In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.
2,31 (persons per sq. km) in 2022.
Map containing historical census data from 1900 - 2000 throughout the western United States at the county level. Data includes total population, population density, and percent population change by decade for each county. Population data was obtained from the US Census Bureau and joined to 1:2,000,000 scale National Atlas counties shapefile.
California was the state with the highest resident population in the United States in 2024, with 39.43 million people. Wyoming had the lowest population with about 590,000 residents. Living the American Dream Ever since the opening of the West in the United States, California has represented the American Dream for both Americans and immigrants to the U.S. The warm weather, appeal of Hollywood and Silicon Valley, as well as cities that stick in the imagination such as San Francisco and Los Angeles, help to encourage people to move to California. Californian demographics California is an extremely diverse state, as no one ethnicity is in the majority. Additionally, it has the highest percentage of foreign-born residents in the United States. By 2040, the population of California is expected to increase by almost 10 million residents, which goes to show that its appeal, both in reality and the imagination, is going nowhere fast.
This is a map of populated areas with population density greater than or equal to 1 individual/ ha (i.e., rural/exurban but including suburban and urban as defined by Marzluff et al. 2001) as determined from U.S. Census data corrected for public lands.
The 2015 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. The records in this file allow users to map the parts of Urban Areas that overlap a particular county. After each decennial census, the Census Bureau delineates urban areas that represent densely developed territory, encompassing residential, commercial, and other nonresidential urban land uses. In general, this territory consists of areas of high population density and urban land use resulting in a representation of the "urban footprint." There are two types of urban areas: urbanized areas (UAs) that contain 50,000 or more people and urban clusters (UCs) that contain at least 2,500 people, but fewer than 50,000 people (except in the U.S. Virgin Islands and Guam which each contain urban clusters with populations greater than 50,000). Each urban area is identified by a 5-character numeric census code that may contain leading zeroes. The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities. The boundaries for counties and equivalent entities are as of January 1, 2010.
The EcoTrends project was established in 2004 by Dr. Debra Peters (Jornada Basin LTER, USDA-ARS Jornada Experimental Range) and Dr. Ariel Lugo (Luquillo LTER, USDA-FS Luquillo Experimental Forest) to support the collection and analysis of long-term ecological datasets. The project is a large synthesis effort focused on improving the accessibility and use of long-term data. At present, there are ~50 state and federally funded research sites that are participating and contributing to the EcoTrends project, including all 26 Long-Term Ecological Research (LTER) sites and sites funded by the USDA Agriculture Research Service (ARS), USDA Forest Service, US Department of Energy, US Geological Survey (USGS) and numerous universities. Data from the EcoTrends project are available through an exploratory web portal (http://www.ecotrends.info). This web portal enables the continuation of data compilation and accessibility by users through an interactive web application. Ongoing data compilation is updated through both manual and automatic processing as part of the LTER Provenance Aware Synthesis Tracking Architecture (PASTA). The web portal is a collaboration between the Jornada LTER and the LTER Network Office. The following dataset from Shortgrass Steppe (SGS) contains percent urban population measurements in percent units and were aggregated to a yearly timescale.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Household data are collected as of March.
As stated in the Census's "Source and Accuracy of Estimates for Income, Poverty, and Health Insurance Coverage in the United States: 2011" (http://www.census.gov/hhes/www/p60_243sa.pdf):
Estimation of Median Incomes. The Census Bureau has changed the methodology for computing median income over time. The Census Bureau has computed medians using either Pareto interpolation or linear interpolation. Currently, we are using linear interpolation to estimate all medians. Pareto interpolation assumes a decreasing density of population within an income interval, whereas linear interpolation assumes a constant density of population within an income interval. The Census Bureau calculated estimates of median income and associated standard errors for 1979 through 1987 using Pareto interpolation if the estimate was larger than $20,000 for people or $40,000 for families and households. This is because the width of the income interval containing the estimate is greater than $2,500.
We calculated estimates of median income and associated standard errors for 1976, 1977, and 1978 using Pareto interpolation if the estimate was larger than $12,000 for people or $18,000 for families and households. This is because the width of the income interval containing the estimate is greater than $1,000. All other estimates of median income and associated standard errors for 1976 through 2011 (2012 ASEC) and almost all of the estimates of median income and associated standard errors for 1975 and earlier were calculated using linear interpolation.
