This resource is a member of a series. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) System (MTS). The MTS represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. County subdivisions are the primary divisions of counties and equivalent entities for the reporting of Census Bureau data. They include legally-recognized minor civil divisions (MCDs) and statistical census county divisions (CCDs), and unorganized territories. In MCD states where no MCD exists or is not defined, the Census Bureau creates statistical unorganized territories to complete coverage. The entire area of the United States, Puerto Rico, and the Island Areas are covered by county subdivisions. The boundaries of most legal MCDs are as of January 1, 2024, as reported through the Census Bureau's Boundary and Annexation Survey (BAS). The boundaries of all CCDs are those as reported as part of the Census Bureau's Participant Statistical Areas Program (PSAP) for the 2020 Census.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This U.S. Geological Survey (USGS) data release provides a digital geospatial database for the geologic map of Precambrian metasedimentary rocks of the Medicine Bow Mountains, Albany and Carbon Counties, Wyoming (Houston and Karlstrom, 1992). Attribute tables and geospatial features (points, lines and polygons) conform to the Geologic Map Schema (GeMS, 2020) and represent the geologic map plates as published at a scale of 1:50,000. The 358,697-acre map area includes the geologically complex Medicine Bow Mountains located 30 miles (48 kilometers) west of Laramie in southeastern Wyoming. References: Houston, R.S., and Karlstrom, K.E., 1992, Geologic map of Precambrian metasedimentary rocks of the Medicine Bow Mountains, Albany and Carbon Counties, Wyoming: U.S. Geological Survey, Miscellaneous Investigations Series Map I-2280, scale 1:50,000, https://doi.org/10.3133/i2280. U.S. Geological Survey National Cooperative Geologic Mapping Program, 2020, GeMS (Geologic Map Schema) - A sta ...
This U.S. Geological Survey (USGS) data release for the geologic map of the Arlington quadrangle, Carbon County, Wyoming, is a Geologic Map Schema (GeMS, 2020)-compliant version of the printed geologic map published in USGS Geologic Map Quadrangle GQ-643 (Hyden and others, 1967). The database represents the geology for the 35,776-acre map plate at a publication scale of 1:24,000. References: Hyden, H.J., King, J.S., and Houston, R.S., 1967, Geologic map of the Arlington quadrangle, Carbon County, Wyoming: U.S. Geological Survey, Geologic Quadrangle Map GQ-643, scale 1:24,000; https://doi.org/10.3133/gq643. U.S. Geological Survey National Cooperative Geologic Mapping Program, 2020, GeMS (Geologic Map Schema) - A standard format for the digital publication of geologic maps: U.S. Geological Survey Techniques and Methods, book 11, chap. B10, 74 p., https://doi.org//10.3133/tm11B10.
Metadata record for the Wyoming Department of Revenue's GIS site. Link in record. Datasets that are available from DOR include: Cemetery Districts, Community College Districts, Conservation Districts, County Boundaries, Fire Districts, Health Care Districts, Hospital Districts, Improvement and Service Districts, Incorporated City and Town Boundaries, Museum Districts, Railroads, School Districts, Senior Citizen Service Districts, Solid Waste Districts, State Boundary, Tax Districts, Water and Sewer Districts, Water Conservancy Districts, Water Districts, Weed and Pest Districts.
