37 datasets found
  1. Z

    Storage and Transit Time Data and Code

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jun 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrew Felton (2024). Storage and Transit Time Data and Code [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8136816
    Explore at:
    Dataset updated
    Jun 12, 2024
    Dataset authored and provided by
    Andrew Felton
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Author: Andrew J. FeltonDate: 5/5/2024

    This R project contains the primary code and data (following pre-processing in python) used for data production, manipulation, visualization, and analysis and figure production for the study entitled:

    "Global estimates of the storage and transit time of water through vegetation"

    Please note that 'turnover' and 'transit' are used interchangeably in this project.

    Data information:

    The data folder contains key data sets used for analysis. In particular:

    "data/turnover_from_python/updated/annual/multi_year_average/average_annual_turnover.nc" contains a global array summarizing five year (2016-2020) averages of annual transit, storage, canopy transpiration, and number of months of data. This is the core dataset for the analysis; however, each folder has much more data, including a dataset for each year of the analysis. Data are also available is separate .csv files for each land cover type. Oterh data can be found for the minimum, monthly, and seasonal transit time found in their respective folders. These data were produced using the python code found in the "supporting_code" folder given the ease of working with .nc and EASE grid in the xarray python module. R was used primarily for data visualization purposes. The remaining files in the "data" and "data/supporting_data"" folder primarily contain ground-based estimates of storage and transit found in public databases or through a literature search, but have been extensively processed and filtered here.

    Code information

    Python scripts can be found in the "supporting_code" folder.

    Each R script in this project has a particular function:

    01_start.R: This script loads the R packages used in the analysis, sets thedirectory, and imports custom functions for the project. You can also load in the main transit time (turnover) datasets here using the source() function.

    02_functions.R: This script contains the custom function for this analysis, primarily to work with importing the seasonal transit data. Load this using the source() function in the 01_start.R script.

    03_generate_data.R: This script is not necessary to run and is primarilyfor documentation. The main role of this code was to import and wranglethe data needed to calculate ground-based estimates of aboveground water storage.

    04_annual_turnover_storage_import.R: This script imports the annual turnover andstorage data for each landcover type. You load in these data from the 01_start.R scriptusing the source() function.

    05_minimum_turnover_storage_import.R: This script imports the minimum turnover andstorage data for each landcover type. Minimum is defined as the lowest monthlyestimate.You load in these data from the 01_start.R scriptusing the source() function.

    06_figures_tables.R: This is the main workhouse for figure/table production and supporting analyses. This script generates the key figures and summary statistics used in the study that then get saved in the manuscript_figures folder. Note that allmaps were produced using Python code found in the "supporting_code"" folder.

  2. d

    (HS 2) Automate Workflows using Jupyter notebook to create Large Extent...

    • search.dataone.org
    • hydroshare.org
    Updated Oct 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Young-Don Choi (2024). (HS 2) Automate Workflows using Jupyter notebook to create Large Extent Spatial Datasets [Dataset]. http://doi.org/10.4211/hs.a52df87347ef47c388d9633925cde9ad
    Explore at:
    Dataset updated
    Oct 19, 2024
    Dataset provided by
    Hydroshare
    Authors
    Young-Don Choi
    Description

    We implemented automated workflows using Jupyter notebooks for each state. The GIS processing, crucial for merging, extracting, and projecting GeoTIFF data, was performed using ArcPy—a Python package for geographic data analysis, conversion, and management within ArcGIS (Toms, 2015). After generating state-scale LES (large extent spatial) datasets in GeoTIFF format, we utilized the xarray and rioxarray Python packages to convert GeoTIFF to NetCDF. Xarray is a Python package to work with multi-dimensional arrays and rioxarray is rasterio xarray extension. Rasterio is a Python library to read and write GeoTIFF and other raster formats. Xarray facilitated data manipulation and metadata addition in the NetCDF file, while rioxarray was used to save GeoTIFF as NetCDF. These procedures resulted in the creation of three HydroShare resources (HS 3, HS 4 and HS 5) for sharing state-scale LES datasets. Notably, due to licensing constraints with ArcGIS Pro, a commercial GIS software, the Jupyter notebook development was undertaken on a Windows OS.

  3. t

    ESA CCI SM GAPFILLED Long-term Climate Data Record of Surface Soil Moisture...

    • researchdata.tuwien.ac.at
    zip
    Updated Jun 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wolfgang Preimesberger; Wolfgang Preimesberger; Pietro Stradiotti; Pietro Stradiotti; Wouter Arnoud Dorigo; Wouter Arnoud Dorigo (2025). ESA CCI SM GAPFILLED Long-term Climate Data Record of Surface Soil Moisture from merged multi-satellite observations [Dataset]. http://doi.org/10.48436/3fcxr-cde10
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 6, 2025
    Dataset provided by
    TU Wien
    Authors
    Wolfgang Preimesberger; Wolfgang Preimesberger; Pietro Stradiotti; Pietro Stradiotti; Wouter Arnoud Dorigo; Wouter Arnoud Dorigo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description
    This dataset was produced with funding from the European Space Agency (ESA) Climate Change Initiative (CCI) Plus Soil Moisture Project (CCN 3 to ESRIN Contract No: 4000126684/19/I-NB "ESA CCI+ Phase 1 New R&D on CCI ECVS Soil Moisture"). Project website: https://climate.esa.int/en/projects/soil-moisture/

    This dataset contains information on the Surface Soil Moisture (SM) content derived from satellite observations in the microwave domain.

    Dataset paper (public preprint)

    A description of this dataset, including the methodology and validation results, is available at:

    Preimesberger, W., Stradiotti, P., and Dorigo, W.: ESA CCI Soil Moisture GAPFILLED: An independent global gap-free satellite climate data record with uncertainty estimates, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2024-610, in review, 2025.

    Abstract

    ESA CCI Soil Moisture is a multi-satellite climate data record that consists of harmonized, daily observations coming from 19 satellites (as of v09.1) operating in the microwave domain. The wealth of satellite information, particularly over the last decade, facilitates the creation of a data record with the highest possible data consistency and coverage.
    However, data gaps are still found in the record. This is particularly notable in earlier periods when a limited number of satellites were in operation, but can also arise from various retrieval issues, such as frozen soils, dense vegetation, and radio frequency interference (RFI). These data gaps present a challenge for many users, as they have the potential to obscure relevant events within a study area or are incompatible with (machine learning) software that often relies on gap-free inputs.
    Since the requirement of a gap-free ESA CCI SM product was identified, various studies have demonstrated the suitability of different statistical methods to achieve this goal. A fundamental feature of such gap-filling method is to rely only on the original observational record, without need for ancillary variable or model-based information. Due to the intrinsic challenge, there was until present no global, long-term univariate gap-filled product available. In this version of the record, data gaps due to missing satellite overpasses and invalid measurements are filled using the Discrete Cosine Transform (DCT) Penalized Least Squares (PLS) algorithm (Garcia, 2010). A linear interpolation is applied over periods of (potentially) frozen soils with little to no variability in (frozen) soil moisture content. Uncertainty estimates are based on models calibrated in experiments to fill satellite-like gaps introduced to GLDAS Noah reanalysis soil moisture (Rodell et al., 2004), and consider the gap size and local vegetation conditions as parameters that affect the gapfilling performance.