Thus, use caution when comparing median incomes above $12,000 for people or $18,000 for families and households for different years. Median incomes below those levels are more comparable from year to year since they have always been calculated using linear interpolation. For an indication of the comparability of medians calculated using Pareto interpolation with medians calculated using linear interpolation, see Series P-60, Number 114, Money Income in 1976 of Families and Persons in the United States (www2.census.gov/prod2/popscan/p60-114.pdf).
The EcoTrends project was established in 2004 by Dr. Debra Peters (Jornada Basin LTER, USDA-ARS Jornada Experimental Range) and Dr. Ariel Lugo (Luquillo LTER, USDA-FS Luquillo Experimental Forest) to support the collection and analysis of long-term ecological datasets. The project is a large synthesis effort focused on improving the accessibility and use of long-term data. At present, there are ~50 state and federally funded research sites that are participating and contributing to the EcoTrends project, including all 26 Long-Term Ecological Research (LTER) sites and sites funded by the USDA Agriculture Research Service (ARS), USDA Forest Service, US Department of Energy, US Geological Survey (USGS) and numerous universities. Data from the EcoTrends project are available through an exploratory web portal (http://www.ecotrends.info). This web portal enables the continuation of data compilation and accessibility by users through an interactive web application. Ongoing data compilation is updated through both manual and automatic processing as part of the LTER Provenance Aware Synthesis Tracking Architecture (PASTA). The web portal is a collaboration between the Jornada LTER and the LTER Network Office. The following dataset from Glacier Lakes Ecosystems Experiments Site (GLA) contains human population density measurements in numberPerKilometerSquared units and were aggregated to a yearly timescale.
description: The 2016 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. The records in this file allow users to map the parts of Urban Areas that overlap a particular county. After each decennial census, the Census Bureau delineates urban areas that represent densely developed territory, encompassing residential, commercial, and other nonresidential urban land uses. In general, this territory consists of areas of high population density and urban land use resulting in a representation of the ""urban footprint."" There are two types of urban areas: urbanized areas (UAs) that contain 50,000 or more people and urban clusters (UCs) that contain at least 2,500 people, but fewer than 50,000 people (except in the U.S. Virgin Islands and Guam which each contain urban clusters with populations greater than 50,000). Each urban area is identified by a 5-character numeric census code that may contain leading zeroes. The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities. The generalized boundaries for counties and equivalent entities are as of January 1, 2010.; abstract: The 2016 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. The records in this file allow users to map the parts of Urban Areas that overlap a particular county. After each decennial census, the Census Bureau delineates urban areas that represent densely developed territory, encompassing residential, commercial, and other nonresidential urban land uses. In general, this territory consists of areas of high population density and urban land use resulting in a representation of the ""urban footprint."" There are two types of urban areas: urbanized areas (UAs) that contain 50,000 or more people and urban clusters (UCs) that contain at least 2,500 people, but fewer than 50,000 people (except in the U.S. Virgin Islands and Guam which each contain urban clusters with populations greater than 50,000). Each urban area is identified by a 5-character numeric census code that may contain leading zeroes. The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities. The generalized boundaries for counties and equivalent entities are as of January 1, 2010.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
1Mean well density in 2009 within a 20 km radius of northeast Wyoming leks.2Maximum well density in 2009 within a 20 km radius of northeast Wyoming leks.3Permitting levels for well density on United States federal land.