This U.S. Geological Survey (USGS) data release presents a digital database of geospatially enabled vector layers and tabular data transcribed from the geologic map of the Lake Owen quadrangle, Albany County, Wyoming, which was originally published as U.S. Geological Survey Geologic Quadrangle Map GQ-1304 (Houston and Orback, 1976). The 7.5-minute Lake Owen quadrangle is located in southeastern Wyoming approximately 25 miles (40 kilometers) southwest of Laramie in the west-central interior of southern Albany County, and covers most of the southern extent of Sheep Mountain, the southeastern extent of Centennial Valley, and a portion of the eastern Medicine Bow Mountains. This relational geodatabase, with georeferenced data layers digitized at the publication scale of 1:24,000, organizes and describes the geologic and structural data covering the quadrangle's approximately 35,954 acres and enables the data for use in spatial analyses and computer cartography. The data types presented in this release include geospatial features (points, lines, and polygons) with matching attribute tables, nonspatial descriptive and reference tables, and ancillary resource files for correct symbolization, in formats that conform to the Geologic Map Schema (GeMS) developed and released by the U.S. Geological Survey's National Cooperative Geologic Mapping Program (GeMS, 2020). When reconstructed from the geodatabase's vector layers and tabular data that has been symbolized according to specifications encoded in the accompanying style file, and using the supplied Federal Geographic Data Committee (FGDC) GeoAge font for labeling formations and GeoSym fonts for structural line decorations and orientation measurement symbols, this data release presents the Geologic Map as shown on the published GQ-1304 map sheet. These GIS data augment but do not supersede the information presented on GQ-1304. References: Houston, R.S., and Orback, C.J., 1976, Geologic Map of the Lake Owen Quadrangle, Albany County, Wyoming: U.S. Geological Survey Geologic Quadrangle Map GQ-1304, scale 1:24,000, https://doi.org/10.3133/gq1304. U.S. Geological Survey National Cooperative Geologic Mapping Program, 2020, GeMS (Geologic Map Schema)- A standard format for the digital publication of geologic maps: U.S. Geological Survey Techniques and Methods, book 11, chap. B10, 74 p., https://doi.org//10.3133/tm11B10.
County boundaries in Wyoming. This data was generated using BLM Wyoming CadNSDI (Cadastral National Spatial Data Infrastructure) and NHD flowlines and watershed boundaries to delineate the extent of the 23 counties in Wyoming. All boundaries were checked against a variety of sources, including county-sourced maps and online GIS Map Services, published maps such as the BLM 1:100,000 scale series, and historical GIS data.
This U.S. Geological Survey (USGS) data release provides a digital geospatial database for the geologic map of the White Rock Canyon quadrangle, Carbon County, Wyoming (Hyden and others, 1968). Attribute tables and geospatial features (points, lines and polygons) conform to the Geologic Map Schema (GeMS, 2020) and represent the geologic map as published in USGS Geologic Quadrangle Map GQ-789. The 35,758-acre map area represents the geology at a publication scale of 1:24,000. References: Hyden, H.J., Houston, R.S., and King, J.S., 1968, Geologic map of the White Rock Canyon quadrangle, Carbon County, Wyoming: U.S. Geological Survey, Geologic Quadrangle Map GQ-789, scale 1:24,000, https://doi.org/10.3133/gq789. U.S. Geological Survey National Cooperative Geologic Mapping Program, 2020, GeMS (Geologic Map Schema) - A standard format for the digital publication of geologic maps: U.S. Geological Survey Techniques and Methods, book 11, chap. B10, 74 p., https://doi.org//10.3133/tm11B10.
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The TIGER/Line shapefiles include both incorporated places (legal entities) and census designated places or CDPs (statistical entities). An incorporated place is established to provide governmental functions for a concentration of people as opposed to a minor civil division (MCD), which generally is created to provide services or administer an area without regard, necessarily, to population. Places always nest within a state, but may extend across county and county subdivision boundaries. An incorporated place usually is a city, town, village, or borough, but can have other legal descriptions. CDPs are delineated for the decennial census as the statistical counterparts of incorporated places. CDPs are delineated to provide data for settled concentrations of population that are identifiable by name, but are not legally incorporated under the laws of the state in which they are located. The boundaries for CDPs often are defined in partnership with state, local, and/or tribal officials and usually coincide with visible features or the boundary of an adjacent incorporated place or another legal entity. CDP boundaries often change from one decennial census to the next with changes in the settlement pattern and development; a CDP with the same name as in an earlier census does not necessarily have the same boundary. The only population/housing size requirement for CDPs is that they must contain some housing and population. The boundaries of most incorporated places in this shapefile are as of January 1, 2021, as reported through the Census Bureau's Boundary and Annexation Survey (BAS). The boundaries of all CDPs were delineated as part of the Census Bureau's Participant Statistical Areas Program (PSAP) for the 2020 Census.
The data for the Wyoming dataset was primarily compiled from the Wyoming Water Development Office, Wyoming State Water Plan. Please visit https://waterplan.state.wy.us/plan/green/2010/gis/gis.html for the source data, data disclaimers and metadata if not available in these data layer files. Much of the metadata for the files in the dataset are complete and were imported with the original file. In cases where there are discrepancies, metadata have been added where appropriate.
City/County Boundaries for Cheyenne and Laramie County Wyoming
Geospatial data about Laramie County, Wyoming Parcels. Export to CAD, GIS, PDF, CSV and access via API.
