100+ datasets found
  1. Average annual temperature in the United States 1895-2024

    • statista.com
    Updated Feb 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average annual temperature in the United States 1895-2024 [Dataset]. https://www.statista.com/statistics/500472/annual-average-temperature-in-the-us/
    Explore at:
    Dataset updated
    Feb 2, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The average temperature in the contiguous United States reached 55.5 degrees Fahrenheit (13 degrees Celsius) in 2024, approximately 3.5 degrees Fahrenheit higher than the 20th-century average. These levels represented a record since measurements started in 1895. Monthly average temperatures in the U.S. were also indicative of this trend. Temperatures and emissions are on the rise The rise in temperatures since 1975 is similar to the increase in carbon dioxide emissions in the U.S. Although CO₂ emissions in recent years were lower than when they peaked in 2007, they were still generally higher than levels recorded before 1990. Carbon dioxide is a greenhouse gas and is the main driver of climate change. Extreme weather Scientists worldwide have found links between the rise in temperatures and changing weather patterns. Extreme weather in the U.S. has resulted in natural disasters such as hurricanes and extreme heat waves becoming more likely. Economic damage caused by extreme temperatures in the U.S. has amounted to hundreds of billions of U.S. dollars over the past few decades.

  2. Monthly average temperature in the United States 2020-2024

    • statista.com
    Updated Feb 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Monthly average temperature in the United States 2020-2024 [Dataset]. https://www.statista.com/statistics/513628/monthly-average-temperature-in-the-us-fahrenheit/
    Explore at:
    Dataset updated
    Feb 2, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2020 - Dec 2024
    Area covered
    United States
    Description

    The average temperature in December 2024 was 38.25 degrees Fahrenheit in the United States, the fourth-largest country in the world. The country has extremely diverse climates across its expansive landmass. Temperatures in the United States On the continental U.S., the southern regions face warm to extremely hot temperatures all year round, the Pacific Northwest tends to deal with rainy weather, the Mid-Atlantic sees all four seasons, and New England experiences the coldest winters in the country. The North American country has experienced an increase in the daily minimum temperatures since 1970. Consequently, the average annual temperature in the United States has seen a spike in recent years. Climate Change The entire world has seen changes in its average temperature as a result of climate change. Climate change occurs due to increased levels of greenhouse gases which act to trap heat in the atmosphere, preventing it from leaving the Earth. Greenhouse gases are emitted from various sectors but most prominently from burning fossil fuels. Climate change has significantly affected the average temperature across countries worldwide. In the United States, an increasing number of people have stated that they have personally experienced the effects of climate change. Not only are there environmental consequences due to climate change, but also economic ones. In 2022, for instance, extreme temperatures in the United States caused over 5.5 million U.S. dollars in economic damage. These economic ramifications occur for several reasons, which include higher temperatures, changes in regional precipitation, and rising sea levels.

  3. r

    Historical annual temperature (CONUS) (Image Service)

    • opendata.rcmrd.org
    • catalog.data.gov
    • +4more
    Updated Nov 22, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2017). Historical annual temperature (CONUS) (Image Service) [Dataset]. https://opendata.rcmrd.org/datasets/11446da3eaa04ecc9b086ffcaa1c9818
    Explore at:
    Dataset updated
    Nov 22, 2017
    Dataset authored and provided by
    U.S. Forest Service
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.

    Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; average temperature values were calculated as the mean of monthly minimum and maximum air temperature values (degrees C), averaged over the season of interest (annual, winter, or summer). Absolute change was then calculated between the historical and future time periods.

    Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

  4. g

    Yearly Average Surface Temperature (ºC)

    • globaldatalab.org
    utf-8
    Updated Nov 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Global Data Lab (2023). Yearly Average Surface Temperature (ºC) [Dataset]. https://globaldatalab.org/geos/table/surfacetempyear/
    Explore at:
    utf-8Available download formats
    Dataset updated
    Nov 26, 2023
    Dataset authored and provided by
    Global Data Lab
    Time period covered
    1990 - 2022
    Description

    Yearly Average Surface Temperature (ºC)

  5. Global cities with highest recorded yearly average temperature

    • statista.com
    Updated Feb 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Global cities with highest recorded yearly average temperature [Dataset]. https://www.statista.com/statistics/1110333/hottest-world-cities-highest-annual-temperature/
    Explore at:
    Dataset updated
    Feb 16, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The hottest average annual temperature recorded at a single location was 32.9 degrees Celsius in Makkah, Saudi Arabia in 2010 and again in 2016. Makkah, also spelled Mecca, sees millions of Muslim enter the city every year. Although 2010 set the record for the hottest year globally on record, the record was then broken several times throughout the following decade. As of 2019, the hottest year on record globally was 2016, followed by 2019.

