59 datasets found
  1. Yahoo Finance Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated Feb 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2023). Yahoo Finance Dataset [Dataset]. https://brightdata.com/products/datasets/yahoo-finance
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Feb 21, 2023
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Yahoo Finance dataset provides information on top traded companies. It contains financial information on each company including stock ticker and risk scores and general company information such as company location and industry. Each record in the dataset is a unique stock, where multiple stocks can be related to the same company. Yahoo Finance dataset attributes include: company name, company ID, entity type, summary, stock ticker, currency, earnings, exchange, closing price, previous close, open, bid, ask, day range, week range, volume, and much more.

  2. Yahoo Stocks Dataset

    • crawlfeeds.com
    csv, zip
    Updated Apr 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2025). Yahoo Stocks Dataset [Dataset]. https://crawlfeeds.com/datasets/yahoo-stocks-dataset
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Apr 27, 2025
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Description

    The Yahoo Stocks Dataset is an invaluable resource for analysts, traders, and developers looking to enhance their financial data models or trading strategies. Sourced from Yahoo Finance, this dataset includes historical stock prices, market trends, and financial indicators. With its accurate and comprehensive data, it empowers users to analyze patterns, forecast trends, and build robust machine learning models.

    Whether you're a seasoned stock market analyst or a beginner in financial data science, this dataset is tailored to meet diverse needs. It features details like stock prices, trading volume, and market capitalization, enabling a deep dive into investment opportunities and market dynamics.

    For machine learning and AI enthusiasts, the Yahoo Stocks Dataset is a goldmine. It’s perfect for developing predictive models, such as stock price forecasting and sentiment analysis. The dataset's structured format ensures seamless integration into Python, R, and other analytics platforms, making data visualization and reporting effortless.

    Additionally, this dataset supports long-term trend analysis, helping investors make informed decisions. It’s also an essential resource for those conducting research in algorithmic trading and portfolio management.

    Key benefits include:

    • Historical Stock Data: Access years of trading data to analyze market behaviors.
    • Versatile Applications: Use it for financial modeling, data analytics, or academic research.
    • SEO Benefits for Finance Websites: Boost your content with insights derived from this dataset.

    Download the Yahoo Stocks Dataset today and harness the power of financial data for your projects. Whether for AI, financial reporting, or trend analysis, this dataset equips you with the tools to succeed in the dynamic world of stock markets.

  3. Stock Market Dataset

    • kaggle.com
    zip
    Updated Apr 2, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oleh Onyshchak (2020). Stock Market Dataset [Dataset]. http://doi.org/10.34740/kaggle/dsv/1054465
    Explore at:
    zip(547714524 bytes)Available download formats
    Dataset updated
    Apr 2, 2020
    Authors
    Oleh Onyshchak
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Overview

    This dataset contains historical daily prices for all tickers currently trading on NASDAQ. The up to date list is available from nasdaqtrader.com. The historic data is retrieved from Yahoo finance via yfinance python package.

    It contains prices for up to 01 of April 2020. If you need more up to date data, just fork and re-run data collection script also available from Kaggle.

    Data Structure

    The date for every symbol is saved in CSV format with common fields:

    • Date - specifies trading date
    • Open - opening price
    • High - maximum price during the day
    • Low - minimum price during the day
    • Close - close price adjusted for splits
    • Adj Close - adjusted close price adjusted for both dividends and splits.
    • Volume - the number of shares that changed hands during a given day

    All that ticker data is then stored in either ETFs or stocks folder, depending on a type. Moreover, each filename is the corresponding ticker symbol. At last, symbols_valid_meta.csv contains some additional metadata for each ticker such as full name.

  4. f

    38 Global main stock indexes.

    • plos.figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bentian Li; Dechang Pi (2023). 38 Global main stock indexes. [Dataset]. http://doi.org/10.1371/journal.pone.0200600.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Bentian Li; Dechang Pi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is the name of the 38 global main stock indexes in the world. We collected from Yahoo! Finance. For the convenience of expression and computation later, we numbered it. For each item, the front is its serial number, followed by the corresponding stock index.

