The average temperature in the contiguous United States reached 55.5 degrees Fahrenheit (13 degrees Celsius) in 2024, approximately 3.5 degrees Fahrenheit higher than the 20th-century average. These levels represented a record since measurements started in ****. Monthly average temperatures in the U.S. were also indicative of this trend. Temperatures and emissions are on the rise The rise in temperatures since 1975 is similar to the increase in carbon dioxide emissions in the U.S. Although CO₂ emissions in recent years were lower than when they peaked in 2007, they were still generally higher than levels recorded before 1990. Carbon dioxide is a greenhouse gas and is the main driver of climate change. Extreme weather Scientists worldwide have found links between the rise in temperatures and changing weather patterns. Extreme weather in the U.S. has resulted in natural disasters such as hurricanes and extreme heat waves becoming more likely. Economic damage caused by extreme temperatures in the U.S. has amounted to hundreds of billions of U.S. dollars over the past few decades.
In 2024, the average annual temperature in the United States was ***** degrees Celsius, the warmest year recorded in the period in consideration. In 1895, this figure stood at ***** degrees Celsius. Recent years have been some of the warmest years recorded in the country.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Temperature in the United States increased to 10.73 celsius in 2024 from 10.25 celsius in 2023. This dataset includes a chart with historical data for the United States Average Temperature.
The monthly average temperature in the United States between 2020 and 2025 shows distinct seasonal variation, following similar patterns. For instance, in August 2025, the average temperature across the North American country stood at 22.98 degrees Celsius. Rising temperatures Globally, 2016, 2019, 2021 and 2024 were some of the warmest years ever recorded since 1880. Overall, there has been a dramatic increase in the annual temperature since 1895. Within the U.S. annual temperatures show a great deal of variation depending on region. For instance, Florida tends to record the highest maximum temperatures across the North American country, while Wyoming recorded the lowest minimum average temperature in recent years. Carbon dioxide emissions Carbon dioxide is a known driver of climate change, which impacts average temperatures. Global historical carbon dioxide emissions from fossil fuels have been on the rise since the industrial revolution. In recent years, carbon dioxide emissions from fossil fuel combustion and industrial processes reached over 37 billion metric tons. Among all countries globally, China was the largest emitter of carbon dioxide in 2023.
The average temperature in December 2024 was 38.25 degrees Fahrenheit in the United States, the fourth-largest country in the world. The country has extremely diverse climates across its expansive landmass. Temperatures in the United States On the continental U.S., the southern regions face warm to extremely hot temperatures all year round, the Pacific Northwest tends to deal with rainy weather, the Mid-Atlantic sees all four seasons, and New England experiences the coldest winters in the country. The North American country has experienced an increase in the daily minimum temperatures since 1970. Consequently, the average annual temperature in the United States has seen a spike in recent years. Climate Change The entire world has seen changes in its average temperature as a result of climate change. Climate change occurs due to increased levels of greenhouse gases which act to trap heat in the atmosphere, preventing it from leaving the Earth. Greenhouse gases are emitted from various sectors but most prominently from burning fossil fuels. Climate change has significantly affected the average temperature across countries worldwide. In the United States, an increasing number of people have stated that they have personally experienced the effects of climate change. Not only are there environmental consequences due to climate change, but also economic ones. In 2022, for instance, extreme temperatures in the United States caused over 5.5 million U.S. dollars in economic damage. These economic ramifications occur for several reasons, which include higher temperatures, changes in regional precipitation, and rising sea levels.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for TEMPERATURE reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
In 2024, the maximum average temperature in the contiguous United States reached nearly 20 degrees Celsius. Several of the warmest years on record have all been recorded within the last decade. Just one-degree of warming is significant, as it takes a vast amount of heat to warm up the oceans, atmosphere, and land to this degree.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Some say climate change is the biggest threat of our age while others say it’s a myth based on dodgy science. We are turning some of the data over to you so you can form your own view.
