Facebook
TwitterSimulation Data The waveplate.hdf5 file stores the results of the FDTD simulation that are visualized in Fig. 3 b)-d). The simulation was performed using the Tidy 3D Python library and also utilizes its methods for data visualization. The following snippet can be used to visualize the data: import tidy3d as td import matplotlib.pyplot as plt sim_data: td.SimulationData = td.SimulationData.from_file(f"waveplate.hdf5") fig, axs = plt.subplots(1, 2, tight_layout=True, figsize=(12, 5)) for fn, ax in zip(("Ex", "Ey"), axs): sim_data.plot_field("field_xz", field_name=fn, val="abs^2", ax=ax).set_aspect(1 / 10) ax.set_xlabel("x [$\mu$m]") ax.set_ylabel("z [$\mu$m]") fig.show() Measurement Data Signal data used for plotting Fig. 4-6. The data is stored in NetCDF providing self describing data format that is easy to manipulate using the Xarray Python library, specifically by calling xarray.open_dataset() Three datasets are provided and structured as follows: The electric_fields.nc dataset contains data displayed in Fig. 4. It has 3 data variables, corresponding to the signals themselves, as well as estimated Rabi frequencies and electric fields. The freq dimension is the x-axis and contains coordinates for the Probe field detuning in MHz. The n dimension labels different configurations of applied electric field, with the 0th one having no EHF field. The detune.nc dataset contains data displayed in Fig. 6. It has 2 data variables, corresponding to the signals themselves, as well as estimated peak separations, multiplied by the coupling factor. The freq dimension is the same, while the detune dimension labels different EHF field detunings, from -100 to 100 MHz with a step of 10. The waveplates.nc dataset contains data displayed in Fig. 5. It contains estimated Rabi frequencies calculated for different waveplate positions. The angles are stored in radians. There is the quarter- and half-waveplate to choose from. Usage examples Opening the dataset import matplotlib.pyplot as plt import xarray as xr electric_fields_ds = xr.open_dataset("data/electric_fields.nc") detuned_ds = xr.open_dataset("data/detune.nc") waveplates_ds = xr.open_dataset("data/waveplates.nc") sigmas_da = xr.open_dataarray("data/sigmas.nc") peak_heights_da = xr.open_dataarray("data/peak_heights.nc") Plotting the Fig. 4 signals and printing params fig, ax = plt.subplots() electric_fields_ds["signals"].plot.line(x="freq", hue="n", ax=ax) print(f"Rabi frequencies [Hz]: {electric_fields_ds['rabi_freqs'].values}") print(f"Electric fields [V/m]: {electric_fields_ds['electric_fields'].values}") fig.show() Plotting the Fig. 5 data (waveplates_ds["rabi_freqs"] ** 2).plot.scatter(x="angle", col="waveplate") Plotting the Fig. 6 signals for chosen detunes fig, ax = plt.subplots() detuned_ds["signals"].sel( detune=[ -100, -70, -40, 40, 70, 100, ] ).plot.line(x="freq", hue="detune", ax=ax) fig.show() Plotting the Fig. 6 inset plot fig, ax = plt.subplots() detuned_ds["separations"].plot.scatter(x="detune", ax=ax) ax.plot( detuned_ds.detune, np.sqrt(detuned_ds.detune**2 + detuned_ds["separations"].sel(detune=0) ** 2), ) fig.show() Plotting the Fig. 7 calculated peak widths sigmas_da.plot.scatter() Plotting the Fig. 8 calculated detuned smaller peak heights peak_heights_da.plot.scatter()
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data product and code for: Ehmen et al.: Spatiotemporal Distribution of Dissolved Inorganic Carbon in the Global Ocean Interior - Reconstructed through Machine Learning
Note that due to the data limit on Zenodo only a compressed version of the ensemble mean is uploaded here (compressed_DIC_mean_15fold_ensemble_aveRMSE7.46_0.15TTcasts_1990-2023.nc). Individual ensemble members can be generated through the weight and scaler files found in weights_and_scalers_DIC_paper.zip and the code "ResNet_DIC_loading_past_prediction_2024-12-28.py" (see description below).
Prerequisites: Python running the modules tensorflow, shap, xarray, pandas and scipy. Plots additionally use matplotlib, cartopy, seaborn, statsmodels, gsw and cmocean.
The main scripts used to generate reconstructions are “ResNet_DIC_2024-12-28.py” (for new training runs) and “ResNet_DIC_loading_past_prediction_2024-12-28.py” (for already trained past weight and scaler files). Usage:
Once a reconstruction has been generated the following scripts found in the subdirectory “working_with_finished_reconstructions” can be used:
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This folder contains the raw data and code used to generate the plots for the paper Engineering Majorana bound states in coupled quantum dots in a two-dimensional electron gas.