  5. A

    ‘Time Series Forecasting with Yahoo Stock Price ’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Jan 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘Time Series Forecasting with Yahoo Stock Price ’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-time-series-forecasting-with-yahoo-stock-price-9e5c/d6d871c7/?iid=002-653&v=presentation
    Explore at:
    Dataset updated
    Jan 28, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Time Series Forecasting with Yahoo Stock Price ’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/arashnic/time-series-forecasting-with-yahoo-stock-price on 28 January 2022.

    --- Dataset description provided by original source is as follows ---

    Context

    Stocks and financial instrument trading is a lucrative proposition. Stock markets across the world facilitate such trades and thus wealth exchanges hands. Stock prices move up and down all the time and having ability to predict its movement has immense potential to make one rich. Stock price prediction has kept people interested from a long time. There are hypothesis like the Efficient Market Hypothesis, which says that it is almost impossible to beat the market consistently and there are others which disagree with it.

    There are a number of known approaches and new research going on to find the magic formula to make you rich. One of the traditional methods is the time series forecasting. Fundamental analysis is another method where numerous performance ratios are analyzed to assess a given stock. On the emerging front, there are neural networks, genetic algorithms, and ensembling techniques.

    Another challenging problem in stock price prediction is Black Swan Event, unpredictable events that cause stock market turbulence. These are events that occur from time to time, are unpredictable and often come with little or no warning.

    A black swan event is an event that is completely unexpected and cannot be predicted. Unexpected events are generally referred to as black swans when they have significant consequences, though an event with few consequences might also be a black swan event. It may or may not be possible to provide explanations for the occurrence after the fact – but not before. In complex systems, like economies, markets and weather systems, there are often several causes. After such an event, many of the explanations for its occurrence will be overly simplistic.

    #
    #

    https://www.visualcapitalist.com/wp-content/uploads/2020/03/mm3_black_swan_events_shareable.jpg"> #
    #
    New bleeding age state-of-the-art deep learning models stock predictions is overcoming such obstacles e.g. "Transformer and Time Embeddings". An objectives are to apply these novel models to forecast stock price.

    Content

    Stock price prediction is the task of forecasting the future value of a given stock. Given the historical daily close price for S&P 500 Index, prepare and compare forecasting solutions. S&P 500 or Standard and Poor's 500 index is an index comprising of 500 stocks from different sectors of US economy and is an indicator of US equities. Other such indices are the Dow 30, NIFTY 50, Nikkei 225, etc. For the purpose of understanding, we are utilizing S&P500 index, concepts, and knowledge can be applied to other stocks as well.

    Dataset

    The historical stock price information is also publicly available. For our current use case, we will utilize the pandas_datareader library to get the required S&P 500 index history using Yahoo Finance databases. We utilize the closing price information from the dataset available though other information such as opening price, adjusted closing price, etc., are also available. We prepare a utility function get_raw_data() to extract required information in a pandas dataframe. The function takes index ticker name as input. For S&P 500 index, the ticker name is ^GSPC. The following snippet uses the utility function to get the required data.(See Simple LSTM Regression)

    Features and Terminology: In stock trading, the high and low refer to the maximum and minimum prices in a given time period. Open and close are the prices at which a stock began and ended trading in the same period. Volume is the total amount of trading activity. Adjusted values factor in corporate actions such as dividends, stock splits, and new share issuance.

    Starter Kernel(s)

    Acknowledgements

    Mining and updating of this dateset will depend upon Yahoo Finance .

    Inspiration

    Sort of variation of sequence modeling and bleeding age e.g. attention can be applied for research and forecasting

    Some Readings

    *If you download and find the data useful your upvote is an explicit feedback for future works*

    --- Original source retains full ownership of the source dataset ---

  6. S&P 500 (^GSPC) Historical Data

    • kaggle.com
    Updated Jul 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    PJ (2025). S&P 500 (^GSPC) Historical Data [Dataset]. https://www.kaggle.com/datasets/paveljurke/s-and-p-500-gspc-historical-data/versions/308
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 7, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    PJ
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Full historical data for the S&P 500 (ticker ^GSPC), sourced from Yahoo Finance (https://finance.yahoo.com/).

    Including Open, High, Low and Close prices in USD + daily volumes.