    Summary

    • Gap-filled global estimates of volumetric surface soil moisture from 1991-2023 at 0.25° sampling
    • Fields of application (partial): climate variability and change, land-atmosphere interactions, global biogeochemical cycles and ecology, hydrological and land surface modelling, drought applications, and meteorology
    • Method: Modified version of DCT-PLS (Garcia, 2010) interpolation/smoothing algorithm, linear interpolation over periods of frozen soils. Uncertainty estimates are provided for all data points.
    • More information: See Preimesberger et al. (2025) and https://doi.org/10.5281/zenodo.8320869" target="_blank" rel="noopener">ESA CCI SM Algorithm Theoretical Baseline Document [Chapter 7.2.9] (Dorigo et al., 2023)

    Programmatic Download

    You can use command line tools such as wget or curl to download (and extract) data for multiple years. The following command will download and extract the complete data set to the local directory ~/Download on Linux or macOS systems.

    #!/bin/bash

    # Set download directory
    DOWNLOAD_DIR=~/Downloads

    base_url="https://researchdata.tuwien.at/records/3fcxr-cde10/files"

    # Loop through years 1991 to 2023 and download & extract data
    for year in {1991..2023}; do
    echo "Downloading $year.zip..."
    wget -q -P "$DOWNLOAD_DIR" "$base_url/$year.zip"
    unzip -o "$DOWNLOAD_DIR/$year.zip" -d $DOWNLOAD_DIR
    rm "$DOWNLOAD_DIR/$year.zip"
    done

    Data details

    The dataset provides global daily estimates for the 1991-2023 period at 0.25° (~25 km) horizontal grid resolution. Daily images are grouped by year (YYYY), each subdirectory containing one netCDF image file for a specific day (DD), month (MM) in a 2-dimensional (longitude, latitude) grid system (CRS: WGS84). The file name has the following convention:

    ESACCI-SOILMOISTURE-L3S-SSMV-COMBINED_GAPFILLED-YYYYMMDD000000-fv09.1r1.nc

    Data Variables

    Each netCDF file contains 3 coordinate variables (WGS84 longitude, latitude and time stamp), as well as the following data variables:

    • sm: (float) The Soil Moisture variable reflects estimates of daily average volumetric soil moisture content (m3/m3) in the soil surface layer (~0-5 cm) over a whole grid cell (0.25 degree).
    • sm_uncertainty: (float) The Soil Moisture Uncertainty variable reflects the uncertainty (random error) of the original satellite observations and of the predictions used to fill observation data gaps.
    • sm_anomaly: Soil moisture anomalies (reference period 1991-2020) derived from the gap-filled values (`sm`)
    • sm_smoothed: Contains DCT-PLS predictions used to fill data gaps in the original soil moisture field. These values are also provided for cases where an observation was initially available (compare `gapmask`). In this case, they provided a smoothed version of the original data.
    • gapmask: (0 | 1) Indicates grid cells where a satellite observation is available (1), and where the interpolated (smoothed) values are used instead (0) in the 'sm' field.
    • frozenmask: (0 | 1) Indicates grid cells where ERA5 soil temperature is <0 °C. In this case, a linear interpolation over time is applied.

    Additional information for each variable is given in the netCDF attributes.

    Version Changelog

    Changes in v9.1r1 (previous version was v09.1):

    • This version uses a novel uncertainty estimation scheme as described in Preimesberger et al. (2025).

    Software to open netCDF files

    These data can be read by any software that supports Climate and Forecast (CF) conform metadata standards for netCDF files, such as:

    References

    • Preimesberger, W., Stradiotti, P., and Dorigo, W.: ESA CCI Soil Moisture GAPFILLED: An independent global gap-free satellite climate data record with uncertainty estimates, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2024-610, in review, 2025.
    • Dorigo, W., Preimesberger, W., Stradiotti, P., Kidd, R., van der Schalie, R., van der Vliet, M., Rodriguez-Fernandez, N., Madelon, R., & Baghdadi, N. (2023). ESA Climate Change Initiative Plus - Soil Moisture Algorithm Theoretical Baseline Document (ATBD) Supporting Product Version 08.1 (version 1.1). Zenodo. https://doi.org/10.5281/zenodo.8320869
    • Garcia, D., 2010. Robust smoothing of gridded data in one and higher dimensions with missing values. Computational Statistics & Data Analysis, 54(4), pp.1167-1178. Available at: https://doi.org/10.1016/j.csda.2009.09.020
    • Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D., and Toll, D.: The Global Land Data Assimilation System, Bulletin of the American Meteorological Society, 85, 381 – 394, https://doi.org/10.1175/BAMS-85-3-381, 2004.

    Related Records

    The following records are all part of the Soil Moisture Climate Data Records from satellites community

    1

    ESA CCI SM MODELFREE Surface Soil Moisture Record

    <a href="https://doi.org/10.48436/svr1r-27j77" target="_blank"

  4. f

    Training and test datasets used for building graph convolutional deep neural...

    • figshare.com
    hdf
    Updated Sep 5, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Prakash Chandra Rathi; R. Frederick Ludlow; Marcel L. Verdonk (2019). Training and test datasets used for building graph convolutional deep neural network model for prediction molecular electrostatic surfaces [Dataset]. http://doi.org/10.6084/m9.figshare.9768071.v1
    Explore at:
    hdfAvailable download formats
    Dataset updated
    Sep 5, 2019
    Dataset provided by
    figshare
    Authors
    Prakash Chandra Rathi; R. Frederick Ludlow; Marcel L. Verdonk
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The model build using these datasets can be found at https://github.com/AstexUK/ESP_DNN/tree/master/esp_dnnThe dataset themselves can be opened using xarray Python library (http://xarray.pydata.org/en/stable/#)

  5. Z

    Sentinel-1 RTC imagery processed by ASF over central Himalaya in High...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Oct 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Henderson, Scott (2022). Sentinel-1 RTC imagery processed by ASF over central Himalaya in High Mountain Asia [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7126242
    Explore at:
    Dataset updated
    Oct 28, 2022
    Dataset provided by
    Marshall, Emma
    Cherian, Deepak
    Scheick, Jessica
    Henderson, Scott
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Himalayas, High-mountain Asia
    Description

    This is a dataset of Sentinel-1 radiometric terrain corrected (RTC) imagery processed by the Alaska Satellite Facility covering a region within the Central Himalaya. It accompanies a tutorial demonstrating accessing and working with Sentinel-1 RTC imagery using xarray and other open source python packages.

  6. Deep learning four decades of human migration: datasets

    • zenodo.org
    csv, nc
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Thomas Gaskin; Thomas Gaskin; Guy Abel; Guy Abel (2025). Deep learning four decades of human migration: datasets [Dataset]. http://doi.org/10.5281/zenodo.15778301
    Explore at:
    nc, csvAvailable download formats
    Dataset updated
    Jul 3, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Thomas Gaskin; Thomas Gaskin; Guy Abel; Guy Abel
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This Zenodo repository contains all migration flow estimates associated with the paper "Deep learning four decades of human migration." Evaluation code, training data, trained neural networks, and smaller flow datasets are available in the main GitHub repository, which also provides detailed instructions on data sourcing. Due to file size limits, the larger datasets are archived here.

    Data is available in both NetCDF (.nc) and CSV (.csv) formats. The NetCDF format is more compact and pre-indexed, making it suitable for large files. In Python, datasets can be opened as xarray.Dataset objects, enabling coordinate-based data selection.