Address points for Laramie County
Geospatial data about Lincoln County, Wyoming Parcels. Export to CAD, GIS, PDF, CSV and access via API.
This map forms part of the Montana State Geological Map.
The Ennis 1:100,000 quadrangle lies within both the Laramide (Late Cretaceous to early Tertiary) foreland province of southwestern Montana and the northeastern margin of the middle to late Tertiary Basin and Range province.
The oldest rocks in the quadrangle are Archean high-grade gneiss, and granitic to ultramafic intrusive rocks that are as old as about 3.0 Ga. The gneiss includes a supracrustal assemblage of quartz-feldspar gneiss, amphibolite, quartzite, and biotite schist and gneiss. The basement rocks are overlain by a platform sequence of sedimentary rocks as old as Cambrian Flathead Quartzite and as young as Upper Cretaceous Livingston Group sandstones, shales, and volcanic rocks.
The Archean crystalline rocks crop out in the cores of large basement uplifts, most notably the "Madison-Gravelly arch" that includes parts of the present Tobacco Root Mountains and the Gravelly, Madison, and Gallatin Ranges. These basement uplifts or blocks were thrust westward during the Laramide orogeny over rocks as young as Upper Cretaceous. The thrusts are now exposed in the quadrangle along the western flanks of the Gravelly and Madison Ranges (the Greenhorn thrust and the Hilgard fault system, respectively). Simultaneous with the west-directed thrusting, northwest-striking, northeast-side-up reverse faults formed a parallel set across southwestern Montana; the largest of these is the Spanish Peaks fault, which cuts prominently across the Ennis quadrangle.
Beginning in late Eocene time, extensive volcanism of the Absorka Volcanic Supergroup covered large parts of the area; large remnants of the volcanic field remain in the eastern part of the quadrangle. The volcanism was concurrent with, and followed by, middle Tertiary extension. During this time, the axial zone of the "Madison-Gravelly arch," a large Laramide uplift, collapsed, forming the Madison Valley, structurally a complex down-to-the-east half graben. Basin deposits as thick as 4,500 m filled the graben.
Pleistocene glaciers sculpted the high peaks of the mountain ranges and formed the present rugged topography.
Compilation scale is 1:100,000. Geology mapped between 1988 and 1995. Compilation completed 1997. Review and revision completed 1997. Archive files prepared 1998-02.
Geospatial data about Lincoln County, Wyoming Roads. Export to CAD, GIS, PDF, CSV and access via API.
Wyoming Roads Data Provided by the Wyoming Department of Transportation (WYDOT). Contact WYDOT directly with questions regrading these data. Refer to README.text and DISCLAIMER.text for data use details. Datasets include county roads, highways, and mileposts.
Find your representatives and elected officials in Laramie County, Wyoming including the City of Cheyenne via address search, picking a point on the map or by "My Location".
Created by the Cheyenne/Laramie County Cooperative GIS Program as a floodplain identification resource. Laramie County and the City of Cheyenne participated in the DFIRM study with FEMA and the results were published in 2007. For further information visit the site and see the Metadata on the Help page.
This map is designed to help illustrate the progress Cheyenne has made in storm water management since the flood of 1985. The left frame of this map shows our storm water management system circa 1985, as well as the flooded areas from the flood of 1985 (which was roughly a 100 year event in most parts of Cheyenne).. The map data on the right side of the map is from our most recent data (2015) and shows our updated storm water management system as well as the our current 100 year flood areas.