To run the Jupyter notebooks, install Anaconda and execute:
conda env create -f environment.yml
followed by:
conda activate 2DEG_Kitaev
Finally,
jupyter notebook
to launch the notebooks
Data is stored in the qcodes '.db' format. Datasets are transformed in the plotting functions to the xarray dataformat, before being processed.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This folder contains the raw data and code used to generate the plots for the paper Singlet and triplet Cooper pair splitting in hybrid superconducting nanowires (arXiv: 2205.03458).
To run the Jupyter notebooks, install Anaconda and execute:
conda env create -f cps-exp.yml
followed by:
conda activate cps-exp
for the experiment data, or
conda env create -f cps-theory.yml
and similarly
conda activate cps-theory
for the theory plots. Finally,
jupyter notebook
to launch the corresponding notebook.
Raw data are stored in netCDF (.nc) format. The files are directly exported by the data acquisition package QCoDeS and can be read as an xarray Dataset.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterSimulation Data The waveplate.hdf5 file stores the results of the FDTD simulation that are visualized in Fig. 3 b)-d). The simulation was performed using the Tidy 3D Python library and also utilizes its methods for data visualization. The following snippet can be used to visualize the data: import tidy3d as td import matplotlib.pyplot as plt sim_data: td.SimulationData = td.SimulationData.from_file(f"waveplate.hdf5") fig, axs = plt.subplots(1, 2, tight_layout=True, figsize=(12, 5)) for fn, ax in zip(("Ex", "Ey"), axs): sim_data.plot_field("field_xz", field_name=fn, val="abs^2", ax=ax).set_aspect(1 / 10) ax.set_xlabel("x [$\mu$m]") ax.set_ylabel("z [$\mu$m]") fig.show() Measurement Data Signal data used for plotting Fig. 4-6. The data is stored in NetCDF providing self describing data format that is easy to manipulate using the Xarray Python library, specifically by calling xarray.open_dataset() Three datasets are provided and structured as follows: The electric_fields.nc dataset contains data displayed in Fig. 4. It has 3 data variables, corresponding to the signals themselves, as well as estimated Rabi frequencies and electric fields. The freq dimension is the x-axis and contains coordinates for the Probe field detuning in MHz. The n dimension labels different configurations of applied electric field, with the 0th one having no EHF field. The detune.nc dataset contains data displayed in Fig. 6. It has 2 data variables, corresponding to the signals themselves, as well as estimated peak separations, multiplied by the coupling factor. The freq dimension is the same, while the detune dimension labels different EHF field detunings, from -100 to 100 MHz with a step of 10. The waveplates.nc dataset contains data displayed in Fig. 5. It contains estimated Rabi frequencies calculated for different waveplate positions. The angles are stored in radians. There is the quarter- and half-waveplate to choose from. Usage examples Opening the dataset import matplotlib.pyplot as plt import xarray as xr electric_fields_ds = xr.open_dataset("data/electric_fields.nc") detuned_ds = xr.open_dataset("data/detune.nc") waveplates_ds = xr.open_dataset("data/waveplates.nc") sigmas_da = xr.open_dataarray("data/sigmas.nc") peak_heights_da = xr.open_dataarray("data/peak_heights.nc") Plotting the Fig. 4 signals and printing params fig, ax = plt.subplots() electric_fields_ds["signals"].plot.line(x="freq", hue="n", ax=ax) print(f"Rabi frequencies [Hz]: {electric_fields_ds['rabi_freqs'].values}") print(f"Electric fields [V/m]: {electric_fields_ds['electric_fields'].values}") fig.show() Plotting the Fig. 5 data (waveplates_ds["rabi_freqs"] ** 2).plot.scatter(x="angle", col="waveplate") Plotting the Fig. 6 signals for chosen detunes fig, ax = plt.subplots() detuned_ds["signals"].sel( detune=[ -100, -70, -40, 40, 70, 100, ] ).plot.line(x="freq", hue="detune", ax=ax) fig.show() Plotting the Fig. 6 inset plot fig, ax = plt.subplots() detuned_ds["separations"].plot.scatter(x="detune", ax=ax) ax.plot( detuned_ds.detune, np.sqrt(detuned_ds.detune**2 + detuned_ds["separations"].sel(detune=0) ** 2), ) fig.show() Plotting the Fig. 7 calculated peak widths sigmas_da.plot.scatter() Plotting the Fig. 8 calculated detuned smaller peak heights peak_heights_da.plot.scatter()