4 datasets found
  1. d

    Replication Data for: A Rydberg atom based system for benchmarking mmWave...

    • search.dataone.org
    Updated Sep 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Borówka, Sebastian; Krokosz, Wiktor; Mazelanik, Mateusz; Wasilewski, Wojciech; Parniak, Michał (2024). Replication Data for: A Rydberg atom based system for benchmarking mmWave automotive radar chips [Dataset]. http://doi.org/10.7910/DVN/OYUNJ1
    Explore at:
    Dataset updated
    Sep 24, 2024
    Dataset provided by
    Harvard Dataverse
    Authors
    Borówka, Sebastian; Krokosz, Wiktor; Mazelanik, Mateusz; Wasilewski, Wojciech; Parniak, Michał
    Description

    Simulation Data The waveplate.hdf5 file stores the results of the FDTD simulation that are visualized in Fig. 3 b)-d). The simulation was performed using the Tidy 3D Python library and also utilizes its methods for data visualization. The following snippet can be used to visualize the data: import tidy3d as td import matplotlib.pyplot as plt sim_data: td.SimulationData = td.SimulationData.from_file(f"waveplate.hdf5") fig, axs = plt.subplots(1, 2, tight_layout=True, figsize=(12, 5)) for fn, ax in zip(("Ex", "Ey"), axs): sim_data.plot_field("field_xz", field_name=fn, val="abs^2", ax=ax).set_aspect(1 / 10) ax.set_xlabel("x [$\mu$m]") ax.set_ylabel("z [$\mu$m]") fig.show() Measurement Data Signal data used for plotting Fig. 4-6. The data is stored in NetCDF providing self describing data format that is easy to manipulate using the Xarray Python library, specifically by calling xarray.open_dataset() Three datasets are provided and structured as follows: The electric_fields.nc dataset contains data displayed in Fig. 4. It has 3 data variables, corresponding to the signals themselves, as well as estimated Rabi frequencies and electric fields. The freq dimension is the x-axis and contains coordinates for the Probe field detuning in MHz. The n dimension labels different configurations of applied electric field, with the 0th one having no EHF field. The detune.nc dataset contains data displayed in Fig. 6. It has 2 data variables, corresponding to the signals themselves, as well as estimated peak separations, multiplied by the coupling factor. The freq dimension is the same, while the detune dimension labels different EHF field detunings, from -100 to 100 MHz with a step of 10. The waveplates.nc dataset contains data displayed in Fig. 5. It contains estimated Rabi frequencies calculated for different waveplate positions. The angles are stored in radians. There is the quarter- and half-waveplate to choose from. Usage examples Opening the dataset import matplotlib.pyplot as plt import xarray as xr electric_fields_ds = xr.open_dataset("data/electric_fields.nc") detuned_ds = xr.open_dataset("data/detune.nc") waveplates_ds = xr.open_dataset("data/waveplates.nc") sigmas_da = xr.open_dataarray("data/sigmas.nc") peak_heights_da = xr.open_dataarray("data/peak_heights.nc") Plotting the Fig. 4 signals and printing params fig, ax = plt.subplots() electric_fields_ds["signals"].plot.line(x="freq", hue="n", ax=ax) print(f"Rabi frequencies [Hz]: {electric_fields_ds['rabi_freqs'].values}") print(f"Electric fields [V/m]: {electric_fields_ds['electric_fields'].values}") fig.show() Plotting the Fig. 5 data (waveplates_ds["rabi_freqs"] ** 2).plot.scatter(x="angle", col="waveplate") Plotting the Fig. 6 signals for chosen detunes fig, ax = plt.subplots() detuned_ds["signals"].sel( detune=[ -100, -70, -40, 40, 70, 100, ] ).plot.line(x="freq", hue="detune", ax=ax) fig.show() Plotting the Fig. 6 inset plot fig, ax = plt.subplots() detuned_ds["separations"].plot.scatter(x="detune", ax=ax) ax.plot( detuned_ds.detune, np.sqrt(detuned_ds.detune**2 + detuned_ds["separations"].sel(detune=0) ** 2), ) fig.show() Plotting the Fig. 7 calculated peak widths sigmas_da.plot.scatter() Plotting the Fig. 8 calculated detuned smaller peak heights peak_heights_da.plot.scatter()