  6. Global Yearly Temperature Anomaly (1850 - present)

    • climate.esri.ca
    • pacificgeoportal.com
    • +8more
    Updated Dec 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). Global Yearly Temperature Anomaly (1850 - present) [Dataset]. https://climate.esri.ca/maps/861938b2dd3747789c144350048a838c
    Explore at:
    Dataset updated
    Dec 14, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Pacific Ocean, South Pacific Ocean
    Description

    Measurements of surface air and ocean temperature are compiled from around the world each month by NOAA’s National Centers for Environmental Information and are analyzed and compared to the 1971-2000 average temperature for each location. The resulting temperature anomaly (or difference from the average) is shown in this feature service, which includes an archive going back to 1880. The mean of the 12 months each year is displayed here. Each annual update is available around the 15th of the following January (e.g., 2020 is available Jan 15th, 2021). The NOAAGlobalTemp dataset is the official U.S. long-term record of global temperature data and is often used to show trends in temperature change around the world. It combines thousands of land-based station measurements from the Global Historical Climatology Network (GHCN) along with surface ocean temperature from the Extended Reconstructed Sea Surface Temperature (ERSST) analysis. These two datasets are merged into a 5-degree resolution product. A report summary report by NOAA NCEI is available here. GHCN monthly mean station averages for temperature and precipitation for the 1981-2010 period are also available in Living Atlas here.What can you do with this layer? Visualization: This layer can be used to plot areas where temperature was higher or lower than the historical average for each year since 1880. Be sure to configure the time settings in your web map to view the timeseries correctly. Analysis: This layer can be used as an input to a variety of geoprocessing tools, such as Space Time Cubes and other trend analyses. For a more detailed temporal analysis, a monthly mean is available here.

  7. T

    TEMPERATURE by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Oct 27, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). TEMPERATURE by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/temperature
    Explore at:
    xml, csv, json, excelAvailable download formats
    Dataset updated
    Oct 27, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for TEMPERATURE reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  8. Average annual temperature in India 2001-2023

    • statista.com
    Updated Sep 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Average annual temperature in India 2001-2023 [Dataset]. https://www.statista.com/statistics/831763/india-annual-mean-temperature/
    Explore at:
    Dataset updated
    Sep 3, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    India
    Description

    During 2023, the average temperature recorded in India was 26.15 degrees Celsius, a slight increase from the 26 degrees Celsius recorded in the previous year. This represented the highest average temperature recorded in the South Asian country since 2017.

  9. "Climate stripes":Map of annual U.S. county temperature and precipitation...

    • noaa.hub.arcgis.com
    Updated Jun 20, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2019). "Climate stripes":Map of annual U.S. county temperature and precipitation trends [Dataset]. https://noaa.hub.arcgis.com/maps/fc9b1a3f0681486bb6bdd27921fe0e3f
    Explore at:
    Dataset updated
    Jun 20, 2019
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    NOAA GeoPlatform
    Area covered
    Description

    Annual average temperature and precipitation accumulation departures from climatology are plotted, using visualizations inspired by Ed Hawkins' Warming Stripes page. A temperature chart depicts years that are warmer (reds) and cooler (blue) than normal. In a similar fashion, precipitation graphs show wetter (greens) and drier (browns) conditions for a given year. Data is from 1895-present, using a climatology of 1901-2000. Alaska and Hawaii are not available.Description of DataData originates from NOAA NCEI's climate at a glance page, which uses a 5 kilometer gridded data set, known as nClimgrid. This data set provides temperature and precipitation information for each month back to 1895. Annual estimates since 1895 are derived from the monthly data and aggregated onto each county for the Contiguous United States (Alaska and Hawaii are not available at this time). To depict the long term change in temperature and precipitation, annual data are then compared to a 20th century average (1901-2000). (Note that this is different from Ed Hawkins' original project, which uses a 1971-2000 baseline. These differences in baseline mean that the graphics may not perfectly match: the general warming trends will be consistent). These differences from the century average (known as a departure from normal, or anomaly) are then used to produce the visual. For more information on anomalies, please refer to this FAQ page.This map is a copy of Jared Rennie's original map, published at https://arcg.is/19i1r90Data is from NOAA NCEI's climate at a glance page. Thanks to Ed Hawkins and Zeke Hausfather for inspiration. Plots and maps made by Jared Rennie (@jjrennie) Certified Consulting Meteorologist, North Carolina Institute for Climate Studies, Asheville, NC.