The Sheeprocks (UT) was revised to resync with the UT habitat change as reflected in the Oct 2017 habitat data, creating the most up-to-date version of this dataset. Data submitted by Wyoming in February 2018 and by Montana and Oregon in May 2016 were used to update earlier versions of this feature class. The biologically significant unit (BSU) is a geographical/spatial area within Greater Sage-Grouse habitat that contains relevant and important habitats which is used as the basis for comparative calculations to support evaluation of changes to habitat. This BSU unit, or subset of this unit is used in the calculation of the anthropogenic disturbance threshold and in the adaptive management habitat trigger. BSU feature classes were submitted by individual states/EISs and consolidated by the Wildlife Spatial Analysis Lab. They are sometimes referred to as core areas/core habitat areas in the explanations below, which were consolidated from metadata submitted with BSU feature classes. These data provide a biological tool for planning in the event of human development in sage-grouse habitats. The intended use of all data in the BLM's GIS library is to support diverse activities including planning, management, maintenance, research, and interpretation. While the BSU defines the geographic extent and scale of these two measures, how they are calculated differs based on the specific measures to reflect appropriate assessment and evaluation as supported by scientific literature.There are 10 BSUs for the Idaho and Southwestern Montana GRSG EIS sub-region. For the Idaho and Southwestern Montana Greater Sage-Grouse Plan Amendment FEIS the biologically significant unit is defined as: a geographical/spatial area within greater sage-grouse habitat that contains relevant and important habitats which is used as the basis for comparative calculations to support evaluation of changes to habitat. Idaho: BSUs include all of the Idaho Fish and Game modeled nesting and delineated winter habitat, based on 2011 inventories within Priority and/or Important Habitat Management Area (Alternative G) within a Conservation Area. There are eight BSUs for Idaho identified by Conservation Area and Habitat Management Area: Idaho Desert Conservation Area - Priority, Idaho Desert Conservation Area - Important, Idaho Mountain Valleys Conservation Area - Priority, Idaho Mountain Valleys Conservation Area - Important, Idaho Southern Conservation Area - Priority, Idaho Southern Conservation Area - Important, Idaho West Owyhee Conservation Area - Priority, and Idaho West Owyhee Conservation Area - Important. Raft River : Utah portion of the Sawtooth National Forest, 1 BSU. All of this areas was defined as Priority habitat in Alternative G. Raft River - Priority. Montana: All of the Priority Habitat Management Area. 1 BSU. SW Montana Conservation Area - Priority. Montana BSUs were revised in May 2016 by the MT State Office. They are grouped together and named by the Population in which they are located: Northern Montana, Powder River Basin, Wyoming Basin, and Yellowstone Watershed. North and South Dakota BSUs have been grouped together also. California and Nevada's BSUs were developed by Nevada Department of Wildlife's Greater Sage-Grouse Wildlife Staff Specialist and Sagebrush Ecosystem Technical Team Representative in January 2015. Nevada's Biologically Significant Units (BSUs) were delineated by merging associated PMUs to provide a broader scale management option that reflects sage grouse populations at a higher scale. PMU boundarys were then modified to incorporate Core Management Areas (August 2014; Coates et al. 2014) for management purposes. (Does not include Bi-State DPS.) Within Colorado, a Greater Sage-Grouse GIS data set identifying Preliminary Priority Habitat (PPH) and Preliminary General Habitat (PGH) was developed by Colorado Parks and Wildlife. This data is a combination of mapped grouse occupied range, production areas, and modeled habitat (summer, winter, and breeding). PPH is defined as areas of high probability of use (summer or winter, or breeding models) within a 4 mile buffer around leks that have been active within the last 10 years. Isolated areas with low activity were designated as general habitat. PGH is defined as Greater sage-grouse Occupied Range outside of PPH. Datasets used to create PPH and PGH: Summer, winter, and breeding habitat models. Rice, M. B., T. D. Apa, B. L. Walker, M. L. Phillips, J. H. Gammonly, B. Petch, and K. Eichhoff. 2012. Analysis of regional species distribution models based on combined radio-telemetry datasets from multiple small-scale studies. Journal of Applied Ecology in review. Production Areas are defined as 4 mile buffers around leks which have been active within the last 10 years (leks active between 2002-2011). Occupied range was created by mapping efforts of the Colorado Division of Wildlife (now Colorado Parks and Wildlife –CPW) biologists and district officers during the spring of 2004, and further refined in early 2012. Occupied Habitat is defined as areas of suitable habitat known to be used by sage-grouse within the last 10 years from the date of mapping. Areas of suitable habitat contiguous with areas of known use, which do not have effective barriers to sage-grouse movement from known use areas, are mapped as occupied habitat unless specific information exists that documents the lack of sage-grouse use. Mapped from any combination of telemetry