Even more than with other data sets that Kaggle has featured, there’s a huge amount of data cleaning and preparation that goes into putting together a long-time study of climate trends. Early data was collected by technicians using mercury thermometers, where any variation in the visit time impacted measurements. In the 1940s, the construction of airports caused many weather stations to be moved. In the 1980s, there was a move to electronic thermometers that are said to have a cooling bias.
Given this complexity, there are a range of organizations that collate climate trends data. The three most cited land and ocean temperature data sets are NOAA’s MLOST, NASA’s GISTEMP and the UK’s HadCrut.
We have repackaged the data from a newer compilation put together by the Berkeley Earth, which is affiliated with Lawrence Berkeley National Laboratory. The Berkeley Earth Surface Temperature Study combines 1.6 billion temperature reports from 16 pre-existing archives. It is nicely packaged and allows for slicing into interesting subsets (for example by country). They publish the source data and the code for the transformations they applied. They also use methods that allow weather observations from shorter time series to be included, meaning fewer observations need to be thrown away.
In this dataset, we have include several files:
Global Land and Ocean-and-Land Temperatures (GlobalTemperatures.csv):
Other files include:
The raw data comes from the Berkeley Earth data page.
This metadata record describes the 30-year annual average of precipitation in millimeters (mm) and temperature (Celsius) during the period 1990–2019 for North America. The source data were produced by and acquired from DAYMET daily climate data (2020) and presented here as a series of two 1-kilometer resolution GeoTIFF files. An open source python code file used to process the data is also included.
In 2024, the minimum average temperature in the contiguous United States reached around 6.45 degrees Celsius. Several of the hottest years on record have all been recorded within the last decade. Just one-degree of warming is significant, as it takes a vast amount of heat to warm up the oceans, atmosphere, and land to this degree.
This raster contains absolute change in annual average temperature values. Data are ensemble mean values across 20 global climate models from the CMIP5 experiment [Taylor et al., 2012], downscaled to a 4km grid. For more information on the downscaling method and to access the raw data used to create this dataset, please see Abatzoglou and Brown, [2012] and the Northwest Climate Science Center.We used the MACAv2-metdata monthly minimum and maximum temperature datasets. Average temperature was calculated as the arithmetic mean of minimum and maximum temperature datasets. Average temperature was averaged over water years (1 Oct to 30 Sept). Absolute change values are the difference between the mean historical (1975-2005) and future (2071-2090, RCP8.5) annual average temperatures. Units are degrees Celsius.More information on the project associated with this dataset is available from the U.S. Forest Service Rocky Mountain Research Station, including detailed metadata; these raster data are available for download here.
The mean annual temperature in North America stood at -4.5 degrees Celsius in 1995. It is expected that, 30 years later in 2025, the average temperature will increase by 1.6 degrees Celsius due to the effects of global warming, under a scenario where global temperatures increase by 1.5 degree Celsius.
The Daily Air Temperature and Heat Index data available on CDC WONDER are county-level daily average air temperatures and heat index measures spanning the years 1979-2010. Temperature data are available in Fahrenheit or Celsius scales. Reported measures are the average temperature, number of observations, and range for the daily maximum and minimum air temperatures, and also percent coverage for the daily maximum heat index. Data are available by place (combined 48 contiguous states, region, division, state, county), time (year, month, day) and specified maximum and minimum air temperature, and heat index value. The data are derived from the North America Land Data Assimilation System (NLDAS) through NLDAS Phase 2, a collaboration project among several groups: the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) Environmental Modeling Center (EMC), the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), Princeton University, the National Weather Service (NWS) Office of Hydrological Development (OHD), the University of Washington, and the NCEP Climate Prediction Center (CPC). In a study funded by the NASA Applied Sciences Program/Public Health Program, scientists at NASA Marshall Space Flight Center/ Universities Space Research Association developed the analysis to produce the data available on CDC WONDER.