  10. w

    Historical annual average temperature (Image Service)

    • data.wu.ac.at
    Updated Feb 5, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Agriculture (2018). Historical annual average temperature (Image Service) [Dataset]. https://data.wu.ac.at/schema/data_gov/MzliODBhZjMtZTM4MS00N2E0LTk0ZmEtYmNhMmJmNmUxOTRk
    Explore at:
    application/vnd.ogc.wms_xml, html, jsonAvailable download formats
    Dataset updated
    Feb 5, 2018
    Dataset provided by
    Department of Agriculture
    Area covered
    bca48ae700bdd8cb23cb0e63131af14888c44cc2
    Description

    This raster contains historical annual average temperature values. Data are ensemble mean values across 20 global climate models from the CMIP5 experiment [Taylor et al., 2012], downscaled to a 4km grid. For more information on the downscaling method and to access the raw data used to create this dataset, please see Abatzoglou and Brown, [2012] and the Northwest Climate Science Center. We used the MACAv2-metdata monthly minimum and maximum temperature datasets. Average temperature was calculated as the arithmetic mean of minimum and maximum temperature datasets. Average temperature was averaged over water years (1 Oct to 30 Sept). Values are averaged over the period 1975-2005 to represent historical conditions. Units are degrees Celsius. More information on the project associated with this dataset is available from the U.S. Forest Service Rocky Mountain Research Station, including detailed metadata; these raster data are available for download here.

  11. Average annual temperature in the United States 1895-2024

    • statista.com
    Updated Feb 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average annual temperature in the United States 1895-2024 [Dataset]. https://www.statista.com/statistics/500515/annual-average-temperature-in-the-us-celsius/
    Explore at:
    Dataset updated
    Feb 26, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2024, the average annual temperature in the United States was 13.06 degrees Celsius, the warmest year recorded in the period in consideration. In 1895, this figure stood at 10.18 degrees Celsius. Recent years have been some of the warmest years recorded in the country.

  12. USA Mean Temperature

    • climate-arcgis-content.hub.arcgis.com
    • idaho-epscor-gem3-uidaho.hub.arcgis.com
    Updated Jul 4, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2013). USA Mean Temperature [Dataset]. https://climate-arcgis-content.hub.arcgis.com/datasets/4c6c0d9b6c294664afad07a326a37aca
    Explore at:
    Dataset updated
    Jul 4, 2013
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Annual mean temperature is mean of the average temperatures for each month in degrees Celsius for the period of January 1971 through December 2009.The relationships established between species demographics and distributions with bioclimatic predictors can inform land managers of climatic effects on species during decision making processes.Dataset SummaryAnnual mean temperature was developed by the U.S. Geological Survey (USGS) as part of a collection Bioclimatic Predictors for Supporting Ecological Applications in the Conterminous United States. These predictors highlight climate conditions best related to species physiology. The Parameter-elevation Regression on Independent Slopes Model (PRISM) and down-scaled PRISM data, which included both averaged multi-year and averaged monthly climate summaries, were used to develop these multi-scale bioclimatic predictors.Link to source metadataWhat can you do with this layer?The layer is restricted to an 24,000 x 24,000 pixel limit for these services, which represents an area roughly 1,200 miles on a side.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.