    Each dataset uses the following coordinate conventions:

    • Year: 1990–2023
    • Birth ISO: Country of birth (UN ISO3)
    • Origin ISO: Country of origin (UN ISO3)
    • Destination ISO: Destination country (UN ISO3)
    • Country ISO: Used for net migration data (UN ISO3)

    The following data files are provided:

    • T.nc: Full table of flows disaggregated by country of birth. Dimensions: Year, Birth ISO, Origin ISO, Destination ISO
    • flows.nc: Total origin-destination flows (equivalent to T summed over Birth ISO). Dimensions: Year, Origin ISO, Destination ISO
    • net_migration.nc: Net migration data by country. Dimensions: Year, Country ISO
    • stocks.nc: Stock estimates for each country pair. Dimensions: Year, Origin ISO (corresponding to Birth ISO), Destination ISO
    • test_flows.nc: Flow estimates on a randomly selected set of test edges, used for model validation

    Additionally, two CSV files are provided for convenience:

    • mig_unilateral.csv: Unilateral migration estimates per country, comprising:
      • imm: Total immigration flows
      • emi: Total emigration flows
      • net: Net migration
      • imm_pop: Total immigrant population (non-native-born)
      • emi_pop: Total emigrant population (living abroad)
    • mig_bilateral.csv: Bilateral flow data, comprising:
      • mig_prev: Total origin-destination flows
      • mig_brth: Total birth-destination flows, where Origin ISO reflects place of birth

    Each dataset includes a mean variable (mean estimate) and a std variable (standard deviation of the estimate).

    An ISO3 conversion table is also provided.

  7. Figure Data: An open laboratory blade strike rig to evaluate the risk of...

    • zenodo.org
    Updated Mar 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wolf Iring Kösters; Wolf Iring Kösters; Danil Efimov; Danil Efimov (2025). Figure Data: An open laboratory blade strike rig to evaluate the risk of injury and mortality to fish and to test passive sensors [Dataset]. http://doi.org/10.5281/zenodo.15078904
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Wolf Iring Kösters; Wolf Iring Kösters; Danil Efimov; Danil Efimov
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset includes the underlying data used to generate Figures 4, 5, and 6 in the associated publication.

    For each figure:

    • The provided ZIP files contain the raw measurement data.

    • The H5 files contain the aligned, and combined data as a Xarray dataset

    To access and interact with the H5 files using Python, use the Xarray library as shown below:

    > import xarray as xr
    > ds = xr.load_dataset("filename")

  8. f

    xesmf netcdf files for testing

    • figshare.com
    application/x-gzip
    Updated Feb 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Raphael Dussin (2025). xesmf netcdf files for testing [Dataset]. http://doi.org/10.6084/m9.figshare.28378283.v1
    Explore at:
    application/x-gzipAvailable download formats
    Dataset updated
    Feb 9, 2025
    Dataset provided by
    figshare
    Authors
    Raphael Dussin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Testing files for the xesmf remapping package.

  9. u

    Data from: Community Earth System Model v2 Large Ensemble (CESM2 LENS)

    • rda.ucar.edu
    • oidc.rda.ucar.edu
    • +1more
    Updated May 20, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Community Earth System Model v2 Large Ensemble (CESM2 LENS) [Dataset]. https://rda.ucar.edu/lookfordata/datasets/?nb=y&b=topic&v=Atmosphere
    Explore at:
    Dataset updated
    May 20, 2022
    Description

    The US National Center for Atmospheric Research partnered with the IBS Center for Climate Physics in South Korea to generate the CESM2 Large Ensemble which consists of 100 ensemble members ... at 1 degree spatial resolution covering the period 1850-2100 under CMIP6 historical and SSP370 future radiative forcing scenarios. Data sets from this ensemble were made downloadable via the Climate Data Gateway on June 14, 2021. NCAR has copied a subset (currently ~500 TB) of CESM2 LENS data to Amazon S3 as part of the AWS Public Datasets Program. To optimize for large-scale analytics we have represented the data as ~275 Zarr stores format accessible through the Python Xarray library. Each Zarr store contains a single physical variable for a given model run type and temporal frequency (monthly, daily).

  10. d

    Data from: Tidal Energy Resource Characterization, Bottom Lander...

    • catalog.data.gov
    Updated Jan 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Renewable Energy Laboratory (2025). Tidal Energy Resource Characterization, Bottom Lander Measurements, Cook Inlet, AK, 2021 [Dataset]. https://catalog.data.gov/dataset/tidal-energy-resource-characterization-bottom-lander-measurements-cook-inlet-ak-2021-7c225
    Explore at:
    Dataset updated
    Jan 20, 2025
    Dataset provided by
    National Renewable Energy Laboratory
    Area covered
    Cook Inlet
    Description

    These datasets are from tidal resource characterization measurements collected on the Terrasond High Energy Oceanographic Mooring (THEOM) from 1 July 2021 to 30 August 2021 (60 days) in Cook Inlet, Alaska. The lander was deployed at 60.7207031 N, 151.4294998 W in ~50 m of water. The dataset contains raw and processed data from the following two instruments: A Nortek Signature 500 kHz acoustic Doppler current profiler (ADCP). Data were recorded in 4 Hz in the beam coordinate system from all 5 beams. Processed data has been averaged into 5 minutes bins and converted to the East-North-Up (ENU) coordinate system. A Nortek Vector acoustic Doppler velocimeter (ADV). Data were recorded at 8 Hz in the beam coordinate system. Processed data has been averaged into 5 minutes bins and converted to the Streamwise - Cross-stream - Vertical (Principal) coordinate system. Turbulence statistics were calculated from 5-minute bins, with an FFT length equal to the bin length, and saved in the processed dataset. Data was read and analyzed using the DOLfYN (version 1.0.2) python package and saved in MATLAB (.mat) and netCDF (.nc) file formats. Files containing analyzed data (".b1") were standardized using the TSDAT (version 0.4.2) python package. NetCDF files can be opened using DOLfYN (e.g., dat = dolfyn.load(''*.nc")) or the xarray python package (e.g. `dat = xarray.open_dataset("*.nc"). All distances are in meters (e.g., depth, range, etc), and all velocities in m/s. See the DOLfYN documentation linked in the submission, and/or the Nortek documentation for additional details.

  11. Data and code used in "Distinct Lithologies in Jezero Crater, Mars"

    • zenodo.org
    zip
    Updated Apr 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Allison Zastrow; Allison Zastrow; Timothy Glotch; Timothy Glotch (2021). Data and code used in "Distinct Lithologies in Jezero Crater, Mars" [Dataset]. http://doi.org/10.5281/zenodo.4673066
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 19, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Allison Zastrow; Allison Zastrow; Timothy Glotch; Timothy Glotch
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This repository contains the datasets and code used in the Zastrow and Glotch manuscript entitled "Distinct Lithologies in Jezero Crater, Mars".

    Abstract

    Jezero crater is the landing site for the Mars 2020 Perseverance rover. The Noachian-aged crater has undergone several periods of fluvial and lacustrine activity and many phyllosilicate- and carbonate-bearing rocks were formed and emplaced as a result. It also contains a portion of the regional Nili Fossae olivine-carbonate unit. In this work, we performed spectral mixture analysis of visible/near-infrared hyperspectral imagery over Jezero. We modeled carbonate abundances up to ~35% and identified three distinct units containing different carbonate phases. Our work also suggests that the olivine in the regional unit is predominantly restricted to aeolian deposis overlying the carbonate-bearing rocks. The diversity of carbonate phases in Jezero points to multiple periods of carbonate formation under varying conditions.