  2. h

    next-day-wildfire-spread

    • huggingface.co
    Updated Aug 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrzej Szablewski (2024). next-day-wildfire-spread [Dataset]. https://huggingface.co/datasets/TheRootOf3/next-day-wildfire-spread
    Explore at:
    Dataset updated
    Aug 9, 2024
    Authors
    Andrzej Szablewski
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Next Day Wildfire Spread Dataset

    This dataset is an xarray version of the original Next Day Wildfire Spread dataset. It comes in three splits: train, eval and test. Note: Given the original dataset does not contain spatio-temporal information, the xarray coordinates has been set to arbitrary ranges (0-63 for spatial dimensions and 0-number_of_samples for the temporal dimension).

      Example
    

    To open a train split of the dataset and show an elevation plot at time=2137:… See the full description on the dataset page: https://huggingface.co/datasets/TheRootOf3/next-day-wildfire-spread.

  3. Data and Code for "Observation of edge and bulk states in a three-site...

    • zenodo.org
    zip
    Updated Mar 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sebastiaan ten Haaf; Sebastiaan ten Haaf (2025). Data and Code for "Observation of edge and bulk states in a three-site Kitaev chain" [Dataset]. http://doi.org/10.5281/zenodo.15020006
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 14, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Sebastiaan ten Haaf; Sebastiaan ten Haaf
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This folder contains the raw data and code used to generate the plots for the manuscript Observation of edge and bulk states in a three site Kitaev chain.

    Three jupyer notebooks are included for outputting the data.

    To run the Jupyter notebooks, install Anaconda and execute the .yml file to create the appropriate environment:

    conda env create -f 0_env.yml

    Active the environment by running:

    conda activate Kitaev3_2DEG

    Finally, open jupyer lab:

    jupyter lab

    to launch the notebooks.

    Data is stored in the qcodes '.db' format. Datasets are transformed in the plotting functions to an xarray dataformat, before being processed. All data obtained over the course of the measurements is included. The file '1_Introduction.ipynb' details what data is included and how to load/visualise the datasets. A package has been included in the folder 'Plotting', which allows for automatically plotting any dataset with some minimal configuration options.

    The following files are included:

    • 0_env.yml : conda environment required for running the notebooks
    • 1_Introduction.yml: explanation of how to load and output the datasets
    • 2_Figures_Main.ipynb: loads data from the databases and outputs the figures as shown in the main text
    • 3_Figures_Supp.ipynb: loads data from the databases and outputs the figures as showni n the supplementary text
    • Kitaev_3_conductance.py: File for solving the tight-binding Kitaev chain model and calculate conductances using a scattering matrix approach, used to generate the numerical results as shown in the main text and supplementary file
  4. Z

    Data and code for "Singlet and triplet Cooper pair splitting in hybrid...

    • data.niaid.nih.gov
    Updated Nov 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Guanzhong Wang (2022). Data and code for "Singlet and triplet Cooper pair splitting in hybrid superconducting nanowires" [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_5774827
    Explore at:
    Dataset updated
    Nov 23, 2022
    Dataset authored and provided by
    Guanzhong Wang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This folder contains the raw data and code used to generate the plots for the paper Singlet and triplet Cooper pair splitting in hybrid superconducting nanowires (arXiv: 2205.03458).

    To run the Jupyter notebooks, install Anaconda and execute:

    conda env create -f cps-exp.yml

    followed by:

    conda activate cps-exp

    for the experiment data, or

    conda env create -f cps-theory.yml

    and similarly

    conda activate cps-theory

    for the theory plots. Finally,

    jupyter notebook

    to launch the corresponding notebook.

    Raw data are stored in netCDF (.nc) format. The files are directly exported by the data acquisition package QCoDeS and can be read as an xarray Dataset.