    Info about S&P 500: https://en.wikipedia.org/wiki/S%26P_500

  7. i

    SZI

    • ieee-dataport.org
    Updated Jul 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yi Li (2024). SZI [Dataset]. https://ieee-dataport.org/documents/stock-index-price-ssec-szi-and-spx
    Explore at:
    Dataset updated
    Jul 8, 2024
    Authors
    Yi Li
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    2023

  8. NASDAQ Historical Prices (2014-2024)

    • kaggle.com
    Updated Apr 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arslanr369 (2024). NASDAQ Historical Prices (2014-2024) [Dataset]. https://www.kaggle.com/datasets/arslanr369/nasdaq-historical-prices-2014-2024
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 27, 2024
    Dataset provided by
    Kaggle
    Authors
    Arslanr369
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Experience a decade of NASDAQ market dynamics with this comprehensive historical price dataset from 2014 to 2024.

    The NASDAQ Composite is a benchmark index representing the performance of more than 2,500 stocks listed on the NASDAQ stock exchange, encompassing various sectors including technology, healthcare, and finance. This dataset, sourced meticulously from Yahoo Finance, offers daily insights into the index's opening, highest, lowest, and closing prices, along with adjusted close prices and daily volume.

  9. Finance, Stock, Currency / Forex, Crypto, ETF, and News Data

    • openwebninja.com
    json
    Updated Sep 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OpenWeb Ninja (2024). Finance, Stock, Currency / Forex, Crypto, ETF, and News Data [Dataset]. https://www.openwebninja.com/api/real-time-finance-data
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Sep 18, 2024
    Dataset provided by
    Authors
    OpenWeb Ninja
    Area covered
    Global Financial Markets
    Description

    This dataset provides comprehensive access to financial market data from Google Finance in real-time. Get detailed information on stocks, market quotes, trends, ETFs, international exchanges, forex, crypto, and related news. Perfect for financial applications, trading platforms, and market analysis tools. The dataset is delivered in a JSON format via REST API.

  10. Major Tech Stocks Time Series (2019-2024)

    • kaggle.com
    Updated Aug 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alfredo (2024). Major Tech Stocks Time Series (2019-2024) [Dataset]. https://www.kaggle.com/datasets/alfredkondoro/major-tech-stocks-time-series-2019-2024
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 2, 2024
    Dataset provided by
    Kaggle
    Authors
    Alfredo
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Dataset Description

    Overview:

    This dataset contains the historical stock prices and related financial information for five major technology companies: Apple (AAPL), Microsoft (MSFT), Amazon (AMZN), Google (GOOGL), and Tesla (TSLA). The dataset spans a five-year period from January 1, 2019, to January 1, 2024. It includes key stock metrics such as Open, High, Low, Close, Adjusted Close, and Volume for each trading day.

    Data Collection:

    The data was sourced using the yfinance library in Python, which provides convenient access to historical market data from Yahoo Finance.

    Contents:

    The dataset contains the following columns:

    Date: The trading date. Open: The opening price of the stock on that date. High: The highest price of the stock on that date. Low: The lowest price of the stock on that date. Close: The closing price of the stock on that date. Adj Close: The adjusted closing price, accounting for dividends and splits. Volume: The number of shares traded on that date. Ticker: The stock ticker symbol representing each company.

  11. i

    datasets of stock market indices.

    • ieee-dataport.org
    Updated Apr 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Enrique Gonzalez Nunez (2024). datasets of stock market indices. [Dataset]. https://ieee-dataport.org/documents/datasets-stock-market-indices
    Explore at:
    Dataset updated
    Apr 7, 2024
    Authors
    Enrique Gonzalez Nunez
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    DAX

  12. Shares of stock during COVID 19 in automotive sector

    • zenodo.org
    • data.niaid.nih.gov
    bin
    Updated Nov 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Paula Muñoz; Abel Romero; Paula Muñoz; Abel Romero (2020). Shares of stock during COVID 19 in automotive sector [Dataset]. http://doi.org/10.5281/zenodo.4263399
    Explore at:
    binAvailable download formats
    Dataset updated
    Nov 9, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Paula Muñoz; Abel Romero; Paula Muñoz; Abel Romero
    License

    Attribution 1.0 (CC BY 1.0)https://creativecommons.org/licenses/by/1.0/
    License information was derived automatically

    Description

    This data set includes stock information for the companies Tesla, Porsche, Nio and Ferrari for each day from the date 11/08/2019 to 11/08/2020. Specifically, it shows information about the opening, closing, maximum and minimum price of the session, as well as the volume, the dividends granted to investors and the presence of stock splits generated per day. This dataste has been created with the aim to analyze how the quotes have been evolving during the COVID-19 pandemic in the automotive sector.