    Description of Repository Datasets

    code_unmixing.zip:

    • This folder contains the necessary files to unmix CRISM data using davinci's sma() function. The model is run by launching davinci and entering source('ssa_unmixing_040ff'). To switch the CRISM image, edit line 10 in ssa_unmixing_040ff.
    • Unmixing code: ssa_unmixing_040ff
    • Davinci functions: unmixing_fxns.dvrc
    • Spectral library: n_k_jezeropaper.hdf

    data_input.zip:

    • This folder contains ENVI image files that have been DISORT-processed and are ready to be modeled using the unmixing code. Each of the 3 CRISM images has two data files and ENVI headers: 1) the full uncut image cube and 2) the cut image cube.

    data_models.zip:

    • This folder contains NetCDF files with the output of the unmixing model that have been registered to the HiRISE base image. Files contain the input CRISM measured spectra, output modeled spectra, normalized mineral concentration maps, and RMS error maps. Data were written to file using the xarray Python package and can be read into python using the xarray.open_dataset() function.
    • Added Kaolinite, Bounds, Full Spectrum, No Phyllosilicate, No Siderite
      • These folders contain not-georegistered (but projected) model output for these additional models.

    data_roi.zip:

    • This folder contains the shapefile for the ROI mapping.

    Version 1.1.0 Updates

    Added models "Bounds" and "No Phyllosilicates", updated ROI shapefile.

  12. d

    Replication Data for: A Rydberg atom based system for benchmarking mmWave...

    • search.dataone.org
    Updated Sep 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Borówka, Sebastian; Krokosz, Wiktor; Mazelanik, Mateusz; Wasilewski, Wojciech; Parniak, Michał (2024). Replication Data for: A Rydberg atom based system for benchmarking mmWave automotive radar chips [Dataset]. http://doi.org/10.7910/DVN/OYUNJ1
    Explore at:
    Dataset updated
    Sep 24, 2024
    Dataset provided by
    Harvard Dataverse
    Authors
    Borówka, Sebastian; Krokosz, Wiktor; Mazelanik, Mateusz; Wasilewski, Wojciech; Parniak, Michał
    Description

    Simulation Data The waveplate.hdf5 file stores the results of the FDTD simulation that are visualized in Fig. 3 b)-d). The simulation was performed using the Tidy 3D Python library and also utilizes its methods for data visualization. The following snippet can be used to visualize the data: import tidy3d as td import matplotlib.pyplot as plt sim_data: td.SimulationData = td.SimulationData.from_file(f"waveplate.hdf5") fig, axs = plt.subplots(1, 2, tight_layout=True, figsize=(12, 5)) for fn, ax in zip(("Ex", "Ey"), axs): sim_data.plot_field("field_xz", field_name=fn, val="abs^2", ax=ax).set_aspect(1 / 10) ax.set_xlabel("x [$\mu$m]") ax.set_ylabel("z [$\mu$m]") fig.show() Measurement Data Signal data used for plotting Fig. 4-6. The data is stored in NetCDF providing self describing data format that is easy to manipulate using the Xarray Python library, specifically by calling xarray.open_dataset() Three datasets are provided and structured as follows: The electric_fields.nc dataset contains data displayed in Fig. 4. It has 3 data variables, corresponding to the signals themselves, as well as estimated Rabi frequencies and electric fields. The freq dimension is the x-axis and contains coordinates for the Probe field detuning in MHz. The n dimension labels different configurations of applied electric field, with the 0th one having no EHF field. The detune.nc dataset contains data displayed in Fig. 6. It has 2 data variables, corresponding to the signals themselves, as well as estimated peak separations, multiplied by the coupling factor. The freq dimension is the same, while the detune dimension labels different EHF field detunings, from -100 to 100 MHz with a step of 10. The waveplates.nc dataset contains data displayed in Fig. 5. It contains estimated Rabi frequencies calculated for different waveplate positions. The angles are stored in radians. There is the quarter- and half-waveplate to choose from. Usage examples Opening the dataset import matplotlib.pyplot as plt import xarray as xr electric_fields_ds = xr.open_dataset("data/electric_fields.nc") detuned_ds = xr.open_dataset("data/detune.nc") waveplates_ds = xr.open_dataset("data/waveplates.nc") sigmas_da = xr.open_dataarray("data/sigmas.nc") peak_heights_da = xr.open_dataarray("data/peak_heights.nc") Plotting the Fig. 4 signals and printing params fig, ax = plt.subplots() electric_fields_ds["signals"].plot.line(x="freq", hue="n", ax=ax) print(f"Rabi frequencies [Hz]: {electric_fields_ds['rabi_freqs'].values}") print(f"Electric fields [V/m]: {electric_fields_ds['electric_fields'].values}") fig.show() Plotting the Fig. 5 data (waveplates_ds["rabi_freqs"] ** 2).plot.scatter(x="angle", col="waveplate") Plotting the Fig. 6 signals for chosen detunes fig, ax = plt.subplots() detuned_ds["signals"].sel( detune=[ -100, -70, -40, 40, 70, 100, ] ).plot.line(x="freq", hue="detune", ax=ax) fig.show() Plotting the Fig. 6 inset plot fig, ax = plt.subplots() detuned_ds["separations"].plot.scatter(x="detune", ax=ax) ax.plot( detuned_ds.detune, np.sqrt(detuned_ds.detune**2 + detuned_ds["separations"].sel(detune=0) ** 2), ) fig.show() Plotting the Fig. 7 calculated peak widths sigmas_da.plot.scatter() Plotting the Fig. 8 calculated detuned smaller peak heights peak_heights_da.plot.scatter()

  13. g

    Tidal Energy Resource Characterization, Bottom Lander Measurements, Cook...

    • gimi9.com
    Updated Jul 1, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Tidal Energy Resource Characterization, Bottom Lander Measurements, Cook Inlet, AK, 2021 | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_2021-cook-inlet-tidal-energy-resource-characterization-bottom-lander-measurements/
    Explore at:
    Dataset updated
    Jul 1, 2021
    Area covered
    Alaska, Cook Inlet
    Description

    These datasets are from tidal resource characterization measurements collected on the Terrasond High Energy Oceanographic Mooring (THEOM) from 1 July 2021 to 30 August 2021 (60 days) in Cook Inlet, Alaska. The lander was deployed at 60.7207031 N, 151.4294998 W in ~50 m of water. The dataset contains raw and processed data from the following two instruments: 1. A Nortek Signature 500 kHz acoustic Doppler current profiler (ADCP). Data were recorded in 4 Hz in the beam coordinate system from all 5 beams. Processed data has been averaged into 5 minutes bins and converted to the East-North-Up (ENU) coordinate system. 2. A Nortek Vector acoustic Doppler velocimeter (ADV). Data were recorded at 8 Hz in the beam coordinate system. Processed data has been averaged into 5 minutes bins and converted to the Streamwise - Cross-stream - Vertical (Principal) coordinate system. Turbulence statistics were calculated from 5-minute bins, with an FFT length equal to the bin length, and saved in the processed dataset. Data was read and analyzed using the DOLfYN (version 1.0.2) python package and saved in MATLAB (.mat) and netCDF (.nc) file formats. Files containing analyzed data (".b1") were standardized using the TSDAT (version 0.4.2) python package. NetCDF files can be opened using DOLfYN (e.g., dat = dolfyn.load(''*.nc")) or the xarray python package (e.g. `dat = xarray.open_dataset("*.nc"). All distances are in meters (e.g., depth, range, etc), and all velocities in m/s. See the DOLfYN documentation linked in the submission, and/or the Nortek documentation for additional details.