description: This shapefile contains landscape factors representing human disturbances summarized to local and network catchments of river reaches for the state of Wyoming. This dataset is the result of clipping the feature class 'NFHAP 2010 HCI Scores and Human Disturbance Data for the Conterminous United States linked to NHDPLUSV1.gdb' to the state boundary of Wyoming. Landscape factors include land uses, population density, roads, dams, mines, and point-source pollution sites. The source datasets that were compiled and attributed to catchments were identified as being: (1) meaningful for assessing fish habitat; (2) consistent across the entire study area in the way that they were assembled; (3) representative of conditions in the past 10 years, and (4) of sufficient spatial resolution that they could be used to make valid comparisons among local catchment units. In this data set, these variables are linked to the catchments of the National Hydrography Dataset Plus Version 1 (NHDPlusV1) using the COMID identifier. They can also be linked to the reaches of the NHDPlusV1 using the COMID identifier. Catchment attributes are available for both local catchments (defined as the land area draining directly to a reach; attributes begin with "L_" prefix) and network catchments (defined by all upstream contributing catchments to the reach's outlet, including the reach's own local catchment; attributes begin with "N_" prefix). This shapefile also includes habitat condition scores created based on responsiveness of biological metrics to anthropogenic landscape disturbances throughout ecoregions. Separate scores were created by considering disturbances within local catchments, network catchments, and a cumulative score that accounted for the most limiting disturbance operating on a given biological metric in either local or network catchments. This assessment only scored reaches representing streams and rivers (see the process section for more details). Please use the following citation: Esselman, P., D.M. Infante, L. Wang, W. Taylor, W. Daniel, R. Tingley, J. Fenner, A. Cooper, D. Wieferich, D. Thornbrugh and J. Ross. (April 2011) National Fish Habitat Action Plan (NFHAP) 2010 HCI Scores and Human Disturbance Data (linked to NHDPLUSV1) for Wyoming. National Fish Habitat Partnership Data System. http://dx.doi.org/doi:10.5066/F7VM499V; abstract: This shapefile contains landscape factors representing human disturbances summarized to local and network catchments of river reaches for the state of Wyoming. This dataset is the result of clipping the feature class 'NFHAP 2010 HCI Scores and Human Disturbance Data for the Conterminous United States linked to NHDPLUSV1.gdb' to the state boundary of Wyoming. Landscape factors include land uses, population density, roads, dams, mines, and point-source pollution sites. The source datasets that were compiled and attributed to catchments were identified as being: (1) meaningful for assessing fish habitat; (2) consistent across the entire study area in the way that they were assembled; (3) representative of conditions in the past 10 years, and (4) of sufficient spatial resolution that they could be used to make valid comparisons among local catchment units. In this data set, these variables are linked to the catchments of the National Hydrography Dataset Plus Version 1 (NHDPlusV1) using the COMID identifier. They can also be linked to the reaches of the NHDPlusV1 using the COMID identifier. Catchment attributes are available for both local catchments (defined as the land area draining directly to a reach; attributes begin with "L_" prefix) and network catchments (defined by all upstream contributing catchments to the reach's outlet, including the reach's own local catchment; attributes begin with "N_" prefix). This shapefile also includes habitat condition scores created based on responsiveness of biological metrics to anthropogenic landscape disturbances throughout ecoregions. Separate scores were created by considering disturbances within local catchments, network catchments, and a cumulative score that accounted for the most limiting disturbance operating on a given biological metric in either local or network catchments. This assessment only scored reaches representing streams and rivers (see the process section for more details). Please use the following citation: Esselman, P., D.M. Infante, L. Wang, W. Taylor, W. Daniel, R. Tingley, J. Fenner, A. Cooper, D. Wieferich, D. Thornbrugh and J. Ross. (April 2011) National Fish Habitat Action Plan (NFHAP) 2010 HCI Scores and Human Disturbance Data (linked to NHDPLUSV1) for Wyoming. National Fish Habitat Partnership Data System. http://dx.doi.org/doi:10.5066/F7VM499V
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
The distribution of spatial genetic variation across a region can shape evolutionary dynamics and impact population persistence. Local population dynamics and among-population dispersal rates are strong drivers of this spatial genetic variation, yet for many species we lack a clear understanding of how these population processes interact in space to shape within-species genetic variation. Here, we used extensive genetic and demographic data from 10 subpopulations of greater sage-grouse to parameterize a simulated approximate Bayesian computation (ABC) model and (i) test for regional differences in population density and dispersal rates for greater sage-grouse subpopulations in Wyoming, and (ii) quantify how these differences impact subpopulation regional influence on genetic variation. We found a close match between observed and simulated data under our parameterized model and strong variation in density and dispersal rates across Wyoming. Sensitivity analyses suggested that changes in dispersal (via landscape resistance) had a greater influence on regional differentiation, whereas changes in density had a greater influence on mean diversity across all subpopulations. Local subpopulations, however, varied in their regional influence on genetic variation. Decreases in the size and dispersal rates of central populations with low overall and net immigration (i.e. population sources) had the greatest negative impact on genetic variation. Overall, our results provide insight into the interactions among demography, dispersal and genetic variation and highlight the potential of ABC to disentangle the complexity of regional population dynamics and project the genetic impact of changing conditions.