  13. a

    North America Annual Temperature

    • hub.arcgis.com
    • climate.esri.ca
    • +2more
    Updated Apr 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CECAtlas (2023). North America Annual Temperature [Dataset]. https://hub.arcgis.com/maps/e526e605302a4d81b7c54e65a989ecf4
    Explore at:
    Dataset updated
    Apr 19, 2023
    Dataset authored and provided by
    CECAtlas
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    The North America climate data were derived from WorldClim, a set of global climate layers developed by the Museum of Vertebrate Zoology at the University of California, Berkeley, USA, in collaboration with The International Center for Tropical Agriculture and Rainforest CRC with support from NatureServe.The global climate data layers were generated through interpolation of average monthly climate data from weather stations across North America. The result is a 30-arc-second-resolution (1-Km) grid of mean temperature values. The North American data were clipped from the global data and reprojected to the standard Lambert Azimuthal Equal Area projection used for the North American Environmental Atlas. Background information on the WorldClim database is available in: Very High-Resolution Interpolated Climate Surfaces for Global Land Areas; Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones and A. Jarvis; International Journal of Climatology 25: 1965-1978; 2005.Files Download

  14. c

    Single Climate Model, 30-year Rolling Average Minimum and Maximum Average...

    • californianature.ca.gov
    • data.cnra.ca.gov
    • +5more
    Updated Sep 13, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CA Nature Organization (2021). Single Climate Model, 30-year Rolling Average Minimum and Maximum Average Temperatures [Dataset]. https://www.californianature.ca.gov/maps/CAnature::single-climate-model-30-year-rolling-average-minimum-and-maximum-average-temperatures/about
    Explore at:
    Dataset updated
    Sep 13, 2021
    Dataset authored and provided by
    CA Nature Organization
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    This dataset contains a 30-year rolling average of annual average minimum and maximum temperatures from the four models and two greenhouse gas (RCP) scenarios included in the four model ensemble for the years 1950-2099.The year identified is the mid-point of the 30-year average. eg. The year 2050 includes the values from 2036 to 2065.

    The downscaling and selection of models for inclusion in ten and four model ensembles is described in Pierce et al. 2018, but summarized here. Thirty two global climate models (GCMs) were identified to meet the modeling requirements. From those, ten that closely simulate California’s climate were selected for additional analysis (Table 1, Pierce et al. 2018) and to form a ten model ensemble. From the ten model ensemble, four models, forming a four model ensemble, were identified to provide coverage of the range of potential climate outcomes in California. The models in the four model ensemble and their general climate projection for California are:

    HadGEM2-ES (warm/dry),CanESM2 (average), CNRM-CM5 (cooler/wetter), and MIROC5 the model least like the others to improve coverage of the range of outcomes.

    These data were downloaded from Cal-Adapt and prepared for use within CA Nature by California Natural Resource Agency and ESRI staff.

    Cal-Adapt. (2018). LOCA Derived Data [GeoTIFF]. Data derived from LOCA Downscaled CMIP5 Climate Projections. Cal-Adapt website developed by University of California at Berkeley’s Geospatial Innovation Facility under contract with the California Energy Commission. Retrieved from https://cal-adapt.org/

    Pierce, D. W., J. F. Kalansky, and D. R. Cayan, (Scripps Institution of Oceanography). 2018. Climate, Drought, and Sea Level Rise Scenarios for the Fourth California Climate Assessment. California’s Fourth Climate Change Assessment, California Energy Commission. Publication Number: CNRA-CEC-2018-006.

  15. I

    Projected changes in annual average precipitation and annual average...

    • ihp-wins.unesco.org
    • data.dev-wins.com
    json, tif, wmts, xml
    Updated Dec 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Republic of Korea IHP National Committee (2024). Projected changes in annual average precipitation and annual average temperature [Dataset]. https://ihp-wins.unesco.org/dataset/projected-changes-in-annual-average-precipitation-and-annual-average-temperature
    Explore at:
    wmts, tif, json, xmlAvailable download formats
    Dataset updated
    Dec 16, 2024
    Dataset provided by
    Republic of Korea IHP National Committee
    License

    Attribution-NonCommercial 2.0 (CC BY-NC 2.0)https://creativecommons.org/licenses/by-nc/2.0/
    License information was derived automatically

    Description

    Predicted changes in annual average precipitation (%), and annual average temperature (℃) for the near future (2041-2070) and far future (2071-2100) in Republic of Korea (ROK). Projections are based on the ACCESS-ESM1-5 model for scenarios SSP245 and SSP585.

  16. 4 Model Ensemble, 30 Year Rolling Average Minimum and Maximum Average...