The North American Dataset contains sets of Maximum, Minimum and Average Temperature data and Precipitation data that are either (1) raw (non-adjusted though flagged for possible quality issues), (2) adjusted due to time of observation bias (TOB) or (3) put through the Pairwise Homogenization Algorithm (PHA). These files contain North American stations and its data are measured in hundredths of degrees Celsius (without decimal place) for temperature and tenths of millimeters (without decimal place) for Precipitation. Each file includes the entire available Period of Record.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Cooling Degree Days data was reported at 1,195.300 Degrees Celsius in 2020. This records an increase from the previous number of 1,144.160 Degrees Celsius for 2019. United States Cooling Degree Days data is updated yearly, averaging 982.930 Degrees Celsius from Dec 1970 (Median) to 2020, with 51 observations. The data reached an all-time high of 1,230.090 Degrees Celsius in 2012 and a record low of 786.920 Degrees Celsius in 1976. United States Cooling Degree Days data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Environmental: Climate Risk. A cooling degree day (CDD) is a measurement designed to track energy use. It is the number of degrees that a day's average temperature is above 18°C (65°F). Daily degree days are accumulated to obtain annual values.;World Bank, Climate Change Knowledge Portal. https://climateknowledgeportal.worldbank.org;;
Baseline (1961-1990) average winter temperature in and projected change in temperature for for the northern portion of Alaska. For the purposes of these maps, 'winter' is defined as December - February. The Alaska portion of the Arctic LCC's terrestrial boundary is depicted by the black line. Baseline results for 1961-1990 are derived from Climate Research Unit (CRU) TS3.1 data and downscaled to 2km grids; results for the other time periods (2010-2039, 2040-2069, 2070-2099) are based on the SNAP 5-GCM composite using the AR5-RCP 8.5, downscaled to 2km grids.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Heating Degree Days data was reported at 6,469.100 Degrees Celsius in 2020. This records a decrease from the previous number of 6,651.470 Degrees Celsius for 2019. United States Heating Degree Days data is updated yearly, averaging 6,898.870 Degrees Celsius from Dec 1970 (Median) to 2020, with 51 observations. The data reached an all-time high of 7,479.710 Degrees Celsius in 1972 and a record low of 6,089.410 Degrees Celsius in 2016. United States Heating Degree Days data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Environmental: Climate Risk. A heating degree day (HDD) is a measurement designed to track energy use. It is the number of degrees that a day's average temperature is below 18°C (65°F). Daily degree days are accumulated to obtain annual values.;World Bank, Climate Change Knowledge Portal. https://climateknowledgeportal.worldbank.org;;
Evaluating multiple signals of climate change across the conterminous United States during three 30-year periods (2010�2039, 2040�2069, 2070�2099) during this century to a baseline period (1980�2009) emphasizes potential changes for growing degree days (GDD), plant hardiness zones (PHZ), and heat zones. These indices were derived using the CCSM4 and GFDL CM3 models under the representative concentration pathways 4.5 and 8.5, respectively, and included in Matthews et al. (2018). Daily temperature was downscaled by Maurer et al. (https://doi.org/10.1029/2007EO470006) at a 1/8 degree grid scale and used to obtain growing degree days, plant hardiness zones, and heat zones. Each of these indices provides unique information about plant health related to changes in climatic conditions that influence establishment, growth, and survival. These data and the calculated changes are provided as 14 individual IMG files for each index to assist with management planning and decision making into the future. For each of the four indices the following are included: two baseline files (1980�2009), three files representing 30-year periods for the scenario CCSM4 under RCP 4.5 along with three files of changes, and three files representing 30-year periods for the scenario GFDL CM3 under RCP 8.5 along with three files of changes.Heat zones map the distribution of potential heat stress for plants and animals, including humans. We define heat zones as the number of days with maximum daily temperature >30 �C (86 �F). Because species have unique adaptations and abilities to tolerate a wide variety of conditions, this metric is used merely as an indicator of change in �hot� conditions. The 30 �C value is set primarily for agricultural production and is a general temperature threshold at which photosynthesis can be negatively impacted for C3 plants (e.g., most species including trees), but it certainly also captures temperatures that induce stress in humans as well. In addition, increases in temperature above these thresholds for longer periods, especially when accompanied with prolonged dry conditions, are linked to reduced performance and likely mortality of trees. Each day surpassing the 30 �C threshold was tallied and summed for each year and reported as the mean number of days, per year, over each 30-year period: baseline, early, mid, and late century.�Original data and associated metadata can be downloaded from this website:�https://www.fs.usda.gov/rds/archive/Product/RDS-2019-0001