This CSV file contains cumulative fish habitat condition index (HCI) scores generated for river reaches of the conterminous United States as well as indices generated specifically for four spatial units including local and network catchments and 90 m local and network buffers of river reaches. Note that the cumulative HCI score is determined from limiting index scores generated for the four spatial units listed above. Detailed methods for calculating cumulative fish habitat condition index scores as well as the indices for each spatial extent can be found on the following website: http://assessment.fishhabitat.org/: The variables used to create indices in catchments vs. buffers differ due to differences in resolution of datasets. The following anthropogenic disturbance variables were used to create local and network catchment indices: Percent of urban land use, percent of impervious surface, human population density, road density, percent of pasture/hay, percent of cultivated crops, density of point source pollution sites (National Pollution Discharge Elimination, Toxic Inventory Release and National Superfund), nutrient and sediment loading to watersheds, habitat fragmentation metrics (density of dams and road crossings), density of mines and water withdrawals. The following anthropogenic disturbance variables were analyzed to create the local and network buffer indices: percent of urban land use, percent of agriculture, percent of pasture/hay and percent of impervious surface. The source datasets that were compiled and attributed to catchments were identified as being: (1) meaningful for assessing fish habitat; (2) consistent across the entire study area in the way that they were assembled; (3) representative of conditions in the past 10 years, and (4) of sufficient spatial resolution that they could be used to make valid comparisons among local catchment and buffer units. Also included in this CSV file are the most limiting and severe disturbances to stream reaches operating within each of the four spatial extents. Limiting disturbances are defined as those disturbances that result in a stream reach not being in the best available condition determined for the region. Severe disturbances are a subset of limiting disturbances that are associated with stream reaches in a given region that were scored as having high or very high risk of habitat degradation (red and orange color groups). In this data set, indices as well as limiting and severe disturbances are linked to the stream reaches, catchments and buffers created for the National Hydrography Dataset Plus Version 1 (NHDPlusV1) using the COMID identifier. It is important to recognize that these broadly-defined disturbance variables often act together with other measured or unmeasured threats to degrade habitat. Thus, while we may identify “urbanization” as a major threat to fish habitat in some regions, “urbanization” represents an umbrella term that describes many facets of urban development that could cause degradation to habitats. Fields in this dataset that begin with the "L_" prefix represent the local catchment whereas network catchments (defined by all upstream contributing catchments to the reach's outlet, including the reach's own local catchment; attributes begin with "N_" prefix. Like the catchment variables the buffer variables are labeled using a "LB_" and "NB_" prefix for local buffer and network buffer variables, respectively. More information about the processes used to create scores can be found in the processes section. Version 2.0 includes the addition of severe disturbances for each spatial scale and fixes errors documented in the change log.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Macrofossils from woodrat (Neotoma) middens serve as an important proxy for reconstructing past vegetation in arid and semiarid regions of North America. The presence/absence of plant macrofossils in middens can provide valuable information on temporal and spatial patterns of plant migration and range boundaries. The primary aim of this study was to determine how local plant abundance, distance of plant populations from midden sites, and species population density on the landscape affect the probability of occurrence of macrofossils in middens. The study was designed with the primary intent of determining the reliability of middens in detecting scattered populations of Pinus ponderosa. We analyzed macrofossil assemblages from 42 modern woodrat middens from West Carrizo Canyon in southeastern Colorado, near the current eastern range margin of Pinus ponderosa. We compared midden contents with composition of the surrounding vegetation, measuring distance from the midden to the nearest individual of selected plant species, and the percent cover of each species within 30 m of the midden. We used this information to model the probability of species presence in a midden across a range of population densities on the landscape. Macrofossils of Juniperus spp., Quercus gambelii, and Opuntia spp. were consistently found in middens regardless of their local abundance in vegetation, although populations occurred within 30 m of all middens. Pinus edulis and P. ponderosa occurred in nearly all middens within 20-30 m of individual trees. P. ponderosa was rare in middens >20-30 m away from individual trees. Results of a simple simulation model suggest that middens become absolutely reliable indicators of P. ponderosa presence on the landscape only when average tree density exceeds 50 stems ha-1. Woodrats reliably collected macrofossils of Pinus edulis, P. ponderosa, Juniperus spp., Quercus gambelii, and Opuntia spp. when populations of these taxa occur within 20-30 m of a midden site. Woodrats did not collect P. ponderosa when the nearest individuals were more than 30 m away. Low-density populations of these and other species may be difficult to detect in fossil woodrat-midden series owing to reduced probability that individuals grow within foraging distance of the middens. Data from this and similar studies can be used to construct and parameterize a forward model of macrofossil representation in woodrat middens.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.