    The AccionesSectorAutomovil.xlsx dataset contains 4 sheets (TESLA, PAH3.DE, NIO, RACE ) and 9 variables per sheet:

    - Fecha: date in dd/MM/yyyy format
    - Abrir: value of the share at the market opening expressed in US dollars (USD)
    - Max: maximum value of the share throughout the day expressed in USD
    - Cierre*: value of the share at the close of the market expressed in USD
    - Cierre ajus.*: estimated share value at market close, expressed in USD.
    - Volumen: the amount of a specific asset invested in during a day.
    - Dividends: money received by shareholders in the form of dividends that day.
    - Stock Splits: Whether or not a stock split operation was carried out that day.

    For more information about the project visit the link on [Github](https://github.com/paulamlago/Financial-Web-Scrapping)

  13. n

    ESG rating of general stock indices

    • narcis.nl
    • data.mendeley.com
    Updated Oct 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Erhart, S (via Mendeley Data) (2021). ESG rating of general stock indices [Dataset]. http://doi.org/10.17632/58mwkj5pf8.1
    Explore at:
    Dataset updated
    Oct 22, 2021
    Dataset provided by
    Data Archiving and Networked Services (DANS)
    Authors
    Erhart, S (via Mendeley Data)
    Description
    ################################################################################################## THE FILES HAVE BEEN CREATED BY SZILÁRD ERHART FOR A RESEARCH: ERHART (2021): ESG RATINGS OF GENERAL # STOCK EXCHANGE INDICES, INTERNATIONAL REVIEW OF FINANCIAL ANALYSIS# USERS OF THE FILES AGREE TO QUOTE THE ABOVE PAPER# THE PYTHON SCRIPT (PYTHONESG_ERHART.TXT) HELPS USERS TO GET TICKERS BY STOCK EXCHANGES AND EXTRACT ESG SCORES FOR THE UNDERLYING STOCKS FROM YAHOO FINANCE.# THE R SCRIPT (ESG_UA.TXT) HELPS TO REPLICATE THE MONTE CARLO EXPERIMENT DETAILED IN THE STUDY.# THE EXPORT_ALL CSV CONTAINS THE DOWNLOADED ESG DATA (SCORES, CONTROVERSIES, ETC) ORGANIZED BY STOCKS AND EXCHANGES.############################################################################################################################################################################################################### DISCLAIMER # The author takes no responsibility for the timeliness, accuracy, completeness or quality of the information provided. # The author is in no event liable for damages of any kind incurred or suffered as a result of the use or non-use of the # information presented or the use of defective or incomplete information. # The contents are subject to confirmation and not binding. # The author expressly reserves the right to alter, amend, whole and in part, # without prior notice or to discontinue publication for a period of time or even completely. ###########################################################################################################################################READ ME############################################################# BEFORE USING THE MONTE CARLO SIMULATIONS SCRIPT: # (1) COPY THE goascores.csv and goalscores_alt.csv FILES ONTO YOUR ON COMPUTER DRIVE. THE TWO FILES ARE IDENTICAL.# (2) SET THE EXACT FILE LOCATION INFORMATION IN THE 'Read in data' SECTION OF THE MONTE CARLO SCRIPT AND FOR THE OUTPUT FILES AT THE END OF THE SCRIPT# (3) LOAD MISC TOOLS AND MATRIXSTATS IN YOUR R APPLICATION# (4) RUN THE CODE.####################################READ ME
  14. m

    Low- and High-Dimensional Stock Price Data

    • data.mendeley.com
    Updated Oct 13, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chi Seng Pun (2017). Low- and High-Dimensional Stock Price Data [Dataset]. http://doi.org/10.17632/ndxfrshm74.1
    Explore at:
    Dataset updated
    Oct 13, 2017
    Authors
    Chi Seng Pun
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The data files contain seven low-dimensional financial research data (in .txt format) and two high-dimensional daily stock prices data (in .csv format). The low-dimensional data sets are provided by Lorenzo Garlappi on his website, while the high-dimensional data sets are downloaded from Yahoo!Finance by the contributor's own effort. The description of the low-dimensional data sets can be found in DeMiguel et al. (2009, RFS). The two high-dimensional data sets contain daily adjusted close prices (from Jan 1, 2013 to Dec 31, 2014) of the stocks, which are in the index components list (as of Jan 7, 2015) of S&P 500 and Russell 2000 indices, respectively.