  14. Z

    Selkie GIS Techno-Economic Tool input datasets

    • data.niaid.nih.gov
    Updated Nov 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cullinane, Margaret (2023). Selkie GIS Techno-Economic Tool input datasets [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10083960
    Explore at:
    Dataset updated
    Nov 8, 2023
    Dataset authored and provided by
    Cullinane, Margaret
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This data was prepared as input for the Selkie GIS-TE tool. This GIS tool aids site selection, logistics optimization and financial analysis of wave or tidal farms in the Irish and Welsh maritime areas. Read more here: https://www.selkie-project.eu/selkie-tools-gis-technoeconomic-model/

    This research was funded by the Science Foundation Ireland (SFI) through MaREI, the SFI Research Centre for Energy, Climate and the Marine and by the Sustainable Energy Authority of Ireland (SEAI). Support was also received from the European Union's European Regional Development Fund through the Ireland Wales Cooperation Programme as part of the Selkie project.

    File Formats

    Results are presented in three file formats:

    tif Can be imported into a GIS software (such as ARC GIS) csv Human-readable text format, which can also be opened in Excel png Image files that can be viewed in standard desktop software and give a spatial view of results

    Input Data

    All calculations use open-source data from the Copernicus store and the open-source software Python. The Python xarray library is used to read the data.

    Hourly Data from 2000 to 2019

    • Wind - Copernicus ERA5 dataset 17 by 27.5 km grid
      10m wind speed

    • Wave - Copernicus Atlantic -Iberian Biscay Irish - Ocean Wave Reanalysis dataset 3 by 5 km grid

    Accessibility

    The maximum limits for Hs and wind speed are applied when mapping the accessibility of a site.
    The Accessibility layer shows the percentage of time the Hs (Atlantic -Iberian Biscay Irish - Ocean Wave Reanalysis) and wind speed (ERA5) are below these limits for the month.

    Input data is 20 years of hourly wave and wind data from 2000 to 2019, partitioned by month. At each timestep, the accessibility of the site was determined by checking if
    the Hs and wind speed were below their respective limits. The percentage accessibility is the number of hours within limits divided by the total number of hours for the month.

    Environmental data is from the Copernicus data store (https://cds.climate.copernicus.eu/). Wave hourly data is from the 'Atlantic -Iberian Biscay Irish - Ocean Wave Reanalysis' dataset.
    Wind hourly data is from the ERA 5 dataset.

    Availability

    A device's availability to produce electricity depends on the device's reliability and the time to repair any failures. The repair time depends on weather
    windows and other logistical factors (for example, the availability of repair vessels and personnel.). A 2013 study by O'Connor et al. determined the
    relationship between the accessibility and availability of a wave energy device. The resulting graph (see Fig. 1 of their paper) shows the correlation between accessibility at Hs of 2m and wind speed of 15.0m/s and availability. This graph is used to calculate the availability layer from the accessibility layer.

    The input value, accessibility, measures how accessible a site is for installation or operation and maintenance activities. It is the percentage time the
    environmental conditions, i.e. the Hs (Atlantic -Iberian Biscay Irish - Ocean Wave Reanalysis) and wind speed (ERA5), are below operational limits.
    Input data is 20 years of hourly wave and wind data from 2000 to 2019, partitioned by month. At each timestep, the accessibility of the site was determined
    by checking if the Hs and wind speed were below their respective limits. The percentage accessibility is the number of hours within limits divided by the total
    number of hours for the month. Once the accessibility was known, the percentage availability was calculated using the O'Connor et al. graph of the relationship between the two. A mature technology reliability was assumed.

    Weather Window

    The weather window availability is the percentage of possible x-duration windows where weather conditions (Hs, wind speed) are below maximum limits for the
    given duration for the month.

    The resolution of the wave dataset (0.05° × 0.05°) is higher than that of the wind dataset
    (0.25° x 0.25°), so the nearest wind value is used for each wave data point. The weather window layer is at the resolution of the wave layer.

    The first step in calculating the weather window for a particular set of inputs (Hs, wind speed and duration) is to calculate the accessibility at each timestep.
    The accessibility is based on a simple boolean evaluation: are the wave and wind conditions within the required limits at the given timestep?

    Once the time series of accessibility is calculated, the next step is to look for periods of sustained favourable environmental conditions, i.e. the weather
    windows. Here all possible operating periods with a duration matching the required weather-window value are assessed to see if the weather conditions remain
    suitable for the entire period. The percentage availability of the weather window is calculated based on the percentage of x-duration windows with suitable
    weather conditions for their entire duration.The weather window availability can be considered as the probability of having the required weather window available
    at any given point in the month.

    Extreme Wind and Wave

    The Extreme wave layers show the highest significant wave height expected to occur during the given return period. The Extreme wind layers show the highest wind speed expected to occur during the given return period.

    To predict extreme values, we use Extreme Value Analysis (EVA). EVA focuses on the extreme part of the data and seeks to determine a model to fit this reduced
    portion accurately. EVA consists of three main stages. The first stage is the selection of extreme values from a time series. The next step is to fit a model
    that best approximates the selected extremes by determining the shape parameters for a suitable probability distribution. The model then predicts extreme values
    for the selected return period. All calculations use the python pyextremes library. Two methods are used - Block Maxima and Peaks over threshold.

    The Block Maxima methods selects the annual maxima and fits a GEVD probability distribution.

    The peaks_over_threshold method has two variable calculation parameters. The first is the percentile above which values must be to be selected as extreme (0.9 or 0.998). The second input is the time difference between extreme values for them to be considered independent (3 days). A Generalised Pareto Distribution is fitted to the selected
    extremes and used to calculate the extreme value for the selected return period.

  15. cmomy: A python package to calculate and manipulate Central (co)moments.

    • catalog.data.gov
    • datasets.ai
    Updated Oct 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Standards and Technology (2022). cmomy: A python package to calculate and manipulate Central (co)moments. [Dataset]. https://catalog.data.gov/dataset/cmomy-a-python-package-to-calculate-and-manipulate-central-comoments-dcd00
    Explore at:
    Dataset updated
    Oct 15, 2022
    Dataset provided by
    National Institute of Standards and Technologyhttp://www.nist.gov/
    Description

    cmomy is a python package to calculate central moments and co-moments in a numerical stable and direct way. Behind the scenes, cmomy makes use of Numba to rapidly calculate moments. cmomy provides utilities to calculate central moments from individual samples, precomputed central moments, and precomputed raw moments. It also provides routines to perform bootstrap resampling based on raw data, or precomputed moments. cmomy has numpy array and xarray DataArray interfaces.

  16. d

    Daily histograms of wind speed (100m), wind direction (100m) and atmospheric...