locations, sightings of sage grouse or sage grouse sign, local biological expertise, GIS analysis, or other data sources. This information was derived from field personnel. A variety of data capture techniques were used including the SmartBoard Interactive Whiteboard using stand-up, real-time digitizing atvarious scales (Cowardin, M., M. Flenner. March 2003. Maximizing Mapping Resources. GeoWorld 16(3):32-35). Update August 2012: This dataset was modified by the Bureau of Land Management as requested by CPW GIS Specialist, Karin Eichhoff. Eichhoff requested that this dataset, along with the GrSG managment zones (population range zones) dataset, be snapped to county boundaries along the UT-CO border and WY-CO border. The county boundaries dataset was provided by Karin Eichhoff. In addition, a few minor topology errors were corrected where PPH and PGH were overlapping. Update October 10, 2012: NHD water bodies greater than 100 acres were removed from GrSG habitat, as requested by Jim Cagney, BLM CO Northwest District Manager. 6 water bodies in total were removed (Hog Lake, South Delaney, Williams Fork Reservoir, North Delaney, Wolford Mountain Reservoir (2 polygons)). There were two “SwampMarsh” polygons that resulted when selecting polygons greater than 100 acres; these polygons were not included. Only polygons with the attribute “LakePond” were removed from GrSG habitat. Colorado Greater Sage Grouse managment zones based on CDOW GrSG_PopRangeZones20120609.shp. Modified and renumbered by BLM 06/09/2012. The zones were modified again by the BLM in August 2012. The BLM discovered areas where PPH and PGH were not included within the zones. Several discrepancies between the zones and PPH and PGH dataset were discovered, and were corrected by the BLM. Zones 18-21 are linkages added as zones by the BLM. In addition to these changes, the zones were adjusted along the UT-CO boundary and WY-CO boundary to be coincident with the county boundaries dataset. This was requested by Karin Eichhoff, GIS Specialist at the CPW. She provided the county boundaries dataset to the BLM. Greater sage grouse GIS data set identifying occupied, potential and vacant/unknown habitats in Colorado. The data set was created by mapping efforts of the Colorado Division of Wildlife biologist and district officers during the spring of 2004, and further refined in the winter of 2005. Occupied Habitat: Areas of suitable habitat known to be used by sage-grouse within the last 10 years from the date of mapping. Areas of suitable habitat contiguous with areas of known use, which do not have effective barriers to sage-grouse movement from known use areas, are mapped as occupied habitat unless specific information exists that documents the lack of sage-grouse use. Mapped from any combination of telemetry locations, sightings of sage grouse or sage grouse sign, local biological expertise, GIS analysis, or other data sources. Vacant or Unknown Habitat: Suitable habitat for sage-grouse that is separated (not contiguous) from occupied habitats that either: 1) Has not been adequately inventoried, or 2) Has not had documentation of grouse presence in the past 10 years Potentially Suitable Habitat: Unoccupied habitats that could be suitable for occupation of sage-grouse if practical restoration were applied. Soils or other historic information (photos, maps, reports, etc.) indicate sagebrush communities occupied these areas. As examples, these sites could include areas overtaken by pinyon-juniper invasions or converted rangelandsUpdate October 10, 2012: NHD water bodies greater than 100 acres were removed from GrSG habitat and management zones, as requested by Jim Cagney, BLM CO Northwest District Manager. 6 water bodies in total were removed (Hog Lake, South Delaney, Williams Fork Reservoir, North Delaney, Wolford Mountain Reservoir (2 polygons)). There were two “SwampMarsh” polygons that resulted when selecting polygons greater than 100 acres; these polygons were not included. Only polygons with the attribute “LakePond” were removed from GrSG habitat. Oregon submitted updated BSU boundaries in May 2016 and again in October 2016, which were incorporated into this latest version. In Oregon, the Core Area maps and data were developed as one component of the Conservation Strategy for sage-grouse. Specifically, these data provide a tool in planning and identifying appropriate mitigation in the event of human development in sage-grouse habitats. These maps will assist in making
This resource is a member of a series. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) System (MTS). The MTS represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. County subdivisions are the primary divisions of counties and equivalent entities for the reporting of Census Bureau data. They include legally-recognized minor civil divisions (MCDs) and statistical census county divisions (CCDs), and unorganized territories. In MCD states where no MCD exists or is not defined, the Census Bureau creates statistical unorganized territories to complete coverage. The entire area of the United States, Puerto Rico, and the Island Areas are covered by county subdivisions. The boundaries of most legal MCDs are as of January 1, 2024, as reported through the Census Bureau's Boundary and Annexation Survey (BAS). The boundaries of all CCDs are those as reported as part of the Census Bureau's Participant Statistical Areas Program (PSAP) for the 2020 Census.