  15. Stock Market Supplementary Data

    • kaggle.com
    Updated Jun 14, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Paul Mooney (2021). Stock Market Supplementary Data [Dataset]. https://www.kaggle.com/datasets/paultimothymooney/stock-market-supplementary-data/data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 14, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Paul Mooney
    Description

    Context

    Stock Market Supplementary Data: Company Names and Ticker Symbols

    Content

    Company Names and Ticker Symbols

    nasdaq.csv
    
    nyse.csv
    
    sp500.csv
    
    forbes2000.csv
    
    yahootickers.xlsx
    
    • About
    • Currency
    • ETF
    • Future
    • Index
    • Mutual Fund
    • Stock

    Acknowledgements

    Data from - https://datahub.io/core/nasdaq-listings (License) - https://datahub.io/core/s-and-p-500-companies (License) - https://datahub.io/core/nyse-other-listings (License) - https://investexcel.net/all-yahoo-finance-stock-tickers (open data) - https://www.kaggle.com/ash316/forbes-top-2000-companies (open data)

    Banner Photo: https://unsplash.com/photos/VP4WmibxvcY

  16. T

    Nigeria Stock Market NSE Data

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Nigeria Stock Market NSE Data [Dataset]. https://tradingeconomics.com/nigeria/stock-market
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 18, 1996 - Aug 1, 2025
    Area covered
    Nigeria
    Description

    Nigeria's main stock market index, the NSE-All Share, rose to 141263 points on August 1, 2025, gaining 1.00% from the previous session. Over the past month, the index has climbed 17.39% and is up 44.52% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Nigeria. Nigeria Stock Market NSE - values, historical data, forecasts and news - updated on August of 2025.

  17. Stock market volatility - Business Environment Profile

    • ibisworld.com
    Updated Jun 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IBISWorld (2025). Stock market volatility - Business Environment Profile [Dataset]. https://www.ibisworld.com/united-kingdom/bed/stock-market-volatility/44242
    Explore at:
    Dataset updated
    Jun 13, 2025
    Dataset authored and provided by
    IBISWorld
    License

    https://www.ibisworld.com/about/termsofuse/https://www.ibisworld.com/about/termsofuse/

    Description

    This report analyses movements in the Chicago Board Options Exchange (CBOE) Volatility Index. Known by its ticker symbol VIX, the CBOE Volatility Index is a real-time market index that indicates the stock market's expectation of volatility and is derived from the price inputs of the S&P 500 Index options - the S&P 500 is a US stock market index based on the market capitalisation of 500 large companies having common stock listed on the New York Stock Exchange (NYSE), the Nasdaq Stock Market (NASDAQ), or the Cboe BZX Exchange. Effectively, the VIX measures the degree of variation in S&P 500 stocks' trading price observed over a period of time. The data is sourced from Yahoo Finance, which ultimately derives from the CBOE, in addition to estimates by IBISWorld. The figures represent the average daily unadjusted close value of the index over the UK financial year (i.e. April through March).

  18. A

    ‘📊 Financial market screener’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Feb 1, 2001
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2001). ‘📊 Financial market screener’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-financial-market-screener-c319/db8cf920/?iid=003-370&v=presentation
    Explore at:
    Dataset updated
    Feb 1, 2001
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘📊 Financial market screener’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/pierrelouisdanieau/financial-market-screener on 28 January 2022.

    --- Dataset description provided by original source is as follows ---

    Context

    In this dataset you will find several characteristics on global companies listed on the stock exchange. These characteristics are analyzed by millions of investors before they invest their money.

    Analyze the stock market performance of thousands of companies ! This is the objective of this dataset !