    • data.dtu.dk
    zip
    Updated Feb 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marc Imberger (2025). Daily histograms of wind speed (100m), wind direction (100m) and atmospheric stability derived from ERA5 [Dataset]. http://doi.org/10.11583/DTU.27930399.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Feb 28, 2025
    Dataset provided by
    Technical University of Denmark
    Authors
    Marc Imberger
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains daily histograms of wind speed at 100m ("WS100"), wind direction at 100 m ("WD100") and an atmospheric stability proxy ("STAB") derived from the ERA5 hourly data on single levels [1] accessed via the Copernicus Climate Change Climate Data Store [2]. The dataset covers six geographical regions (illustrated in regions.png) on a reduced 0.5 x 0.5 degrees regular grid and covers the period 1994 to 2023 (both years included). The dataset is packaged as a zip folder per region which contains a range of monthly zip folders following the convention of zarr ZipStores (more details here: https://zarr.readthedocs.io/en/stable/api/storage.html). Thus, the monthly zip folders are intended to be used in connection with the xarray python package (no unzipping of the monthly files needed).Wind speed and wind direction are derived from the U- and V-components. The stability metric makes use of a 5-class classification scheme [3] based on the Obukhov length whereby the required Obukhov length was computed using [4]. The following bins (left edges) have been used to create the histograms:Wind speed: [0, 40) m/s (bin width 1 m/s)Wind direction: [0,360) deg (bin width 15 deg)Stability: 5 discrete stability classes (1: very unstable, 2: unstable, 3: neutral, 4: stable, 5: very stable)Main Purpose: The dataset serves as minimum input data for the CLIMatological REPresentative PERiods (climrepper) python package (https://gitlab.windenergy.dtu.dk/climrepper/climrepper) in preparation for public release).References:[1] Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thépaut, J-N. (2023): ERA5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), DOI: 10.24381/cds.adbb2d47 (Accessed Nov. 2024)[2] Copernicus Climate Change Service, Climate Data Store, (2023): ERA5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), DOI: 10.24381/cds.adbb2d47 (Accessed Nov. 2024)'[3] Holtslag, M. C., Bierbooms, W. A. A. M., & Bussel, G. J. W. van. (2014). Estimating atmospheric stability from observations and correcting wind shear models accordingly. In Journal of Physics: Conference Series (Vol. 555, p. 012052). IOP Publishing. https://doi.org/10.1088/1742-6596/555/1/012052[4] Copernicus Knowledge Base, ERA5: How to calculate Obukhov Length, URL: https://confluence.ecmwf.int/display/CKB/ERA5:+How+to+calculate+Obukhov+Length, last accessed: Nov 2024

  17. Z

    Cropland Data Layer Data for the Snake River Basin, USA, 2010-2017

    • data.niaid.nih.gov
    Updated Jul 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alejandro N. Flores (2020). Cropland Data Layer Data for the Snake River Basin, USA, 2010-2017 [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_3958226
    Explore at:
    Dataset updated
    Jul 28, 2020
    Dataset provided by
    Vicken Hillis
    Kendra E. Kaiser
    Alejandro N. Flores
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Snake River, United States
    Description

    Cropland Data Layer (CDL) data from the US Department of Agriculture's National Agricultural Statistics Service (NASS), subset spatially to cover the Snake River Basin, USA for years 2010-2017, inclusive. This data is the raw data used to support initialization of the Janus agent based model of land use land cover change. It was developed by downloading CDL data from the USDA NASS site for an area of interest encompassing the Snake River Basin for individual years from 2010-2017. Data were converted to a georeferenced GeoTiff format using the Geospatial Data Abstraction Library (GDAL) command line interface. They were then concatenated into a single dataset using the rioxarray python library and saved as a CF-compliant NetCDF4 file using the xarray python library. Note that this file is saved with zlib compression level 1 and, therefore, users may experience a slowdown upon initial reading of the file.

  18. D

    India DroughtSet: A village-level drought dataset for the past 43 years

    • phys-techsciences.datastations.nl
    • ssh.datastations.nl
    • +1more
    application/netcdf +5
    Updated Nov 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    T Pareek; T Pareek (2023). India DroughtSet: A village-level drought dataset for the past 43 years [Dataset]. http://doi.org/10.17026/DANS-XFT-EPRJ
    Explore at:
    zip(20083), mid(163767407), mid(682839633), mif(1721580), pdf(204411), application/netcdf(79177037), application/netcdf(100224077), csv(266091148), mid(362607737), csv(563572003), mif(786781), mif(3215211)Available download formats
    Dataset updated
    Nov 9, 2023
    Dataset provided by
    DANS Data Station Physical and Technical Sciences
    Authors
    T Pareek; T Pareek
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    India
    Description

    This database consists of a high-resolution village-level drought dataset for major Indian states for the past 43 years (1981 – 2022) for each month. It was created by utilising the CHIRPS precipitation and GLEAM evapotranspiration datasets. GLEAMS dataset based on the well recognised Priestley-Taylor equation to estimate potential evapotranspiration (PET) based on observations of surface net radiation and near-surface air temperature. The SPEI was calculated for spatial grids of 5x5 km for the SPEI 3-month time scale, suitable for agricultural drought monitoring.This high-resolution SPEI dataset was integrated with Indian village boundaries and associated census attribute dataset. This allows researchers to perform multi-disciplinary investigations, e.g., climate migration modelling, drought hazards, and exposure assessment. The development of the dataset has been performed while keeping potential users in mind. Therefore, the dataset can be integrated into a GIS system for visualization (using .mid/.mif format) and into Python programming for modelling and analysis (using .csv). For advanced analysis, I have also provided it in netCDF format, which can be read in Python using xarray or the netcdf4 library. More details are in the README.pdf file. Date Submitted: 2023-11-07 Issued: 2023-11-07

  19. E

    Argo float vertical profile R4903254_013

    • gulfhub-data2.gcoos.org
    • datasets.ai
    • +1more
    Updated Dec 2, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bower Lab, Woods Hole Oceanographic Institution (2019). Argo float vertical profile R4903254_013 [Dataset]. https://gulfhub-data2.gcoos.org/erddap/info/R4903254_013/index.html
    Explore at:
    Dataset updated
    Dec 2, 2019
    Dataset provided by
    Gulf of Mexico Coastal Ocean Observing System (GCOOS)
    Authors
    Bower Lab, Woods Hole Oceanographic Institution
    Time period covered
    Nov 27, 2019
    Area covered
    Variables measured
    PRES, PSAL, TEMP, time, JULD_QC, PRES_QC, PSAL_QC, TEMP_QC, profile, latitude, and 22 more
    Description