    • data.ca.gov
    • data.cnra.ca.gov
    • +3more
    Updated Apr 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    4 Model Ensemble, 30 Year Rolling Average Minimum and Maximum Average Temperatures [Dataset]. https://data.ca.gov/dataset/4-model-ensemble-30-year-rolling-average-minimum-and-maximum-average-temperatures
    Explore at:
    arcgis geoservices rest api, htmlAvailable download formats
    Dataset updated
    Apr 4, 2022
    Dataset authored and provided by
    California Natural Resources Agencyhttps://resources.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains 30-year rolling averages of annual average minimum and maximum temperatures across all four models and two greenhouse gas (RCP) scenarios in the four model ensemble. The year identified for a 30 year rolling average is the mid-point of the 30-year average. eg. The year 2050 includes the values from 2036 to 2065.

    The downscaling and selection of models for inclusion in ten and four model ensembles is described in 'https://www.energy.ca.gov/sites/default/files/2019-11/Projections_CCCA4-CEC-2018-006_ADA.pdf#page=11' rel='nofollow ugc'>Pierce et al. 2018, but summarized here. Thirty two global climate models (GCMs) were identified to meet the modeling requirements. From those, ten that closely simulate California’s climate were selected for additional analysis ('https://www.energy.ca.gov/sites/default/files/2019-11/Projections_CCCA4-CEC-2018-006_ADA.pdf#page=11' rel='nofollow ugc'>Table 1, Pierce et al. 2018) and to form a ten model ensemble. From the ten model ensemble, four models, forming a four model ensemble, were identified to provide coverage of the range of potential climate outcomes in California. The models in the four model ensemble and their general climate projection for California are:

    • HadGEM2-ES (warm/dry),
    • CanESM2 (average),
    • CNRM-CM5 (cooler/wetter),
    • and MIROC5 the model least like the others to improve coverage of the range of outcomes.

    These data were downloaded from Cal-Adapt and prepared for use within CA Nature by California Natural Resource Agency and ESRI staff.

    Cal-Adapt. (2018). LOCA Derived Data [GeoTIFF]. Data derived from LOCA Downscaled CMIP5 Climate Projections. Cal-Adapt website developed by University of California at Berkeley’s Geospatial Innovation Facility under contract with the California Energy Commission. Retrieved 0 from https://cal-adapt.org/

    Pierce, D. W., J. F. Kalansky, and D. R. Cayan, (Scripps Institution of Oceanography). 2018. Climate, Drought, and Sea Level Rise Scenarios for the Fourth California Climate Assessment. California’s Fourth Climate Change Assessment, California Energy Commission. Publication Number: CNRA-CEC-2018-006.

  17. c

    10 Model Ensemble, 30 Year Named Climate Period Average Minimum and Maximum...

    • californianature.ca.gov
    • data.ca.gov
    • +4more
    Updated Oct 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CA Nature Organization (2021). 10 Model Ensemble, 30 Year Named Climate Period Average Minimum and Maximum Average Temperatures [Dataset]. https://www.californianature.ca.gov/datasets/10-model-ensemble-30-year-named-climate-period-average-minimum-and-maximum-average-temperatures
    Explore at:
    Dataset updated
    Oct 12, 2021
    Dataset authored and provided by
    CA Nature Organization
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    This dataset contains a 30-year average of annual average minimum and maximum temperatures across all ten models and two greenhouse gas (RCP) scenarios in the ten model ensemble. Three named time periods are included “Historic Baseline (1961-1990)”, “Mid-Century (2035-2064)”, and “End of Century (2070-2099).”

    The downscaling and selection of models for inclusion in ten and four model ensembles is described in Pierce et al. 2018, but summarized here. Thirty two global climate models (GCMs) were identified to meet the modeling requirements. From those, ten that closely simulate California’s climate were selected for additional analysis (Table 1, Pierce et al. 2018) and to form a ten model ensemble.

    These data were downloaded from Cal-Adapt and prepared for use within CA Nature by California Natural Resource Agency and ESRI staff.

    Cal-Adapt. (2018). LOCA Derived Data [GeoTIFF]. Data derived from LOCA Downscaled CMIP5 Climate Projections. Cal-Adapt website developed by University of California at Berkeley’s Geospatial Innovation Facility under contract with the California Energy Commission. Retrieved from https://cal-adapt.org/

    Pierce, D. W., J. F. Kalansky, and D. R. Cayan, (Scripps Institution of Oceanography). 2018. Climate, Drought, and Sea Level Rise Scenarios for the Fourth California Climate Assessment. California’s Fourth Climate Change Assessment, California Energy Commission. Publication Number: CNRA-CEC-2018-006.

