UI) Act. Federal employees are insured under separate laws, but are considered covered for the purposes of the program. Employee categories not covered by UI include some agricultural workers, railroad workers, private household workers, student workers, the self-employed, and unpaid family workers. QCEW data are similar to monthly Current Employment Statistics (CES) data in that they reflect jobs by place of work; therefore, if a person holds two jobs, he or she is counted twice. However, since the QCEW program, by definition, only measures employment covered by unemployment insurance laws, its totals will not be the same as CES employment totals due to the employee categories excluded by UI. Industry level data from 1975 to 2000 is reflective of the Standard Industrial Classification (SIC) codes.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Štatistický úrad SR (2020). Priemerný vek pri úmrtí (okresy) [Dataset]. https://demo.georchestra.org/geonetwork/srv/api/records/f84fda67-5b7b-4000-a477-ab00078b8aeb

Priemerný vek pri úmrtí (okresy)

Štatistický úrad SR

Explore at:
www:download-1.0-http--download, ogc:wms-1.3.0-http-get-map, ogc:wfsAvailable download formats
Dataset updated
Mar 9, 2020
Dataset provided by
Prešovský samosprávny kraj - kontakt
Authors
Štatistický úrad SR
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitationshttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitations

Area covered
Description

Priemerný vek pri úmrtí (v rokoch). Vážený aritmetický priemer počtu rokov pri úmrtí. Údaje sú dostupné od roku 1993 a sú aktualizované ročne - okresná úroveň. Zdroj: Štatistický úrad Slovenskej republiky, http://datacube.statistics.sk/

---English--- Mean age at death (years). Weighted arithmetic mean of deaths. Data available since 1993 and updated annually - district level Source: Statistical Office of the Slovak Republic

Search
Clear search
Close search
Google apps
Main menu