description: The U.S. daily temperature analyses are maps depicting various temperature quantities utilizing daily maximum and minimum temperature data across the US. Maps are available for the daily maximum and minimum temperatures and anomalies, mean temperatures, and mean temperature anomalies averaged over various time scales (daily, 5-day, 7-day, 30-day, 90-day, and current month-to-date). Each of these quantities are available in terms of degrees Celsius and Fahrenheit. The graphics are updated daily and the graphics reflect the updated analyses including the latest daily data available. Archived graphics are rotated every year, making the previous and current year (to present) graphics available.; abstract: The U.S. daily temperature analyses are maps depicting various temperature quantities utilizing daily maximum and minimum temperature data across the US. Maps are available for the daily maximum and minimum temperatures and anomalies, mean temperatures, and mean temperature anomalies averaged over various time scales (daily, 5-day, 7-day, 30-day, 90-day, and current month-to-date). Each of these quantities are available in terms of degrees Celsius and Fahrenheit. The graphics are updated daily and the graphics reflect the updated analyses including the latest daily data available. Archived graphics are rotated every year, making the previous and current year (to present) graphics available.
Sea surface temperature (SST) plays an important role in a number of ecological processes and can vary over a wide range of time scales, from daily to decadal changes. SST influences primary production, species migration patterns, and coral health. If temperatures are anomalously warm for extended periods of time, drastic changes in the surrounding ecosystem can result, including harmful effects such as coral bleaching. This layer represents the annual average of the maximum anomaly of SST (degrees Celsius) from 2000-2013.
Three SST datasets were combined to provide continuous coverage from 1985-2013. The concatenation applies bias adjustment derived from linear regression to the overlap periods of datasets, with the final representation matching the 0.05-degree (~5-km) near real-time SST product. First, a weekly composite, gap-filled SST dataset from the NOAA Pathfinder v5.2 SST 1/24-degree (~4-km), daily dataset (a NOAA Climate Data Record) for each location was produced following Heron et al. (2010) for January 1985 to December 2012. Next, weekly composite SST data from the NOAA/NESDIS/STAR Blended SST 0.1-degree (~11-km), daily dataset was produced for February 2009 to October 2013. Finally, a weekly composite SST dataset from the NOAA/NESDIS/STAR Blended SST 0.05-degree (~5-km), daily dataset was produced for March 2012 to December 2013.
The SST average annual maximum anomaly was calculated by taking the average of the annual maximum SST values in exceedance of the maximum monthly climatological SST from 2000-2013 for each pixel.
The average temperature in the contiguous United States reached 55.5 degrees Fahrenheit (13 degrees Celsius) in 2024, approximately 3.5 degrees Fahrenheit higher than the 20th-century average. These levels represented a record since measurements started in ****. Monthly average temperatures in the U.S. were also indicative of this trend. Temperatures and emissions are on the rise The rise in temperatures since 1975 is similar to the increase in carbon dioxide emissions in the U.S. Although CO₂ emissions in recent years were lower than when they peaked in 2007, they were still generally higher than levels recorded before 1990. Carbon dioxide is a greenhouse gas and is the main driver of climate change. Extreme weather Scientists worldwide have found links between the rise in temperatures and changing weather patterns. Extreme weather in the U.S. has resulted in natural disasters such as hurricanes and extreme heat waves becoming more likely. Economic damage caused by extreme temperatures in the U.S. has amounted to hundreds of billions of U.S. dollars over the past few decades.