  18. T

    South Korea Average Temperature

    • tradingeconomics.com
    • fa.tradingeconomics.com
    • +16more
    csv, excel, json, xml
    Updated Dec 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    South Korea Average Temperature [Dataset]. https://tradingeconomics.com/south-korea/temperature
    Explore at:
    json, xml, excel, csvAvailable download formats
    Dataset updated
    Dec 15, 2023
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1901 - Dec 31, 2023
    Area covered
    South Korea
    Description

    Temperature in South Korea increased to 13.32 celsius in 2023 from 12.74 celsius in 2022. This dataset includes a chart with historical data for South Korea Average Temperature.

  19. T

    Russia Average Temperature

    • tradingeconomics.com
    • da.tradingeconomics.com
    • +17more
    csv, excel, json, xml
    Updated Dec 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2023). Russia Average Temperature [Dataset]. https://tradingeconomics.com/russia/temperature
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset updated
    Dec 15, 2023
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1901 - Dec 31, 2023
    Area covered
    Russia
    Description

    Temperature in Russia increased to -2.82 celsius in 2023 from -2.91 celsius in 2022. This dataset includes a chart with historical data for Russia Average Temperature.

  20. Yearly Temperature Anomaly

    • climat.esri.ca
    • geospatial-nws-noaa.opendata.arcgis.com
    • +5more
    Updated Dec 14, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). Yearly Temperature Anomaly [Dataset]. https://climat.esri.ca/maps/esri2::yearly-temperature-anomaly
    Explore at:
    Dataset updated
    Dec 14, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Pacific Ocean, South Pacific Ocean
    Description

    Measurements of surface air and ocean temperature are compiled from around the world each month by NOAA’s National Centers for Environmental Information and are analyzed and compared to the 1971-2000 average temperature for each location. The resulting temperature anomaly (or difference from the average) is shown in this feature service, which includes an archive going back to 1880. The mean of the 12 months each year is displayed here. Each annual update is available around the 15th of the following January (e.g., 2020 is available Jan 15th, 2021). The NOAAGlobalTemp dataset is the official U.S. long-term record of global temperature data and is often used to show trends in temperature change around the world. It combines thousands of land-based station measurements from the Global Historical Climatology Network (GHCN) along with surface ocean temperature from the Extended Reconstructed Sea Surface Temperature (ERSST) analysis. These two datasets are merged into a 5-degree resolution product. A report summary report by NOAA NCEI is available here. GHCN monthly mean station averages for temperature and precipitation for the 1981-2010 period are also available in Living Atlas here.What can you do with this layer? Visualization: This layer can be used to plot areas where temperature was higher or lower than the historical average for each year since 1880. Be sure to configure the time settings in your web map to view the timeseries correctly. Analysis: This layer can be used as an input to a variety of geoprocessing tools, such as Space Time Cubes and other trend analyses. For a more detailed temporal analysis, a monthly mean is available here.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Average annual temperature in the United States 1895-2024 [Dataset]. https://www.statista.com/statistics/500472/annual-average-temperature-in-the-us/
Organization logo

Average annual temperature in the United States 1895-2024

Explore at:
5 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Feb 2, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

The average temperature in the contiguous United States reached 55.5 degrees Fahrenheit (13 degrees Celsius) in 2024, approximately 3.5 degrees Fahrenheit higher than the 20th-century average. These levels represented a record since measurements started in 1895. Monthly average temperatures in the U.S. were also indicative of this trend. Temperatures and emissions are on the rise The rise in temperatures since 1975 is similar to the increase in carbon dioxide emissions in the U.S. Although CO₂ emissions in recent years were lower than when they peaked in 2007, they were still generally higher than levels recorded before 1990. Carbon dioxide is a greenhouse gas and is the main driver of climate change. Extreme weather Scientists worldwide have found links between the rise in temperatures and changing weather patterns. Extreme weather in the U.S. has resulted in natural disasters such as hurricanes and extreme heat waves becoming more likely. Economic damage caused by extreme temperatures in the U.S. has amounted to hundreds of billions of U.S. dollars over the past few decades.

Search
Clear search
Close search
Google apps
Main menu