    These data are ocean profile data measured by profiling Argo S2A floats at a specific latitude, longitude, and date nominally from the surface to 2000 meters depth. Pressure, in situ temperature (ITS-90), and practical salinity are provided at 1-m increments through the water column. Argo data from Gulf of Mexico (GOM) LC1 (9 floats) and LC2 (12 floats) were delayed mode quality controlled and submitted to Global Data Assembly Centers (GDACs) in May 2020. All available profiles are planned to be revisited and evaluated in early 2021. Float no. 4903233 started showing drift in salinity at profile no. 77, and the salinity data will be carefully examined with a new adjustment in early 2021. _NCProperties=version=2,netcdf=4.6.3,hdf5=1.10.4 cdm_altitude_proxy=PRES cdm_data_type=Profile cdm_profile_variables=profile comment=free text contributor_email=devops@rpsgroup.com contributor_name=RPS contributor_role=editor contributor_role_vocabulary=https://vocab.nerc.ac.uk/collection/G04/current/ contributor_url=https://www.rpsgroup.com/ Conventions=CF-1.7, ACDD-1.3, IOOS-1.2, Argo-3.2, COARDS date_metadata_modified=2020-12-22T15:54:25Z Easternmost_Easting=-88.1067 featureType=Profile geospatial_bounds=POINT (-88.1067 26.04625) geospatial_bounds_crs=EPSG:4326 geospatial_lat_max=26.04625 geospatial_lat_min=26.04625 geospatial_lat_units=degrees_north geospatial_lon_max=-88.1067 geospatial_lon_min=-88.1067 geospatial_lon_units=degrees_east history=2019-12-02T08:01:04Z creation id=R4903254_013 infoUrl=http://www.argodatamgt.org/Documentation institution=GCOOS instrument=Argo instrument_vocabulary=GCMD Earth Science Keywords. Version 5.3.3 keywords_vocabulary=GCMD Science Keywords naming_authority=edu.tamucc.gulfhub Northernmost_Northing=26.04625 note_CHAR_variables=RPS METADATA ENHANCEMENT NOTE Variables of data type 'CHAR' have been altered by the xarray and netCDF4-python libraries to contain an extra dimension (often denoted as 'string1'). This is due to an underlying issue in the libraries: https://github.com/pydata/xarray/issues/1977. Upon examination, one will find the data has not been altered but only changed shape. We realize this is sub-optimal and apologize for any inconveniences this may cause. note_FillValue=RPS METADATA ENHANCEMENT NOTE Many variables in this dataset are of type 'char' and have a '_FillValue' attribute which is interpreted through NumPy as 'b', an empty byte string. This causes serialization issues. As a result, all variables of type 'char' with '_FillValue = b' have had the _FillValue attribute removed to avoid serialization conflicts. However, no data has been changed, so the _FillValue is still "b' '". platform=subsurface_float platform_name=Argo Float platform_vocabulary=IOOS Platform Vocabulary processing_level=Argo data are received via satellite transmission, decoded and assembled at national DACs. These DACs apply a set of automatic quality tests (RTQC) to the data, and quality flags are assigned accordingly. In the delayed-mode process (DMQC), data are subjected to visual examination and are re-flagged where necessary. For the float data affected by sensor drift, statistical tools and climatological comparisons are used to adjust the data for sensor drift when needed. For each float that has been processed in delayed-mode, the OWC method (Owens and Wong, 2009; Cabanes et al., 2016) is run with four different sets of spatial and temporal decorrelation scales and the latest available reference dataset. If the salinity adjustments obtained from the four runs all differ significantly from the existing adjustment, then the salinity data from the float are re-examined and a new adjustment is suggested if necessary. The usual practice is to examine the profiles in delayed-mode initially about 12 months after they are collected, and then revisit several times as more data from the floats are obtained (see details in Wong et al., 2020). program=Understanding Gulf Ocean Systems (UGOS) project=National Academy of Science Understanding Gulf Ocean Systems 'LC-Floats - Near Real-time Hydrography and Deep Velocity in the Loop Current System using Autonomous Profilers' Program references=http://www.argodatamgt.org/Documentation sea_name=Gulf of Mexico source=Argo float sourceUrl=(local files) Southernmost_Northing=26.04625 standard_name_vocabulary=CF Standard Name Table v67 subsetVariables=CYCLE_NUMBER, DIRECTION, DATA_MODE, time, JULD_QC, JULD_LOCATION, latitude, longitude, POSITION_QC, CONFIG_MISSION_NUMBER, PROFILE_PRES_QC, PROFILE_TEMP_QC, PROFILE_PSAL_QC time_coverage_duration=P0000-00-00T00:00:00 time_coverage_end=2019-11-27T06:58:36Z time_coverage_resolution=P0000-00-00T00:00:00 time_coverage_start=2019-11-27T06:58:36Z user_manual_version=3.2 Westernmost_Easting=-88.1067

  20. t

    ESA CCI SM PASSIVE Daily Gap-filled Root-Zone Soil Moisture from merged...

    • researchdata.tuwien.ac.at
    zip
    Updated May 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wolfgang Preimesberger; Wolfgang Preimesberger; Johanna Lems; Martin Hirschi; Martin Hirschi; Wouter Arnoud Dorigo; Wouter Arnoud Dorigo; Johanna Lems; Johanna Lems; Johanna Lems (2025). ESA CCI SM PASSIVE Daily Gap-filled Root-Zone Soil Moisture from merged multi-satellite observations [Dataset]. http://doi.org/10.48436/8dda4-xne96
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 5, 2025
    Dataset provided by
    TU Wien
    Authors
    Wolfgang Preimesberger; Wolfgang Preimesberger; Johanna Lems; Martin Hirschi; Martin Hirschi; Wouter Arnoud Dorigo; Wouter Arnoud Dorigo; Johanna Lems; Johanna Lems; Johanna Lems
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset provides global daily estimates of Root-Zone Soil Moisture (RZSM) content at 0.25° spatial grid resolution, derived from gap-filled merged satellite observations of 14 passive satellites sensors operating in the microwave domain of the electromagnetic spectrum. Data is provided from January 1991 to December 2023.

    This dataset was produced with funding from the European Space Agency (ESA) Climate Change Initiative (CCI) Plus Soil Moisture Project (CCN 3 to ESRIN Contract No: 4000126684/19/I-NB "ESA CCI+ Phase 1 New R&D on CCI ECVS Soil Moisture"). Project website: https://climate.esa.int/en/projects/soil-moisture/" target="_blank" rel="noopener">https://climate.esa.int/en/projects/soil-moisture/. Operational implementation is supported by the Copernicus Climate Change Service implemented by ECMWF through C3S2 312a/313c.

    Studies using this dataset

    This dataset is used by Hirschi et al. (2025) to assess recent summer drought trends in Switzerland.

    Abstract

    ESA CCI Soil Moisture is a multi-satellite climate data record that consists of harmonized, daily observations from various microwave satellite remote sensing sensors (Dorigo et al., 2017, 2024; Gruber et al., 2019). This version of the dataset uses the PASSIVE record as input, which contains only observations from passive (radiometer) measurements (scaling reference AMSR-E). The surface observations are gap-filled using a univariate interpolation algorithm (Preimesberger et al., 2025). The gap-filled passive observations serve as input for an exponential filter based method to assess soil moisture in different layers of the root-zone of soil (0-200 cm) following the approach by Pasik et al. (2023). The final gap-free root-zone soil moisture estimates based on passive surface input data are provided here at 4 separate depth layers (0-10, 10-40, 40-100, 100-200 cm) over the period 1991-2023.

    Summary

    • Gap-free root-zone soil moisture estimates from 1991-2023 at 0.25° spatial sampling from passive measurements
    • Fields of application include: climate variability and change, land-atmosphere interactions, global biogeochemical cycles and ecology, hydrological and land surface modelling, drought applications, agriculture and meteorology
    • More information: See Dorigo et al. (2017, 2024) and Gruber et al. (2019) for a description of the satellite base product and uncertainty estimates, Preimesberger et al. (2025) for the gap-filling, and Pasik et al. (2023) for the root-zone soil moisture and uncertainty propagation algorithm.