    Content

    Among thse charateristics you will find :

    • The symbol : The stock symbol is a unique series of letters assigned to a security for trading purposes.
    • The shortname : The name of the company
    • The sector : The sector of the company (Technology, Financial services, consumer cyclical...)
    • The country : The location of the head office.
    • The market capitalisation : Market capitalization refers to the total dollar market value of a company's outstanding shares of stock. It is calculated by multiplying the total number of a company's outstanding shares by the current market price of one share.
    • The current ratio : The current ratio is a liquidity ratio that measures a company’s ability to pay short-term obligations. A current ratio that is in line with the industry average or slightly higher is generally considered acceptable. A current ratio that is lower than the industry average may indicate a higher risk of distress or default.
    • The beta : Beta is a measure of a stock's volatility in relation to the overall market. A beta greater than 1.0 suggests that the stock is more volatile than the broader market, and a beta less than 1.0 indicates a stock with lower volatility.
    • The dividend rate : Represents the ratio of a company's annual dividend compared to its share price. (%)

    All this data is public data, obtained from the annual financial reports of these companies. They have been retrieved from the Yahoo Finance API and have been checked beforehand.

    Inspiration

    This dataset has been designed so that it is possible to build a recommendation engine. For example, from an existing position in a portfolio, recommend an alternative with similar characteristics (sector, market capitalization, current ratio,...) but more in line with an investor's expectations (may be with less risk or with more dividends etc...)

    If you have question about this dataset you can contact me

    --- Original source retains full ownership of the source dataset ---

  19. T

    Ukraine Stock Market (PFTS) Data

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Ukraine Stock Market (PFTS) Data [Dataset]. https://tradingeconomics.com/ukraine/stock-market
    Explore at:
    excel, json, csv, xmlAvailable download formats
    Dataset updated
    Jul 16, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Oct 3, 1997 - Aug 1, 2025
    Area covered
    Ukraine
    Description

    Ukraine's main stock market index, the PFTS, closed flat at 464 points on August 1, 2025. Over the past month, the index has declined 5.81% and is down 8.46% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Ukraine. Ukraine Stock Market (PFTS) - values, historical data, forecasts and news - updated on August of 2025.

  20. FTSE 100 - Business Environment Profile

    • ibisworld.com
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IBISWorld (2025). FTSE 100 - Business Environment Profile [Dataset]. https://www.ibisworld.com/uk/bed/ftse-100/44016/
    Explore at:
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    IBISWorld
    License

    https://www.ibisworld.com/about/termsofuse/https://www.ibisworld.com/about/termsofuse/

    Description

    This report analyses the movements of the Financial Times Stock Exchange (FTSE) 100 Index. The FTSE 100 is a share index of the 100 companies listed on the London Stock Exchange (LSE) with the highest market capitalisation (i.e. the market value of a publicly-traded company's outstanding shares). Constituents listed in the FTSE 100 are subject to change, whereby a publicly-traded entity can be demoted or promoted to or from the FTSE 250 index - this consists of the 101st to the 350th largest companies listed on the LSE by market capitalisation - when a quarterly reshuffle occurs in March, June, September and December of each calendar year. Movements in the FTSE 100 index are responsive to the weighted average movements of the constituents' stocks, which are ranked according to market capitalisation value. The data is sourced from Yahoo Finance, which ultimately derives from the LSE, and represents the closing price of the FTSE 100 index on the last day of each financial year (i.e. the close price on 31 March).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Bright Data (2023). Yahoo Finance Dataset [Dataset]. https://brightdata.com/products/datasets/yahoo-finance
Organization logo

Yahoo Finance Dataset

Explore at:
.json, .csv, .xlsxAvailable download formats
Dataset updated
Feb 21, 2023
Dataset authored and provided by
Bright Datahttps://brightdata.com/
License

https://brightdata.com/licensehttps://brightdata.com/license

Area covered
Worldwide
Description

Yahoo Finance dataset provides information on top traded companies. It contains financial information on each company including stock ticker and risk scores and general company information such as company location and industry. Each record in the dataset is a unique stock, where multiple stocks can be related to the same company. Yahoo Finance dataset attributes include: company name, company ID, entity type, summary, stock ticker, currency, earnings, exchange, closing price, previous close, open, bid, ask, day range, week range, volume, and much more.

Search
Clear search
Close search
Google apps
Main menu