  5. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Borówka, Sebastian; Krokosz, Wiktor; Mazelanik, Mateusz; Wasilewski, Wojciech; Parniak, Michał (2024). Replication Data for: A Rydberg atom based system for benchmarking mmWave automotive radar chips [Dataset]. http://doi.org/10.7910/DVN/OYUNJ1

Replication Data for: A Rydberg atom based system for benchmarking mmWave automotive radar chips

Explore at:
Dataset updated
Sep 24, 2024
Dataset provided by
Harvard Dataverse
Authors
Borówka, Sebastian; Krokosz, Wiktor; Mazelanik, Mateusz; Wasilewski, Wojciech; Parniak, Michał
Description

Simulation Data The waveplate.hdf5 file stores the results of the FDTD simulation that are visualized in Fig. 3 b)-d). The simulation was performed using the Tidy 3D Python library and also utilizes its methods for data visualization. The following snippet can be used to visualize the data: import tidy3d as td import matplotlib.pyplot as plt sim_data: td.SimulationData = td.SimulationData.from_file(f"waveplate.hdf5") fig, axs = plt.subplots(1, 2, tight_layout=True, figsize=(12, 5)) for fn, ax in zip(("Ex", "Ey"), axs): sim_data.plot_field("field_xz", field_name=fn, val="abs^2", ax=ax).set_aspect(1 / 10) ax.set_xlabel("x [$\mu$m]") ax.set_ylabel("z [$\mu$m]") fig.show() Measurement Data Signal data used for plotting Fig. 4-6. The data is stored in NetCDF providing self describing data format that is easy to manipulate using the Xarray Python library, specifically by calling xarray.open_dataset() Three datasets are provided and structured as follows: The electric_fields.nc dataset contains data displayed in Fig. 4. It has 3 data variables, corresponding to the signals themselves, as well as estimated Rabi frequencies and electric fields. The freq dimension is the x-axis and contains coordinates for the Probe field detuning in MHz. The n dimension labels different configurations of applied electric field, with the 0th one having no EHF field. The detune.nc dataset contains data displayed in Fig. 6. It has 2 data variables, corresponding to the signals themselves, as well as estimated peak separations, multiplied by the coupling factor. The freq dimension is the same, while the detune dimension labels different EHF field detunings, from -100 to 100 MHz with a step of 10. The waveplates.nc dataset contains data displayed in Fig. 5. It contains estimated Rabi frequencies calculated for different waveplate positions. The angles are stored in radians. There is the quarter- and half-waveplate to choose from. Usage examples Opening the dataset import matplotlib.pyplot as plt import xarray as xr electric_fields_ds = xr.open_dataset("data/electric_fields.nc") detuned_ds = xr.open_dataset("data/detune.nc") waveplates_ds = xr.open_dataset("data/waveplates.nc") sigmas_da = xr.open_dataarray("data/sigmas.nc") peak_heights_da = xr.open_dataarray("data/peak_heights.nc") Plotting the Fig. 4 signals and printing params fig, ax = plt.subplots() electric_fields_ds["signals"].plot.line(x="freq", hue="n", ax=ax) print(f"Rabi frequencies [Hz]: {electric_fields_ds['rabi_freqs'].values}") print(f"Electric fields [V/m]: {electric_fields_ds['electric_fields'].values}") fig.show() Plotting the Fig. 5 data (waveplates_ds["rabi_freqs"] ** 2).plot.scatter(x="angle", col="waveplate") Plotting the Fig. 6 signals for chosen detunes fig, ax = plt.subplots() detuned_ds["signals"].sel( detune=[ -100, -70, -40, 40, 70, 100, ] ).plot.line(x="freq", hue="detune", ax=ax) fig.show() Plotting the Fig. 6 inset plot fig, ax = plt.subplots() detuned_ds["separations"].plot.scatter(x="detune", ax=ax) ax.plot( detuned_ds.detune, np.sqrt(detuned_ds.detune**2 + detuned_ds["separations"].sel(detune=0) ** 2), ) fig.show() Plotting the Fig. 7 calculated peak widths sigmas_da.plot.scatter() Plotting the Fig. 8 calculated detuned smaller peak heights peak_heights_da.plot.scatter()

Search
Clear search
Close search
Google apps
Main menu