    Programmatic Download

    You can use command line tools such as wget or curl to download (and extract) data for multiple years. The following command will download and extract the complete data set to the local directory ~/Downloads on Linux or macOS systems.

    #!/bin/bash

    # Set download directory
    DOWNLOAD_DIR=~/Downloads

    base_url="https://researchdata.tuwien.ac.at/records/8dda4-xne96/files"

    # Loop through years 1991 to 2023 and download & extract data
    for year in {1991..2023}; do
    echo "Downloading $year.zip..."
    wget -q -P "$DOWNLOAD_DIR" "$base_url/$year.zip"
    unzip -o "$DOWNLOAD_DIR/$year.zip" -d $DOWNLOAD_DIR
    rm "$DOWNLOAD_DIR/$year.zip"
    done

    Data details

    The dataset provides global daily estimates for the 1991-2023 period at 0.25° (~25 km) horizontal grid resolution. Daily images are grouped by year (YYYY), each subdirectory containing one netCDF image file for a specific day (DD), month (MM) in a 2-dimensional (longitude, latitude) grid system (CRS: WGS84). The file name has the following convention:

    ESA_CCI_PASSIVERZSM-YYYYMMDD000000-fv09.1.nc

    Data Variables

    Each netCDF file contains 3 coordinate variables (WGS84 longitude, latitude and time stamp), as well as the following data variables:

    • rzsm_1: (float) Root Zone Soil Moisture at 0-10 cm. Given in volumetric units [m3/m3].
    • rzsm_2: (float) Root Zone Soil Moisture at 10-40 cm. Given in volumetric units [m3/m3].
    • rzsm_3: (float) Root Zone Soil Moisture at 40-100 cm. Given in volumetric units [m3/m3].
    • rzsm_4: (float) Root Zone Soil Moisture at 100-200. Given in volumetric units [m3/m3].
    • uncertainty_1: (float) Root Zone Soil Moisture uncertainty at 0-10 cm from propagated surface uncertainties [m3/m3].
    • uncertainty_2: (float) Root Zone Soil Moisture uncertainty at 10-40 cm from propagated surface uncertainties [m3/m3].
    • uncertainty_3: (float) Root Zone Soil Moisture uncertainty at 40-100 cm from propagated surface uncertainties [m3/m3].
    • uncertainty_4: (float) Root Zone Soil Moisture uncertainty at 100-200 cm from propagated surface uncertainties [m3/m3].

    Additional information for each variable is given in the netCDF attributes.

    Version Changelog

    • v9.1
      • Initial version based on PASSIVE input data from ESA CCI SM v09.1 as used by Hirschi et al. (2025).

    Software to open netCDF files

    These data can be read by any software that supports Climate and Forecast (CF) conform metadata standards for netCDF files, such as:

    References

    • Dorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, P. D., Hirschi, M., Ikonen, J., de Jeu, R., Kidd, R., Lahoz, W., Liu, Y. Y., Miralles, D., Mistelbauer, T., Nicolai-Shaw, N., Parinussa, R., Pratola, C., Reimer, C., van der Schalie, R., Seneviratne, S. I., Smolander, T., and Lecomte, P.: ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions, Remote Sensing of Environment, 203, 185-215, 10.1016/j.rse.2017.07.001, 2017
    • Dorigo, W., Stradiotti, P., Preimesberger, W., Kidd, R., van der Schalie, R., Frederikse, T., Rodriguez-Fernandez, N., & Baghdadi, N. (2024). ESA Climate Change Initiative Plus - Soil Moisture Algorithm Theoretical Baseline Document (ATBD) Supporting Product Version 09.0. Zenodo. https://doi.org/10.5281/zenodo.13860922
    • Gruber, A., Scanlon, T., van der Schalie, R., Wagner, W., and Dorigo, W.: Evolution of the ESA CCI Soil Moisture climate data records and their underlying merging methodology, Earth Syst. Sci. Data, 11, 717–739, https://doi.org/10.5194/essd-11-717-2019, 2019.
    • Hirschi, M., Michel, D., Schumacher, D. L., Preimesberger, W., Seneviratne, S. I.: Recent summer soil moisture drying in Switzerland based on the SwissSMEX network, 2025 (paper submitted)
    • Pasik, A., Gruber, A., Preimesberger, W., De Santis, D., and Dorigo, W.: Uncertainty estimation for a new exponential-filter-based long-term root-zone soil moisture dataset from Copernicus Climate Change Service (C3S) surface observations, Geosci. Model Dev., 16, 4957–4976, https://doi.org/10.5194/gmd-16-4957-2023, 2023
    • Preimesberger, W., Stradiotti, P., and Dorigo, W.: ESA CCI Soil Moisture GAPFILLED: An independent global gap-free satellite climate data record with uncertainty estimates, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2024-610, in review, 2025.

    Related Records

    Please see the ESA CCI Soil Moisture science data records community for more records based on ESA CCI SM.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Andrew Felton (2024). Storage and Transit Time Data and Code [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8136816

Storage and Transit Time Data and Code

Explore at:
Dataset updated
Jun 12, 2024
Dataset authored and provided by
Andrew Felton
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Author: Andrew J. FeltonDate: 5/5/2024

This R project contains the primary code and data (following pre-processing in python) used for data production, manipulation, visualization, and analysis and figure production for the study entitled:

"Global estimates of the storage and transit time of water through vegetation"

Please note that 'turnover' and 'transit' are used interchangeably in this project.

Data information:

The data folder contains key data sets used for analysis. In particular:

"data/turnover_from_python/updated/annual/multi_year_average/average_annual_turnover.nc" contains a global array summarizing five year (2016-2020) averages of annual transit, storage, canopy transpiration, and number of months of data. This is the core dataset for the analysis; however, each folder has much more data, including a dataset for each year of the analysis. Data are also available is separate .csv files for each land cover type. Oterh data can be found for the minimum, monthly, and seasonal transit time found in their respective folders. These data were produced using the python code found in the "supporting_code" folder given the ease of working with .nc and EASE grid in the xarray python module. R was used primarily for data visualization purposes. The remaining files in the "data" and "data/supporting_data"" folder primarily contain ground-based estimates of storage and transit found in public databases or through a literature search, but have been extensively processed and filtered here.

Code information

Python scripts can be found in the "supporting_code" folder.

Each R script in this project has a particular function:

01_start.R: This script loads the R packages used in the analysis, sets thedirectory, and imports custom functions for the project. You can also load in the main transit time (turnover) datasets here using the source() function.

02_functions.R: This script contains the custom function for this analysis, primarily to work with importing the seasonal transit data. Load this using the source() function in the 01_start.R script.

03_generate_data.R: This script is not necessary to run and is primarilyfor documentation. The main role of this code was to import and wranglethe data needed to calculate ground-based estimates of aboveground water storage.

04_annual_turnover_storage_import.R: This script imports the annual turnover andstorage data for each landcover type. You load in these data from the 01_start.R scriptusing the source() function.

05_minimum_turnover_storage_import.R: This script imports the minimum turnover andstorage data for each landcover type. Minimum is defined as the lowest monthlyestimate.You load in these data from the 01_start.R scriptusing the source() function.

06_figures_tables.R: This is the main workhouse for figure/table production and supporting analyses. This script generates the key figures and summary statistics used in the study that then get saved in the manuscript_figures folder. Note that allmaps were produced using Python code found in the "supporting_code"" folder.

Search
Clear search
Close search
Google apps
Main menu